首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous publication (Cerff, R. (1979) Eur. J. Biochem., 94, 243--247) we demonstrated that chloroplast NADP-linked glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) from higher plants consists of two separate isoenzymes with apparent subunit compositions A2B2 (isoenzyme 1) and A4 (isoenzyme 2), where Subunits A and B are distinguished by slightly different molecular weights (A smaller than or approximately to B). In the present study we compare isoenzymes 1 and 2 from Sinapis alba and Hordeum vulgare on the basis of antigenic cross-reactivity, tryptic peptides, and amino acid composition. Isoenzymes 1 and 2 show immunochemical identity. They also have very similar tryptic peptide maps and amino acid compositions. This strongly suggests that Subunits A and B of the NADP-linked enzyme are very similar in primary sequence. As opposed to this, cytoplasmic NAD-specific glyceraldehyde-3-P dehydrogenase (EC 1.2.1.12) does not cross-react with antisera raised against the NADP-linked enzyme. Furthermore, tryptic peptide maps of the NAD-specific enzyme show little or no similarity with those of the NADP-linked enzyme. This indicates that the subunits of the NADP-linked enzyme and the subunit of the NAD-specific enzyme are different proteins coded by separate genes. The differences in the amino acid compositions between the two species corresponds to a SdeltaQ value of 21, suggesting some sequence resemblance and a common phylogenetic origin.  相似文献   

2.
High hydrostatic pressure enhanced the specific activity of regulatory enzymes of the Benson-Calvin cycle (fructose-1,6-bisphosphatase, glyceraldehyde-3-P dehydrogenase, phosphoribulokinase) which are modulated by the ferredoxin-thioredoxin system. High activity of chloroplast fructose-1,6-bisphosphatase required dithiothreitol, fructose 1,6-bisphosphate, and Ca2+. At 100 bar the A0.5 for fructose 1,6-bisphosphate (0.3 mM) was lower than that at 1 bar (1.5 mM), whereas similar variations of pressure did not alter the A0.5 for Ca2+ (55 microM). The response of chloroplast glyceraldehyde-3-P dehydrogenase exposed to 500 bar was a 4-fold increase in the NADP-linked activity; conversely, the NAD-dependent activity remained unchanged. The concerted action of high pressure and Pi (or ATP), both activators of chloroplast glyceraldehyde-3-P dehydrogenase, led to inactivation. On the other hand, the activity of phosphoribulokinase increased 10-fold when the enzyme was incubated at 1500 bar; the activation process was strictly dependent on the presence of dithiothreitol. At variance with these enzymes, bovine liver fructose-1,6-bisphosphatase, yeast glyceraldehyde-3-P dehydrogenase, and chloroplast ribulose 1,5-bisphosphate carboxylase, whose activities are not modulated by reduced thioredoxin, were inactivated by high pressure. The comparison of oligomeric enzymes revealed that the stimulation of specific activity by high pressure correlated with thioredoxin-mediated activation, and it did not depend on a particular subunit composition. Present results show that high pressure resembled thioredoxin, cosolvents, and chaotropic anions in its action on regulatory enzymes of the Benson-Calvin cycle. The comparison of physiological and non-physiological modulators suggested that thioredoxin-mediated modifications of noncovalent interactions is an important event in light-dependent regulation of chloroplast enzymes.  相似文献   

3.
A D Li  L E Anderson 《Plant physiology》1997,115(3):1201-1209
A cDNA fragment coding for the pea (Pisum sativum L.) chloroplastic glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) B-subunit and a truncated form corresponding in length to the A-subunit have been cloned into an expression vector, expressed in the absence of the A-subunit in a gap- Escherichia coli strain, purified, and studied. Like the isolated enzyme from higher plant chloroplasts, the recombinant enzymes have dual specificity for NADPH and NADH. The recombinant glyceraldehyde-3-P dehydrogenases have the same optimal pH as the enzyme isolated from pea chloroplasts. Like the native chloroplast enzyme, the recombinant B-subunit has a marked tendency to form large aggregates, whereas the truncated B-subunit exists as the tetramer. The recombinant B-subunit glyceraldehyde 3-P dehydrogenase is more sensitive to dithiothreitol than its truncated form. It seems likely that a different pair of cysteines is responsible for the redox sensitivity of the activity of the enzyme composed of B-subunits than the cysteine residues implicated in the modulation of the activity of the enzyme composed of A-subunits by previous work in this laboratory.  相似文献   

