首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sperm competition is a pervasive force. One adaptation is the male ability to displace the rivals' sperm that females have stored from previous copulations. In the damselfly, Calopteryx haemorrhoidalis asturica , males with wider aedeagi displace more spermathecal sperm. The present study documents that the same mechanism operates in another damselfly, Hetaerina americana . However, this genital width in both species decreases along the season, but late-emerging females have more sperm displaced than early-emerging females. Because territorial males mated more and were larger in body and genital size than nonterritorial males, late-season females mated with considerably larger males with respect to female size and this produced higher sperm displacement. Assuming female benefits from storing sperm but that such benefit does not prevail if males displace sperm, it is predicted that, along the season, females will mate less and male harassment (in terms of male mating attempts and oviposition duration) will increase. These predictions were corroborated. In H. americana , it was also tested whether spermathecal sperm became less viable along the season. The results obtained did not corroborate this. This is the first evidence indicating that season affects sperm displacement ability and female mating frequency due to changes in male body and genital size.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 815–829.  相似文献   

2.
It is now widely recognized that sexual selection has been important in the rapid and divergent evolution of male genital morphology. However, distinguishing among putative mechanisms of sexual selection acting on male genital morphology represents a considerable challenge. Although there is growing evidence that variation in the size and/or shape of male genital structures can determine a male's success in gaining fertilizations, our knowledge of the functional morphology of male genitalia remains limited. Here we examine the functional morphology of genital sclerites that are known to influence paternity in the dung beetle Onthophagus taurus . We show that three of the sclerites form a functionally integrated unit that generates the tubular-shaped spermatophore and delivers its opening to the female's spermathecal duct. A fourth sclerite acts as a holdfast device during copulation. Our observations shed light on the mechanism by which these sclerites influence a male's paternity, and their patterns of phenotypic and genetic (co)variation.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 257–266.  相似文献   

3.
Dermaptera (earwigs) is a relatively small polyneopteran order with approximately 2200 described species. They are characterized by a pair of forceps, which are hardened, unsegmented cerci at the caudal end of the abdomen. In most species, males have more exaggerated forceps than females, indicating an effect of sexual selection on them. Earwigs also exhibit astonishing diversity in the number, laterality and size of both male and female genital components. This characteristic has promoted the study of postcopulatory sexual selection in several representative species. Here, previous studies of earwigs that examined pre‐ and postcopulatory sexual selection are reviewed in detail. Related topics included here are sexually antagonistic coevolution, evolution of laterally asymmetrical morphologies, and developmental aspects of intra‐sexually dimorphic traits. A new terminology system for male genitalia is also proposed.  相似文献   

4.
The study of male genital diversity has long overshadowed evolutionary inquiry of female genitalia, despite its nontrivial diversity. Here, we identify four nonmutually exclusive mechanisms that could lead to genital divergence in females, and potentially generate patterns of correlated male–female genital evolution: (1) ecological variation alters the context of sexual selection (“ecology hypothesis”), (2) sexually antagonistic selection (“sexual‐conflict hypothesis”), (3) female preferences for male genitalia mediated by female genital traits (“female‐choice hypothesis”), and (4) selection against inter‐population mating (“lock‐and‐key hypothesis”). We performed an empirical investigation of all four hypotheses using the model system of Bahamas mosquitofish inhabiting blue holes that vary in predation risk. We found unequivocal support for the ecology hypothesis, with females exhibiting a smaller genital opening in blue holes containing piscivorous fish. This is consistent with stronger postmating female choice/conflict when predators are present, but greater premating female choice in their absence. Our results additionally supported the lock‐and‐key hypothesis, uncovering a pattern of reproductive character displacement for genital shape. We found no support for the sexual conflict or female choice hypotheses. Our results demonstrate a strong role for ecology in generating female genital diversity, and suggest that lock‐and‐key may provide a viable cause of female genital diversification.  相似文献   

5.
Odonates were the first group of organisms where sperm competition and last male sperm precedence have been identified. With the development of 10 microsatellites for the emperor dragonfly Anax imperator, the function and priority patterns of the multiple sperm storage organs of females can be studied and compared between species in natural populations. In addition, two microsatellite loci developed for the sister species Anax parthenope, are also highly polymorphic in A. imperator. For the presented 12 microsatellite loci, the number of alleles per locus ranged from two to 24. Observed heterozygosity ranged from 0.07 to 0.88.  相似文献   

6.
《Current biology : CB》2022,32(20):4465-4472.e6
  1. Download : Download high-res image (155KB)
  2. Download : Download full-size image
  相似文献   

