首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kuang Z  Mahankali U  Beck TL 《Proteins》2007,68(1):26-33
H+/Cl- antiport behavior has recently been observed in bacterial chloride channel homologs and eukaryotic CLC-family proteins. The detailed molecular-level mechanism driving the stoichiometric exchange is unknown. In the bacterial structure, experiments and modeling studies have identified two acidic residues, E148 and E203, as key sites along the proton pathway. The E148 residue is a major component of the fast gate, and it occupies a site crucial for both H+ and Cl- transport. E203 is located on the intracellular side of the protein; it is vital for H+, but not Cl-, transport. This suggests two independent ion transit pathways for H+ and Cl- on the intracellular side of the transporter. Previously, we utilized a new pore-searching algorithm, TransPath, to predict Cl- and H+ ion pathways in the bacterial ClC channel homolog, focusing on proton access from the extracellular solution. Here we employ the TransPath method and molecular dynamics simulations to explore H+ pathways linking E148 and E203 in the presence of Cl- ions located at the experimentally observed binding sites in the pore. A conclusion is that Cl- ions are required at both the intracellular (S(int)) and central (S(cen)) binding sites in order to create an electrostatically favorable H+ pathway linking E148 and E203; this electrostatic coupling is likely related to the observed 1H+/2Cl- stoichiometry of the antiporter. In addition, we suggest that a tyrosine residue side chain (Y445), located near the Cl- ion binding site at S(cen), is involved in proton transport between E148 and E203.  相似文献   

2.
The CLC-family protein CLC-ec1, a bacterial homologue of known structure, stoichiometrically exchanges two Cl(-) for one H(+) via an unknown membrane transport mechanism. This study examines mutations at a conserved tyrosine residue, Y445, that directly coordinates a Cl(-) ion located near the center of the membrane. Mutations at this position lead to "uncoupling," such that the H(+)/Cl(-) transport ratio decreases roughly with the volume of the substituted side chain. The uncoupled proteins are still able to pump protons uphill when driven by a Cl(-) gradient, but the extent and rate of this H(+) pumping is weaker in the more uncoupled variants. Uncoupling is accompanied by conductive Cl(-) transport that is not linked to counter-movement of H(+), i.e., a "leak." The unitary Cl(-) transport rate, measured in reconstituted liposomes by both a conventional initial-velocity method and a novel Poisson dilution approach, is approximately 4,000 s(-1) for wild-type protein, and the uncoupled mutants transport Cl(-) at similar rates.  相似文献   

3.
Twenty-two amino acid residues from transmembrane domain 3 of the creatine transporter were replaced, one at a time, with cysteine. The background for mutagenesis was a C144S mutant retaining approximately 75% of wild-type transport activity but resistant to methanethiosulfonate (MTS) reagents. Each substitution mutant was tested for creatine transport activity and sensitivity to the following MTS reagents: 2-aminoethyl methanethiosulfonate (MTSEA), 2-(trimethylammonium) ethyl methanethiosulfonate (MTSET), and 2-sulfonatoethyl methanethiosulfonate (MTSES). Two mutants (G134C and Y148C) were inactive, but most mutants showed significant levels of creatine transport. Treatment with MTSEA inhibited the activity of the W154C, Y147C, and I140C mutants. Creatine partially protected I140C from inactivation, and this residue, like Cys-144 in the wild-type CreaT, is predicted to be close to a creatine binding site. MTSEA inactivation of Y147C was dependent on Na+ and Cl- suggesting that solvent accessibility was ion-dependent. Helical wheel and helical net projections indicate that the three MTSEA-sensitive mutants (W154C, Y147C, and I140C) and two inactive mutants (V151C and Y148C) are aligned on a face of an alpha-helix, suggesting that they form part of a substrate pathway. The W154C mutant, located near the external face of the membrane, was accessible to the larger MTS reagents, whereas those implicated in creatine binding were only accessible to the smaller MTSEA. Consideration of our data, together with a study on the serotonin transporter (Chen, J. G., Sachpatzidis, A., and Rudnick, G. (1997) J. Biol. Chem. 272, 28321-28327), suggests that involvement of residues from transmembrane domain 3 is a common feature of the substrate pathway of Na+- and Cl- -dependent neurotransmitter transporters.  相似文献   