4.
Glyceraldehyde-3-phosphate dehydrogenase was found to bind in vitro to purified, human erythrocyte glucose transporter reconstituted into vesicles. Mild tryptic digestion of the glucose transporter totally inactivated the binding, suggesting that the cytoplasmic domain of the transporter is involved in the binding to glyceraldehyde-3-phosphate dehydrogenase. The binding was abolished in the presence of antisera raised against the purified glucose transporter, further supporting specificity of this interaction. The binding was reversible with a dissociation constant (Kd) of 3.3 x 10(-6) M and a total capacity (Bt) of approximately 30 nmol/mg of protein indicating a stoichiometry of one enzyme-tetramer per accessible transporter. The binding was sensitive to changes in pH showing an optimum at around pH 7.0. KCl and NaCl inhibited the binding in a simple dose-dependent manner with Ki of 40 and 20 mM, respectively. The binding was also inhibited by NAD+ with an estimated Ki of 3 mM. ATP, on the other hand, enhanced the binding by up to 3-fold in a dose-dependent manner with an apparent Ka of approximately 6 mM. The binding was not affected by D-glucose or cytochalasin B. The binding did not affect either the glucose or cytochalasin B in binding affinities or the transport activity of the transporter. However, the enzyme was inactivated totally upon binding to the transporter. Based on these findings, we suggest that a significant portion of glyceraldehyde-3-phosphate dehydrogenase in human erythrocytes exists as an inactive form via an ATP-dependent, reversible association with glucose transporter, and that this association may exert regulatory intervention on nucleotide metabolism in vitro.  相似文献   

5.
Two high-Mr forms of chloroplast glyceraldehyde-3-phosphate dehydrogenase from spinach leaf can be separated by DEAE-cellulose chromatography. One form, the high-Mr glyceraldehyde-3-phosphate dehydrogenase, resembles an enzyme previously described [Yonuschot, G.R., Ortwerth, B.J. & Koeppe, O.J. (1970) J. Biol. Chem. 245, 4193-4198]. The other, a glyceraldehyde-3-phosphate dehydrogenase/phosphoribulokinase complex, is characterised by possession of latent phosphoribulokinase activity, only expressed following incubation with dithiothreitol. This complex is composed not only of subunits A (39.5 kDa) and B (41.5 kDa) characteristic of the high-Mr glyceraldehyde-3-phosphate dehydrogenase, but also of a third subunit, R (40.5 kDa) comigrating with that from the active phosphoribulokinase of spinach. Incubation of the complex with dithiothreitol markedly stimulated both its phosphoribulokinase and NADPH-dependent dehydrogenase activities. This dithiothreitol-induced activation was accompanied by depolymerisation to give two predominantly NADPH-linked tetrameric glyceraldehyde-3-phosphate dehydrogenases (the homotetramer, A4, and the heterotetramer, A2B2) as well as the active dimeric phosphoribulokinase. Incubation of the high-Mr glyceraldehyde-3-phosphate dehydrogenase with dithiothreitol promoted complete depolymerisation yielding only the heterotetramer (A2B2). Possible structures suggested for the glyceraldehyde-3-phosphate dehydrogenase/phosphoribulokinase complex are (A2B2)2A4R2 or (A2B2)(A4)2R2.  相似文献   

6.
We report here a method for the isolation of high specific activity phosphoglycerate kinase (EC 2.7.2.3) from chloroplasts. The enzyme has been purified over 200-fold from pea (Pisum sativum L.) stromal extracts to apparent homogeneity with 23% recovery. Negative cooperativity is observed with the two enzyme phosphoglycerate kinase/glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) couple restored from the purified enzymes when NADPH is the reducing pyridine nucleotide, consistent with earlier results obtained with crude chloroplastic extracts (J Macioszek, LE Anderson [1987] Biochim Biophys Acta 892: 185-190). Michaelis Menten kinetics are observed when 3-phosphoglycerate is held constant and phosphoglycerate kinase is varied, which suggests that phosphoglycerate kinase-bound 1,3-bisphosphoglycerate may be the preferred substrate for glyceraldehyde-3-P dehydrogenase in the chloroplast.  相似文献   