7.
Males of Microsepsis eberhardi and M. armillata use their genitalic surstyli to rhythmically squeeze the female's abdomen with stereotyped movements during copulation. Squeezing movements did not begin until intromission had occurred and, contrary to predictions of the conflict-of-interest hypothesis for genitalic evolution, did not overcome morphological or behavioral female resistance. Contrary to predictions of the lock-and-key hypothesis, female morphology was uniform in the two species and could not mechanically exclude the genitalia of either species of male. The complex pattern of squeezing movements differed between the two species as predicted by the sexual selection hypothesis for genitalic evolution. Also, evolutionarily derived muscles and pseudoarticulations in the male's genitalic surstyli facilitated one type of movement, whose patterns were especially distinct. The data support the hypothesis that the male surstyli evolved to function as courtship devices.  相似文献   

8.
9.
The complex, species-specific foreleg armature in males of the genus Themira (Diptera: Sepsidae) provides an ideal system for testing competing hypotheses for the evolution of sexually dimorphic character divergence. In sepsid flies, the male holds onto the female by clasping her wing base with his modified forelegs. In the present study, we document the male leg and the female wing morphology using scanning electron microscopy and confocal microscopy. We use a phylogenetic tree for Themira to reconstruct male foreleg and female wing evolution and demonstrate that the male legs have evolved elaborate structures with little or no corresponding changes in wing morphology. This lack of interspecific variation in female wings is not in agreement with the hypothesis of a morphological 'evolutionary arms race' between males and females. However, there is also no evidence for sex-specific wing differences in sensory organs on the wing base that may explain how females could assess males according to Eberhard's 'cryptic female choice' hypothesis. Finally, our study reveals the function of several novel morphological clasping structures and documents that the male foreleg characters in Themira are highly homoplastic. Male forelegs in two clades evolve considerably faster than in other species or clades. These two clades include Themira superba and Themira leachi , species that have some of the most dramatically modified forelegs known in Diptera.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 227–238.  相似文献   

10.
Several possible explanations for the elaborate species-specific morphology of male front leg clasping organs were tested by comparing six species of Archisepsis, Palaeosepsis and Microsepsis flies. The only previously published hypothesis regarding these clasping organs was refuted by the finding that species-specific portions of the male femur and tibia consistently meshed tightly with prominent veins and folds in the female's wing, rather than meshing with each other. Female wing morphology in the region grasped by the male was relatively uniform and in general did not vary in ways that would prevent non-conspecific males from grasping them, arguing in all but one species against both simple lock-and-key and male-female conflict of interests hypotheses based on morphology. Interspecific differences in male front leg morphology generally represent alternative ways to accomplish the same basic mechanical function of holding tightly onto the relatively invariant female. Despite the fact that female resistance behaviour indicates that male-female conflict over male mounting is common, only one female wing structure in one species resembled an anti-clasper device, giving a second reason to doubt the morphological male-female conflict of interest hypothesis, at least for five of the six species. The positions of probable sensory structures on the wings of females were relatively similar in different species and did not correspond in any obvious way to species-specific features of male clasping structures. This, plus the intraspecific variation in both the positions of these sensilla and the exact site where the male grasped the female's wing, argued against simple 'sensory lock-and-key' ideas about male front leg function. By a process of elimination, it appears that generalized female receptors are able to sense species-specific differences in male front legs. This idea was supported by increased female rejection behaviour in cross-specific pairs.  相似文献   

11.
It is well known that sexual selection can target reproductive traits during successive pre‐ and post‐mating episodes of selection. A key focus of recent studies has been to understand and quantify how these episodes of sexual selection interact to determine overall variance in reproductive success. In this article, we review empirical developments in this field but also highlight the considerable variability in patterns of pre‐ and post‐mating sexual selection, attributable to variation in patterns of resource acquisition and allocation, ecological and social factors, genotype‐by‐environment interaction and possible methodological factors that might obscure such patterns. Our aim is to highlight how (co)variances in pre‐ and post‐mating sexually selected traits can be sensitive to changes in a range of ecological and environmental variables. We argue that failure to capture this variation when quantifying the opportunity for sexual selection may lead to erroneous conclusions about the strength, direction or form of sexual selection operating on pre‐ and post‐mating traits. Overall, we advocate for approaches that combine measures of pre‐ and post‐mating selection across contrasting environmental or ecological gradients to better understand the dynamics of sexual selection in polyandrous species. We also discuss some directions for future research in this area.  相似文献   