4.
CLC-ec1 is a bacterial archetype of CLC transporters, a ubiquitous class of proteins that catalyze transmembrane exchange of Cl- and H+ necessary for pH regulation of numerous physiological processes. Despite a profusion of high-resolution structures, the molecular mechanism of exchange remains unknown. Here, we rigorously demonstrate strict exchange stoichiometry of 2 Cl-/1 H+. In addition to Cl- and Br-, two non-halide ions, NO3- and SCN-, are shown to be transported by CLC-ec1, but with reduced H+ counter-transport. The loss of proton coupling to these anions is accompanied by an absence of bound anions in the central and external Cl- binding sites in the protein's anion selectivity region, as revealed by crystallographic comparison of Br- and SeCN- bound to this region.  相似文献   

5.
The sugar specificity mutants of the lactose permease containing Val177 or Val177/Asn319 were analyzed with regard to their ability to couple H+ and sugar co-transport. Both mutants were able to transport lactose downhill to a significant degree. The Val177 mutant was partially defective in the active accumulation of galactosides, whereas the Val177/Asn319 mutant was completely defective in the uphill accumulation of sugars. With regard to coupling, the Val177 mutant was shown to catalyze the uncoupled transport of H+ to a substantial degree. This led to a decrease in the H+ electrochemical gradient under aerobic conditions and also resulted in faster H+ uptake when a transient H+ electrochemical gradient was generated under anaerobic conditions. Interestingly, galactosides were shown to diminish the rate of uncoupled H+ transport in the Val177 strain. The Val177/Asn319 strain also catalyzed uncoupled H+ transport, but to a lesser degree than the single Val177 mutant. In addition, the Val177/Asn319 mutant was shown to transport galactosides with or without H+. The observed H+/lactose stoichiometry was 0.30 in the double mutant compared to 0.98 in the wild-type strain. When an H+ electrochemical gradient was generated across the membrane, the Val177/Asn319 mutant permease was shown to facilitate an extremely rapid net H+ leak if nonmetabolizable galactosides had been equilibrated across the membrane. The mechanism of this leak is consistent with a circular pathway involving H+/galactoside influx and uncoupled galactoside efflux. The magnitude of the H+ leak in the presence of nonmetabolizable galactosides was so great in the double mutant that low concentrations of certain galactosides (i.e. 0.5 mM thiodigalactoside) resulted in a complete inhibition of growth. These results are discussed with regard to the possibility that cation and sugar binding to the lactose permease may involve a direct physical coupling at a common recognition site.  相似文献   

6.
In Saccharomyces cerevisiae, the trans-membrane helix of Qcr8p, the ubiquinone binding protein of complex III, contributes to the Q binding site. In wild-type cells, residue 62 of the helix is non-polar (proline). Substitution of proline 62 with a polar, uncharged residue does not impair the ability of the cells to respire, complex III assembly is unaffected, ubiquinone occupancy of the Q binding site is unchanged, and mitochondrial ubiquinone levels are in the wild-type range. Substitution with a +1 charged residue is associated with partial respiratory competence, impaired complex III assembly, and loss of cytochrome b. Although ubiquinone occupancy of the Q binding site is similar to wild-type, total mitochondrial ubiquinone doubled in these mutants. Mutants with a +2 charged substitution at position 62 are unable to respire. These results suggest that the accumulation of ubiquinone in the mitochondria may be a compensatory mechanism for impaired electron transport at cytochrome b.  相似文献   