7.
When D-glucosaminate dehydratase (GADH) was incubated with D-glucosaminate (GlcNA) in veronal buffer (VB; 0.01 M, pH 8.0), GlcNA was converted stoichiometrically to glyceraldehyde, pyruvate, and ammonia (aldolase reaction A). This reaction occurred in addition to the dehydratase reaction (conversion of GlcNA to 2-keto-3-deoxy-o-gluconate and ammonia: α-elimination reaction, B). The ratio of the activities (A:B) was about 1:4. However, in potassium phosphate buffer (KPB; 0.04 M, pH 8.0), the aldolase reaction was inhibited to 3–4% of that in VB, and also inhibited by various derivatives of glycerol, in particular, glycerol-3-phosphate (glycerol-3-P) and glyceraldehyde-3-phosphate (glyceraldehyde-3-P) in VB. The native enzyme was inhibited by incubation with 0.1 M EDTA, and the activity was restored by incubation of the EDTA-treated enzyme with (Mn2+ + pyridoxal 5′-phosphate (PLP)). When the EDTA-treated enzyme was incubated with (Mn2+ + PLP + glycerol-3-P), the activity of reaction B increased to 131% but that of reaction A decreased to 21%. These results suggested that Mn2+, PLP, and the phosphate group of glycerol-3-P are involved in formation of the active enzyme. In the case of the aldolase reaction, Mn2+ ion, which might be essential for the reaction, is chelated by the phosphate group of glycerol-3-P with resultant inhibition of the aldolase reaction.  相似文献   

8.
Mass mapping analysis based on cyanylation and CN-induced cleavage indicates that the two cysteine residues in the C-terminal extension of the B subunit of the light-activated pea leaf chloroplast glyceraldehyde-3-phosphate dehydrogenase form a disulfide bond. No evidence was found for a disulfide bond in the A subunit, nor was there any indication of a second disulfide bond in the B subunit. The availability of the structure of the extended glyceraldehyde-3-phosphate dehydrogenase from the archaeon Sulfolobus solfataricus allows modeling of the B subunit. As modeled, the two cysteine residues in the extension are positioned to form an interdomain disulfide cross-link.  相似文献   

9.
Enzymes involved in genomic maintenance of human parasites are attractive targets for parasite-specific drugs. The parasitic protozoan Trypanosoma cruzi contains at least two enzymes involved in the protection against potentially mutagenic uracil, a deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and a uracil-DNA glycosylase belonging to the highly conserved UNG-family. Uracil-DNA glycosylase activities excise uracil from DNA and initiate a multistep base-excision repair (BER) pathway to restore the correct nucleotide sequence. Here we report the biochemical characterisation of T.cruzi UNG (TcUNG) and its contribution to the total uracil repair activity in T.cruzi. TcUNG is shown to be the major uracil-DNA glycosylase in T.cruzi. The purified recombinant TcUNG exhibits substrate preference for removal of uracil in the order ssU>U:G>U:A, and has no associated thymine-DNA glycosylase activity. T.cruzi apparently repairs U:G DNA substrate exclusively via short-patch BER, but the DNA polymerase involved surprisingly displays a vertebrate POLdelta-like pattern of inhibition. Back-up UDG activities such as SMUG, TDG and MBD4 were not found, underlying the importance of the TcUNG enzyme in protection against uracil in DNA and as a potential target for drug therapy.  相似文献   

10.
Light activation of NADP-linked glyceraldehyde-3-P dehydrogenase involves reductive cleavage of a disulfide bond. We have proposed that the inactivating disulfide locks the two domains of the enzyme, preventing catalysis, and we have tentatively identified the two critical cysteine residues in the chloroplast enzyme (D. Li, F.J. Stevens, M. Schiffer and L.E. Anderson (1994) Biophys J. 67: 29–35). We reasoned that if activation of this enzyme involves these cysteines that enzymes lacking one or both should be active in the dark and insensitive to reductants. One of these cysteines is present in the enzymes from Anabaena variabilis and Synechocystis PCC 6803 but the other is not. Consistent with the proposed mechanism, glyceraldehyde-3-P dehydrogenase is not affected by DTT-treatment in extracts of either of these cyanobacteria. Fructosebisphosphatase is DTT-activated in extracts of both of these cyanobacteria and glucose-6-P dehydrogenase is inactivated in Synechocystis, as in higher plant chloroplasts. Apparently reductive modulation is possible in these cyanobacteria but glyceraldehyde-3-P dehydrogenase is not light activated.  相似文献   