12.
In this paper some evolutionary changes of genitalia in the damselfly Calopteryx haemorrhoidalis are investigated by determining their current and past function. Calopteryx haemorrhoidalis males stimulate females by aedeagal frictioning on a set of vaginal sensilla. The aedeagus is considerably variable and positively correlates with volumes of ejected sperm from the spermatheca. Interestingly, females show a significantly reduced sensillum number compared with other family members. Here I explore whether there existed directional selection for aedeagal width at its evolutionary onset; and whether the sensillum reduction evolved to make sperm ejection less effective. Using C. haemorrhoidalis aedeagi in females whose species retained the ancestral conditions (no stimulatory ability and large sensillum numbers), Hetaerina cruentata and C. xanthostoma, my results corroborated these assumptions: variation in aedeagal width inversely correlated with sperm ejection rate while sperm ejection was higher in species with high sensillum numbers. A suggested coevolutionary interpretation of these results in C. haemorrhoidalis is that aedeagal width was favoured which was followed by a sensillum reduction.  相似文献   

13.
14.
Sex allocation theory predicts the optimal allocation to male and female reproduction in sexual organisms. In animals, most work on sex allocation has focused on species with separate sexes and our understanding of simultaneous hermaphrodites is patchier. Recent theory predicts that sex allocation in simultaneous hermaphrodites should strongly be affected by post-copulatory sexual selection, while the role of pre-copulatory sexual selection is much less clear. Here, we review sex allocation and sexual selection theory for simultaneous hermaphrodites, and identify several strong and potentially unwarranted assumptions. We then present a model that treats allocation to sexually selected traits as components of sex allocation and explore patterns of allocation when some of these assumptions are relaxed. For example, when investment into a male sexually selected trait leads to skews in sperm competition, causing local sperm competition, this is expected to lead to a reduced allocation to sperm production. We conclude that understanding the evolution of sex allocation in simultaneous hermaphrodites requires detailed knowledge of the different sexual selection processes and their relative importance. However, little is currently known quantitatively about sexual selection in simultaneous hermaphrodites, about what the underlying traits are, and about what drives and constrains their evolution. Future work should therefore aim at quantifying sexual selection and identifying the underlying traits along the pre- to post-copulatory axis.  相似文献   

15.
Sperm cells exhibit extraordinary phenotypic diversity and rapid rates of evolution, yet the adaptive value of most sperm traits remains equivocal. Recent findings suggest that to understand how selection targets ejaculates, we must recognize that female‐imposed physiological conditions often alter sperm phenotypes. These phenotypic changes may influence the relationships among sperm traits and their association with fitness. Here, we show that chemical substances released by eggs (known to modify sperm physiology and behaviour) alter patterns of selection on a suite of sperm traits in the mussel Mytilus galloprovincialis. We use multivariate selection analyses to characterize linear and nonlinear selection acting on sperm traits in (a) seawater alone and (b) seawater containing egg‐derived chemicals (egg water). Our analyses revealed that nonlinear selection on canonical axes of multiple traits (notably sperm velocity, sperm linearity and percentage of motile sperm) was the most important form of selection overall, but importantly these patterns were only evident when sperm phenotypes were measured in egg water. These findings reveal the subtle way that females can alter patterns of selection, with the implication that overlooking environmentally moderated changes to sperm, may result in erroneous interpretations of how selection targets phenotypic (co)variation in sperm traits.  相似文献   

16.
Male genitalia are among the fastest evolving morphological characters, and at a general level sexual selection seems to be involved. But experimental determination of the functions of many remarkable genitalic elaborations is very rare. Here we present the first study to address experimentally the adaptive function of a male genital structure that is not involved in sperm transfer. Females of the orb-weaving spider Argiope bruennichi are sexually cannibalistic and polyandrous. The male increases his paternity by obstructing the female's insemination duct with a fragment of his complex genitalia (embolus tip). We manipulated males by detaching another species-specific structure, the median apophysis spur, and found that the spur promotes breakage of the embolus tip inside the female duct, but does not affect the probability and duration of copulation. These data are novel in that they suggest that a genitalic structure which does not transfer sperm nevertheless evolved in the context of sperm competition.  相似文献   

17.
Male genitalia in Drosophila exemplify strikingly rapid and divergent evolution, whereas female genitalia are relatively invariable. Whereas precopulatory and post-copulatory sexual selection has been invoked to explain this trend, the functional significance of genital structures during copulation remains obscure. We used time-sequence analysis to study the functional significance of external genitalic structures during the course of copulation, between D. melanogaster and D. simulans. This functional analysis has provided new information that reveals the importance of male-driven copulatory mechanics and strategies in the rapid diversification of genitalia. The posterior process, which is a recently evolved sexual character and present only in males of the melanogaster clade, plays a crucial role in mounting as well as in genital coupling. Whereas there is ample evidence for precopulatory and/or post-copulatory female choice, we show here that during copulation there is little or no physical female choice, consequently, males determine copulation duration. We also found subtle differences in copulatory mechanics between very closely related species. We propose that variation in male usage of novel genitalic structures and shifts in copulatory behaviour have played an important role in the diversification of genitalia in species of the Drosophila subgroup.  相似文献   