7.
The membrane-bound beta subunit of the oxaloacetate decarboxylase Na+ pump of Klebsiella pneumoniae catalyzes the decarboxylation of enzyme-bound biotin. This event is coupled to the transport of 2 Na+ ions into the periplasm and consumes a periplasmically derived proton. The connecting fragment IIIa and transmembrane helices IV and VIII of the beta subunit are highly conserved, harboring residues D203, Y229, N373, G377, S382, and R389 that play a profound role in catalysis. We report here detailed kinetic analyses of the wild-type enzyme and the beta subunit mutants N373D, N373L, S382A, S382D, S382T, R389A, and R389D. In these studies, pH profiles, Na+ binding affinities, Hill coefficients, Vmax values and inhibition by Na+ was determined. A prominent result is the complete lack of oxaloacetate decarboxylase activity of the S382A mutant at Na+ concentrations up to 20 mm and recovery of significant activities at elevated Na+ concentrations (KNa approximately 400 mm at pH 6.0), where the wild-type enzyme is almost completely inhibited. These results indicate impaired Na+ binding to the S382 including site in the S382A mutant. Oxaloacetate decarboxylation by the S382A mutant at high Na+ concentrations is uncoupled from the vectorial events of Na+ or H+ translocation across the membrane. Based on all data with the mutant enzymes we propose a coupling mechanism, which includes Na+ binding to center I contributed by D203 (region IIIa) and N373 (helix VIII) and center II contributed by Y229 (helix IV) and S382 (helix VIII). These centers are exposed to the cytoplasmic surface in the carboxybiotin-bound state of the beta subunit and become exposed to the periplasmic surface after decarboxylation of this compound. During the countertransport of 2 Na+ and 1 H+ Y229 of center II switches between the protonated and deprotonated Na+-bound state.  相似文献   

8.
The uncoupling protein (UP) of isolated brown adipose tissue mitochondria was studied with respect to the mechanism of control of UP function by purine nucleotides. Passive transport of H+ and Cl- was followed simultaneously in a KCl medium. With both GDP and ATP a higher sensitivity of Cl- transport (apparent Ki = 2.2 microM and 4.7 microM respectively) than of H+ transport (apparent Ki = 7.7 microM and 34 microM respectively) was observed. Chemical modification of isolated mitochondria by diazobenzenesulfonate (DABS) up to 75 mumol/mg protein did not affect the transport, its ionic selectivity and regulation by endogenous free fatty acids. In contrast, the sensitivity to purine nucleotides of both H+ and Cl- translocation was decreased (apparent Ki increased 71 and 47 times respectively). DABS decreased the affinity of [3H]GDP for the specific nucleotide-binding site on mitochondria (Kd increased from 2.7 microM to 13 microM) and depressed, to a smaller extent, the GDP-binding capacity. Correlation between occupancy of the specific nucleotide-binding site by GDP and inhibition of transport yielded a linear relationship for Cl- transport in control mitochondria. For H+ transport in the control, and for both H+ and Cl- transports in DABS-treated mitochondria, a biphasic correlation was obtained. The results show that different structural parts of UP are involved in transport and its control by the regulatory ligands and that, in addition to binding of purine nucleotides to UP, the inhibition of ion transport by purine nucleotides depends on an intrinsic factor modulating the inhibitory effect.  相似文献   