11.
Uracil-DNA glycosylase activities from etiolated Zea mays seedling nuclei and mitochondria were partially purified and characterized. Nuclei and mitochondria were separated using sucrose differential and step gradient centrifugation. Experiments with osmotically shocked organelles indicated that enzyme activity from mitochondria was soluble, whereas nuclear enzyme activity was only partially soluble under the conditions tested. Purification using DEAE-cellulose and Affigel Blue column chromatography yielded distinct elution profiles from both columns for each of the organellar enzyme activities. Final purification was 490- and 850- fold for the nuclear and mitochondrial uracil-DNA glycosylase, respectively. Characterization studies demonstrated significant differences between the nuclear and mitochondrial uracil-DNA glycosylase with respect to Km, temperature, and pH activity optimum, the effect of salts, and substrate preference. Molecular weight as determined by gel filtration was 18,000 for enzymes from both sources. Both were also sensitive to the sulfhydryl group-blocking agent N-ethylmaleimide. A number of uracil analogs were tested for their ability to inhibit nuclear and mitochondrial uracil-DNA glycosylase activities. 5-Azauracil, uracil, 6-aminouracil, 6-azauracil, 5-aminouracil, and 5-fluorouracil all inhibited both activities to variable degrees.  相似文献   

12.
Bensen RJ  Warner HR 《Plant physiology》1987,84(4):1102-1106
A uracil-DNA glycosylase activity has been purified about 750-fold from the chloroplasts of light-grown Zea mays seedlings. This report represents the first direct demonstration of a DNA-glycosylase repair activity in chloroplasts. The activity, in part, was associated with a chloroplast Triton X-100 sensitive membrane. Its apparent Km was 1.0 micromolar for a poly(dA-dT/U) substrate, and its molecular weight, as determined by gel filtration, was 18,000. The enzyme exhibited optimal activity at pH 7.0 with an atypically narrow pH tolerance. Activity was inhibited greater than 60% by 10 millimolar NaCl, 5 millimolar MgCl2, or 5 millimolar EDTA. Enzyme activity was inhibited 80% by 10 millimolar N-ethylmaleimide, a sulfhydryl group-blocking agent. The activity removed uracil more rapidly from single-stranded DNA than from double-stranded DNA. With this report, uracil-DNA glycosylase activity has now been attributed to all three DNA-containing organelles of eucaryotic cells.  相似文献   

13.
A homogeneous multimeric protein isolated from the green alga, Scenedesmus obliquus, has both latent phosphoribulokinase activity and glyceraldehyde-3-phosphate dehydrogenase activity. The glyceraldehyde-3-phosphate dehydrogenase was active with both NADPH and NADH, but predominantly with NADH. Incubation with 20 mM dithiothreitol and 1 mM NADPH promoted the coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, accompanied by a decrease in the glyceraldehyde-3-phosphate dehydrogenase activity linked to NADH. The multimeric enzyme had a Mr of 560,000 and was of apparent subunit composition 8G6R. R represents a subunit of Mr 42,000 conferring phosphoribulokinase activity and G a subunit of 39,000 responsible for the glyceraldehyde-3-phosphate dehydrogenase activity. On SDS-PAGE the Mr-42,000 subunit comigrates with the subunit of the active form of phosphoribulokinase whereas that of Mr-39,000 corresponds to that of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. The multimeric enzyme had a S20,W of 14.2 S. Following activation with dithiothreitol and NADPH, sedimenting boundaries of 7.4 S and 4.4 S were formed due to the depolymerization of the multimeric protein to NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (4G) and active phosphoribulokinase (2R). It has been possible to isolate these two enzymes from the activated preparation by DEAE-cellulose chromatography. Prolonged activation of the multimeric protein by dithiothreitol in the absence of nucleotide produced a single sedimenting boundary of 4.6 S, representing a mixture of the active form of phosphoribulokinase and an inactive dimeric form of glyceraldehyde-3-phosphate dehydrogenase. Algal thioredoxin, in the presence of 1 mM dithiothreitol and 1 mM NADPH, stimulated the depolymerization of the multimeric protein with resulting coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. Light-induced depolymerization of the multimeric protein, mediated by reduced thioredoxin, is postulated as the mechanism of light activation in vivo. Consistent with such a postulate is the presence of high concentrations of the active forms of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase in extracts from photoheterotrophically grown algae. By contrast, in extracts from the dark-grown algae the multimeric enzyme predominates.  相似文献   