18.
Male genital traits exhibit extraordinary interspecific phenotypic variation. This remarkable and general evolutionary trend is widely considered to be the result of sexual selection. However, we still do not have a good understanding of whether or how individual genital traits function in different competitive arenas (episodes of sexual selection), or how different genital traits may interact to influence competitive outcomes. Here, we use an experimental approach based on high‐precision laser phenotypic engineering to address these outstanding questions, focusing on three distinct sets of micron‐scale external (nonintromittent) genital spines in male Drosophila kikkawai Burla (Diptera: Drosophilidae). Elimination of the large pair of spines on the male secondary claspers sharply reduced male ability to copulate, yet elimination of the other sets of spines on the primary and secondary claspers had no significant effects on copulation probability. Intriguingly, both the large spines on the secondary claspers and the cluster of spines on the primary claspers were found to independently promote male competitive fertilization success. Moreover, when large and small secondary clasper spines were simultaneously shortened in individual males, these males suffered greater reductions in fertilization success relative to males whose traits were altered individually, providing evidence for synergistic effects of external genital traits on fertilization success. Overall, the results are significant in demonstrating that a given genital trait (the large spines on the secondary claspers) can function in different episodes of sexual selection, and distinct genital traits may interact in sexual selection. The results offer an important contribution to evolutionary biology by demonstrating an understudied selective mechanism, operating via subtle trait interactions in a post‐insemination context, by which genital traits may be co‐evolving.  相似文献   

19.
Male structures specialized to contact females during sexual interactions often diverge relatively rapidly over evolutionary time. Previous explanations for this pattern invoked sexual selection by female choice, but new ideas emphasize possible sexually antagonistic coevolution resulting from male-female conflict over control of fertilization. The two types of selection have often not been carefully distinguished. They do not theoretically exclude one another, but they have not necessarily had equally important roles in producing rapid evolutionary divergence. To date, most recent empirical studies of antagonistic coevolution have emphasized only a few taxa. This study uses the abundant but little-used data in the taxonomic literature on morphology to evaluate the roles of antagonistic coevolution and traditional female choice over a wide taxonomic spectrum (61 families of arthropods, mostly insects and spiders). Groups with species-specific male structures that contact females were checked for coevolution of species-specific female structures that are contacted by the male and that have mechanical properties that could potentially defend her against the male. Facultatively deployable, species-specific female defensive structures, a design that would seem likely to evolve frequently under the sexually antagonistic coevolution hypothesis, were completely absent (0% of 106 structures in 84 taxonomic groups). Although likely cases of sexually antagonistic coevolution exist, using conservative criteria, 79.2% of the 106 structures lacked even potentially defensive female coevolution. A common pattern (53.8% of 106) was a nearly complete absence of female change in areas contacted by species-specific male structures. Post-hoc arguments invoking possible coevolution of defensive female behavior instead of morphology, or of female sensitivities and responses to male sensory traps, could enable the sexually antagonistic coevolution hypothesis to explain these data. No case of such coevolution of female behavior or sensitivities has been demonstrated, and there are additional reasons to doubt that they are general explanations for the data presented here. Detailed studies of female resistance behavior could help illuminate several issues. The possibility of a greater role for antagonistic coevolution in reproductive physiology than in morphology and the possibility that female choice and sexually antagonistic coevolution have both been important in some lineages are discussed.  相似文献   

20.
Comparative analyses suggest that a variety of factors influence the evolution of sexual dimorphism in birds. We analyzed the relative importance of social mating system and sperm competition to sexual differences in plumage and body size (mass and tail and wing length) of more than 1,000 species of birds from throughout the world. In these analyses we controlled for phylogeny and a variety of ecological and life-history variables. We used testis size (corrected for total body mass) as an index of sperm competition in each species, because testis size is correlated with levels of extrapair paternity and is available for a large number of species. In contrast to recent studies, we found strong and consistent effects of social mating system on most forms of dimorphism. Social mating system strongly influenced dimorphism in plumage, body mass, and wing length and had some effect on dimorphism in tail length. Sexual dimorphism was relatively greater in species with polygynous or lekking than monogamous mating systems. This was true when we used both species and phylogenetically independent contrasts for analysis. Relative testis size was also related positively to dimorphism in tail and wing length, but in most analyses it was a poorer predictor of plumage dimorphism than social mating system. There was no association between relative testis size and mass dimorphism. Geographic region and life history were also associated with the four types of dimorphism, although their influence varied between the different types of dimorphism. Although there is much interest in the effects of sperm competition on sexual dimorphism, we suggest that traditional explanations based on social mating systems are better predictors of dimorphism in birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号