9.
The specific binding of [3H]1-[2-(diphenyl-methoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine ([3H]GBR 12783) to the dopamine (DA) neuronal carrier present in membranes prepared from rat striatum was not affected when Cl- was replaced by either Br- or NO3-. In media containing Cl-, Br-, or NO3-, d-amphetamine and DA competed with the radioligand in a monophasic manner with Hill coefficients of close to 1 (0.94-1.12). Replacement of Cl- by Br- impaired the ability of some substrates (d-amphetamine, DA, p-hydroxyamphetamine, and m-tyramine) to compete with [3H]GBR 12783. The potency of Br- to decrease the affinity of substrates for the specific binding site was significantly correlated (t = 7.07, p less than 0.001) with their affinity for this binding site. These results suggest that the various substrates tested could bind to recognition sites in which Cl- is differently involved; as a consequence, substrates could bind to the neuronal carrier by means of partly different links. In experiments dealing with the specific uptake of [3H]DA, F-, NO3-, isethionate-, or acetate- was unable to substitute for Cl-, whereas Br- was quite a total substitute. Replacement of Cl- by equimolar concentrations of either NO3- or isethionate- resulted in inhibition curves of DA specific uptake with Hill coefficients of close to 1 (0.77 and 1.04 respectively); this indicates that both NO3- and isethionate- are devoid of inhibitory effects on neuronal uptake and are quite ineffective substitutes for Cl-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The first chloride transporter identified in the superfamily of ClC chloride channels was from Escherichia coli (EClC) (Accardi, A., and Miller, C. (2004) Nature 427, 803-807). Pathways, energetics, and mechanism of proton and chloride translocation and their coupling are up to now unclear. To bridge the hydrophobic gap of proton transport, we modeled four stable buried waters into both subunits of the WT EClC structure. Together they form a "water wire" connecting Glu-203 with the chloride at the central site, which in turn connects to Glu-148, the hypothetical proton exit site. Assuming the transient production of hydrochloride in the central chloride binding site of EClC, the water wire could establish a transmembrane proton transport pathway starting from Glu-203 all the way downstream onto Glu-148. We demonstrated by electrostatic and quantum chemical computations that protonation of the central chloride is energetically feasible. We characterized all chloride occupancies and protonation states possibly relevant for the proton-chloride transport cycle in EClC and constructed a working model. Accordingly, EClC evolves through states involving up to two excess protons and between one and three chlorides, which was required to fulfill the experimentally observed 2:1 stoichiometry. We show that the Y445F and E203H mutants of EClC can operate similarly, thus explaining why they exhibit almost WT activity levels. The proposed mechanism of coupled chloride-proton transport in EClC is consistent with available experimental data and allows predictions on the importance of specific amino acids, which may be probed by mutation experiments.  相似文献   

11.
The fluorescent anion indicator 6-methoxy-N-(3-sulfopropyl)quinolinium was trapped in proteoliposomes reconstituted with purified 32-kDa uncoupling protein and used to detect GDP-sensitive uniports of Cl-, Br-, and I-. Transport of these halide anions was rapid and potential-dependent. F- and nitrate were found to inhibit Cl- uptake competitively, suggesting that these anions are also substrates for transport. This preparation also exhibited H+(OH-) transport, showing that the reconstituted uncoupling protein possesses both halide and H+ transport functions, as is observed in intact brown adipose tissue mitochondria. Cl- transport was inhibited to the residual level observed in liposomes without protein when GDP was present on both sides of the membrane. Cl- transport was inhibited by about 50% when GDP was present only on one side of the membrane. We infer that uncoupling protein reconstitutes into proteoliposomes with a 1:1 ratio of sidedness orientation. The Km values for Cl- uniport were 100 and 65 mM, respectively, in GDP-loaded and non-GDP-loaded vesicles. Participation of the inner membrane anion channel in the observed transport is rendered unlikely by the fact that this carrier is insensitive to GDP. A variety of additional experiments probing for inner membrane anion channel yielded uniformly negative results, confirming the absence of contamination by this protein. Our results therefore demonstrate that the uncoupling protein mediates anion translocation, a function previously reported as lacking in the reconstituted system.  相似文献   

12.
Mitoplasts prepared from brown adipose tissue mitochondria were treated with chymotrypsin and the fragments derived from the 32-kDa uncoupling protein identified by immunoblotting. Extensive proteolysis of the uncoupling protein occurred, the polypeptide pattern being affected by binding of the inhibitory nucleotide GDP. Chymotrypsin modifies the nucleotide binding site, lowering its affinity from 1.7 microM to 21 microM but without decreasing its binding capacity. Nucleotide bound to the modified site can still inhibit the permeation of H+ and Cl- through the protein. The ion conducting pathway itself is also sensitive to chymotrypsin, Cl- and H+ transport being partially inhibited in parallel. The ability of fatty acids to increase the H+ permeability of the protein is also inhibited in parallel with the basal H+ permeability. The results confirm that the transport of H+ and Cl-, and the fatty acid regulation of H+ permeation all share a common structural element within the 32-kDa protein.  相似文献   