14.
Sepharose-bound tetrameric, dimeric and monomeric forms of yeast glyceraldehyde-3-phosphate dehydrogenase were prepared, as well as immobilized hybrid species containing (by selective oxidation of an active center cysteine residue with H2O2) one inactivated subunit per tetramer or dimer. The catalytic properties of these enzyme forms were compared in the forward reaction (glyceraldehyde-3-phosphate oxidation) and reverse reaction (1,3-bisphosphoglycerate reductive dephosphorylation) under steady-state conditions. In the reaction of glyceraldehyde-3-phosphate oxidation, immobilized monomeric and tetrameric forms exhibited similar specific activities. The hybrid-modified dimer contributed on half of the total activity of a native dimer. The tetramer containing one modified subunit possessed 75% of the activity of an unmodified tetramer. In the reaction of 1,3-bisphosphoglycerate reductive dephosphorylation, the specific activity of the monomeric enzyme species was nearly twice as high as that of the tetramer, suggesting that only one-half of the active centers of the oligomer were acting simultaneously. Subunit cooperativity in catalysis persisted in an isolated dimeric species. The specific activity of a monomer associated with a peroxide-inactivated monomer in a dimer was equal to that of an isolated monomeric species and twice as high as that of a native immobilized dimer. The specific activity of subunits associated with a peroxide-inactivated subunit in a tetramer did not differ from that of a native immobilized tetramer; this indicates that interdimeric interactions are involved in catalytic subunit cooperativity. A complex was formed between the immobilized glyceraldehyde-3-phosphate dehydrogenase and soluble phosphoglycerate kinase. Three monomers of phosphoglycerate kinase were bound per tetramer of the dehydrogenase and one per dimer. Evidence is presented that if the reductive dephosphorylation of 1,3-bisphosphoglycerate proceeds in the phosphoglycerate kinase - glyceraldehyde-3-phosphate dehydrogenase complex, all active sites of the latter enzyme act independently, i.e. subunit cooperativity is abolished.  相似文献   

15.
NAD+-dependent and NADP+-dependent glyceraldehyde-3-phosphate (G-3-P) dehydrogenases were isolated from Euglena gracilis and characterized as to their physical and chemical parameters. NAD+-G-3-P dehydrogenase was found to have a strong resemblance to similar enzymes from muscle tissue. It has a molecular weight of about 140,000, four subunits of identical size and charge, and a single species of NH2-terminal amino acid. Two sulfhydryl groups per subunit are present, one of which is directly involved in the catalytic activity and is rapidly titratable. The enzyme also exhibits the “half the sites reactivity” of sulfhydryl groups as defined by O. P. Malhotra and S. A. Bernhard ((1968) J. Biol. Chem. 243, 1243). The pH and temperature optima are also similar to those of the enzymes from muscle tissue, as are the reaction kinetics and the strict specificity for NAD+.NADP+-dependent G-3-P dehydrogenase is different in many respects. Its molecular weight is slightly lower (~136,000) than that of the NAD+ enzyme, though it also consists of four subunits. It has a higher affinity for the reverse reaction substrates, in line with its probable function in vivo in CO2 fixation. There is only one sulfhydryl group per subunit, and that is not involved in activity, suggesting a difference in reaction mechanisms between the two enzymes. The NADP+-dependent enzyme exhibits activation by ATP, whereas the NAD+-dependent enzyme is competitively inhibited by this nucleotide.The greatest difference observed is in the physical characteristics of the enzymes. NADP+-G-3-P dehydrogenase was highly hydrophobic. Its solubility in a 10% aqueous solution of p-dioxane was approximately four to five times that of the NAD+-enzyme. Isolation of the enzyme was accomplished by fractionation in 1,2-dimethoxyethane, which also stabilized the enzymatic activity, as did aqueous p-dioxane. The high axial ratio of the NADP+-enzyme (~9) coupled with its very low degree of hydration as well as the high degree of amidation of the dicarboxylic amino acids (>90%) indicates that the exterior of the enzyme molecule is probably hydrophobic in nature. This is in agreement with its in vivo hydrophobic environment in the chloroplast membrane and explains the lability of the enzyme once extracted into an aqueous environment as well as its stabilization in solvents.  相似文献   