13.
14.
We have investigated factors that influence the properties of the zinc binding site in yeast copper-zinc superoxide dismutase (CuZnSOD). The properties of yeast CuZnSOD are essentially invariant from pH 5 to pH 9. However, below this pH range there is a change in the nature of the zinc binding site which can be interpreted as either (1) a change in metal binding affinity from strong to weak, (2) the expulsion of the metal bound at this site, or (3) a transition from a normal distorted tetrahedral ligand orientation to a more symmetric arrangement of ligands. This change is strongly reminiscent of a similar pH-induced transition seen for the bovine protein and, based on the data presented herein, is proposed to be a property that is conserved among CuZnSODs. The transition demonstrated for the yeast protein is not only sensitive to the pH of the buffering solution but also to the occupancy and redox status of the adjacent copper binding site. Furthermore, we have investigated the effect of single site mutations on the pH- and redox-sensitivity of Co2+ binding at the zinc site. Each of the mutants H46R, H48Q, H63A, H63E, H80C, G85R, and D83H is capable of binding Co2+ to a zinc site with a distorted tetrahedral geometry similar to that of wild-type. However, they do so only if Cu+ is bound at the copper site or if the pH in raised to near physiological levels, indicating that the change at the zinc binding site seen in the wild-type is conserved in the mutants, albeit with an altered pK a. The mutants H71C and D83A did not bind Co2+ in a wild-type-like fashion under any of the conditions tested. This study reveals that the zinc binding site is exquisitely sensitive to changes in the protein environment. Since three of the mutant yeast proteins investigated here contain mutations analogous to those that cause ALS (amyotrophic lateral sclerosis) in humans, this finding implicates improper metal binding as a mechanism by which CuZnSOD mutants exert their toxic gain of function. Received: 17 September 1999 / Accepted: 8 December 1999  相似文献   

15.
Na+, Li+ and Cl− transport by brush border membranes from rabbit jejunum   总被引:1,自引:0,他引:1  
Na+, Li+, K+, Rb+, Br-, Cl- and SO4(2-) transport were studied in brush border membrane vesicles isolated from rabbit jejunum. Li+ uptakes were measured by flameless atomic absorption spectroscopy, and all others were measured using isotopic flux and liquid scintillation counting. All uptakes were performed with a rapid filtration procedure. A method is presented for separating various components of ion uptake: 1) passive diffusion, 2) mediated transport and 3) binding. It was concluded that a Na+/H+ exchange mechanism exists in the jejunal brush border. The exchanger was inhibited with 300 microM amiloride or harmaline. The kinetic parameters for sodium transport by this mechanism depend on the pH of the intravesicular solution. The application of a pH gradient (pHin = 5.5, pHout = 7.5) causes an increase in Jmax (50 to 125 pmol/mg protein . sec) with no change in Kt (congruent to 4.5 nM). Competition experiments show that other monovalent cations, e.g. Li+ and NH4+, share the Na+/H+ exchanger. This was confirmed with direct measurements of Li+ uptakes. Saturable uptake mechanisms were also observed for K+, Rb+ and SO4(2-), but not for Br-. The Jmax for K+ and Rb+ are similar to the Jmax for Na+, suggesting that they may share a transporter. The SO4(2-) system appears to be a Na+/SO4(2-) cotransport system. There does not appear to be either a Cl-/OH- transport mechanism of the type observed in ileum or a specific Na+/Cl- symporter.  相似文献   

16.
The double mutant of the lactose permease containing Val177/Asn319 exhibits proton leakiness by two pathways (see Brooker, R. J. (1991) J. Biol Chem. 266, 4131-4138). One type of H+ leakiness involves the uncoupled influx of H+ (leak A pathway) while a second type involves the coupled influx of H+ and galactosides in conjunction with uncoupled galactoside efflux (leak B pathway). In the current study, 14 independent lactose permease mutants were isolated from the Val177/Asn319 parent which were resistant to thiodigalactoside growth inhibition but retained the ability to transport maltose. All of these mutants contained a third mutation (besides Val177/Asn319) at one of two sites. Eight of the mutants had Ile303 changed to Phe, while six of the mutants had Tyr236 changed to Asn or His. Each type of triple mutant was characterized with regard to sugar transport, H+ leakiness, and sugar specificity. Like the parental strain, all three types of triple mutant showed moderate rates of downhill lactose transport and were defective in the uphill accumulation of sugars. However, with regard to proton leakiness, the triple mutants fell into two distinct categories. The mutant containing Phe303 was generally less H+ leaky than the parent either via the leak A or leak B pathway. In contrast, the triple mutants containing position 236 substitutions (Asn or His) were actually more H+ leaky via the leak A pathway and exhibited similar H+ leakiness via the leak B pathway at high thiodigalactoside concentrations. The ability of the position 236 mutants to grow better than the parent in the presence of low concentrations of thiodigalactoside appears to be due to a decrease in affinity for this particular sugar rather than a generalized defect in H+ leakiness. Finally, the triple mutants showed a sugar specificity profile which was different from either the Val177/Asn319 parent, the single Val177 mutant, or the wild-type strain. These results are discussed with regard to the effects of mutations on both the sugar and H+ transport pathways.  相似文献   

17.
The role of Cl- in photosynthetic O2 evolution has been investigated by measurement of the steady-state O2 rate and EPR of the electron donors responsible for the S2 multiline signal and Signal IIs upon Cl- depletion and substitution in Photosystem II membranes. Cl- removal has three effects upon the donor side of Photosystem II. (1) It abolishes O2 evolution reversibly, while decreasing the yield of the S2 multiline signal indicative of the manganese site of the O2-evolving complex in the S2 oxidation state. This decrease is brought about by (2) the reversible disconnection of the manganese complex from the reaction center; and by (3) deactivation of S1 centers having reduced primary acceptor QA to form SO centers having a reduced Signal IIs species. Reactivation of O2 evolution by anions confirms earlier work showing a requirement for a univalent anion of optimum charge density. The observed order of reactivation is Cl- greater than Br- approximately NO3- much greater than OH- approximately F-. Reactivation of the S2 multiline signal follows Cl- approximately Br- greater than NO3- approximately OH- greater than F-, in near correspondence with reactivation of O2-evolution rates. Cl- titrations of F- -inhibited samples reveal two binding sites for Cl- which differ in binding affinity by 11-fold. The higher-affinity site reactivates the S1----S2 light reaction, while the lower-affinity site reactivates the S3----S0 light reaction. The high affinity site is located within the O2-evolving complex at an undetermined site, while the lower-affinity site functions in coupling the reaction center photochemistry to the O2-evolving complex. The results are compared with Cl-/F- exchange equilibria for Mn3+ in solution. A model for the lower S-state transitions is presented in which specific oxidation state assignments are made for some of the donors and acceptors of Photosystem II.  相似文献   

18.
The dependence of active transport of H+ on the presence of anions in synaptic vesicle membranes from rat brain was studied. The H+ transport was measured by monitoring the acidification of the vesicles with a permeant weak base-acridine orange. The fluorescence changes in the latter were proportional to the magnitude of artificially imposed pH gradients (delta pH). The ATP-dependent generation of delta pH was completely dependent on the presence of a permeant anion, was maximal at 150 mM Cl- and was inhibited, when the medium osmolarity was further increased by sucrose or KCl. At 150 mM only Br-, similar to Cl-, behaved as permeant anions, whereas I- was effective only at low (5-20 mM) concentrations. The anions--SCN-, ClO4-, HSO3- and I-(10-20 mM) as well as 4-acetamido-4'-isothiocyanatostilbene-2.2'-disulfonate (K0.5 = 14 microM) blocked the ATP-dependent generation of delta pH observed in the presence of Cl-, while other anions tested (F-, phosphate, bicarbonate, some organic anions) were virtually without effect and did not support the H+ transport. The dependence of the rate and extent of H+ accumulation on Cl- concentration was sigmoidal with a Hill coefficient of 2.8 and a Km value of 85-90 mM. The effects of anions point to the presence in the membrane of synaptic vesicles of an anion (chloride) channel whose conductance can regulate the H+ transport by switching it from an electrogenic to an electroneutral (coupled entry of H+ and Cl-) mode of operation.  相似文献   

19.
Cl-/HCO3- exchange activity mediated by the AE1 anion exchanger is reduced by carbonic anhydrase II (CA2) inhibition or by prevention of CA2 binding to the AE1 C-terminal cytoplasmic tail. This type of AE1 inhibition is thought to represent reduced metabolic channeling of HCO3- to the intracellular HCO3- binding site of AE1. To test the hypothesis that CA2 binding might itself allosterically activate AE1 in Xenopus oocytes, we compared Cl-/Cl- and Cl-/HCO3- exchange activities of AE1 polypeptides with truncation and missense mutations in the C-terminal tail. The distal renal tubular acidosis-associated AE1 901X mutant exhibited both Cl-/Cl- and Cl-/HCO3- exchange activities. In contrast, AE1 896X, 891X, and AE1 missense mutants in the CA2 binding site were inactive as Cl-/HCO3- exchangers despite exhibiting normal Cl-/Cl- exchange activities. Co-expression of CA2 enhanced wild-type AE1-mediated Cl-/HCO3- exchange, but not Cl-/Cl- exchange. CA2 co-expression could not rescue Cl-/HCO3- exchange activity in AE1 mutants selectively impaired in Cl-/HCO3- exchange. However, co-expression of transport-incompetent AE1 mutants with intact CA2 binding sites completely rescued Cl-/HCO3- exchange by an AE1 missense mutant devoid of CA2 binding, with activity further enhanced by CA2 co-expression. The same transport-incompetent AE1 mutants failed to rescue Cl-/HCO3- exchange by the AE1 truncation mutant 896X, despite preservation of the latter's core CA2 binding site. These data increase the minimal extent of a functionally defined CA2 binding site in AE1. The inter-protomeric rescue of HCO3- transport within the AE1 dimer shows functional proximity of the C-terminal cytoplasmic tail of one protomer to the anion translocation pathway in the adjacent protomer within the AE1 heterodimer. The data strongly support the hypothesis that an intact transbilayer anion translocation pathway is completely contained within an AE1 monomer.  相似文献   

20.
A set of procedures was developed to study the binding of gamma-[3H]aminobutyric acid ([3H]GABA) to GABAA and GABAB receptors, and to the Na(+)-dependent transport carrier, at 25 and 37 degrees C in the presence of physiological concentrations of Na+. The membrane preparation used in these procedures was not subjected to freeze-thawing or treatment with Triton X-100. Isoguvacine, (-)-baclofen, and (-)-nipecotate were used to block selectively the binding to GABAA receptors, GABAB receptors, and the transport site, respectively. Analysis of the binding characteristics of [3H]GABA to the GABAA receptor suggested the existence of high-(KD less than 30 nM), middle- (KD = 100-500 nM), and low-affinity (KD greater than 5 microM) binding sites. However, the binding data in the middle-affinity region (100-1,000 nM) were often indicative of cooperativity. The affinity between GABA and the GABAA receptor was reduced modestly by increases in temperature and by the presence of Cl- at physiological concentrations. Binding to the GABAB receptor required Ca2+ and Cl-. Apparent binding to the transport carrier required both Na+ and Cl-. A comparison of Bmax values in three brain regions revealed an inverse relationship between the high-affinity site of the GABAA receptor and the transport binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号