16.
An assay method for glyceraldehyde-3-phosphate dehydrogenase in which none of the primary products accumulate and which gives linear kinetics under physiological conditions has been developed. It is based on the use of the 1,3-diphosphoglycerate produced by the enzyme for the formation of NADPH, while the NADH produced is recycled with an auxiliary system. Revised Km values at pH 7.4 for the muscle (rabbit and rat) enzyme are: glyceraldehyde-3-P, 50 μM; NAD, 100 μM; Pi, 10 mM. The rat erythrocyte enzyme gave similar values except for glyceraldehyde-3-P which was 300 μM. Cooperativity for NAD+ tends to be positive but is a variable parameter.  相似文献   

17.
1. The three isozymes of glycerate-2,3-P2 dependent phosphoglycerate mutase present in tissues of mammals and reptiles were inactivated by both treatment with diethylpyrocarbonate and photooxidation with rose bengal. 2. Inactivation of type M isozyme purified from rabbit muscle was complete when two histidine residues per enzyme subunit were carboethoxylated. Hydroxylamine removed the carboethoxy groups, with partial recovery of the enzymatic activity. The cofactor protected the enzyme against inactivation. 3. The inactivation of rabbit muscle phosphoglycerate mutase by photooxidation with methylene blue and rose bengal was sharply pH dependent. The pH profile of enzyme inactivation followed the titration curve of histidine, suggesting that this amino acid was critical for enzyme activity. Glycerate-2,3-P2 did not protect phosphoglycerate mutase against photoinactivation.  相似文献   

18.
The thioredoxin/thioredoxin reductase system has been studied as regenerative machinery for proteins inactivated by oxidative stress in vitro and in cultured endothelial cells. Mammalian glyceraldehyde-3-phosphate dehydrogenase was used as the main model enzyme for monitoring the oxidative damage and the regeneration. Thioredoxin and its reductase purified from bovine liver were used as the regenerating system. The physiological concentrations (2-14 microM) of reduced thioredoxin, with 0.125 microM thioredoxin reductase and 0.25 mM NADPH, regenerated H2O2-inactivated glyceraldehyde-3-phosphate dehydrogenase and other mammalian enzymes almost completely within 20 min at 37 degrees C. Although the treatment of endothelial cells with 0.2-12 mM H2O2 for 5 min resulted in a marked decrease in the activity of glyceraldehyde-3-phosphate dehydrogenase, it had no effect on the activities of thioredoxin and thioredoxin reductase. Essentially all of the thioredoxin in endothelial cells at control state was in the reduced form and 70-85% remained in the reduced form even after the H2O2 treatment. The inactivated glyceraldehyde-3-phosphate dehydrogenase in a cell lysate prepared from the H2O2-treated endothelial cells was regenerated by incubating the lysate with 3 mM NADPH at 37 degrees C and the antiserum raised against bovine liver thioredoxin inhibited the regeneration. The inhibition of thioredoxin reductase activity by 13-cis-retinoic acid resulted in a decrease in the regeneration of glyceraldehyde-3-phosphate dehydrogenase in the H2O2-treated endothelial cells. The present findings provide evidence that thioredoxin is involved in the regeneration of proteins inactivated by oxidative stress in endothelial cells.  相似文献   

19.
The structural relationship between isoenzymes I and II of chloroplast glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NADP+ oxidoreductase (phosphorylating) EC 1.2.1.13) has been established at the protein level. The complete primary structure of subunits A and B of glyceraldehyde-3-phosphate dehydrogenase I from Spinacia oleracea has been determined by sequence analysis of the corresponding tryptic peptides, aligned by fragments derived from cyanogen bromide and Staphylococcus proteinase V8 digestions and by partially sequencing each intact subunit. Subunit A has an Mr of 36,225 and consists of 337 amino acid residues, whilst subunit B (Mr 39,355) consists of 368 residues. The amino acid sequence of subunit B, as determined through direct analysis of the protein, is identical to that recently deduced at cDNA level (Brinkmann et al. (1989) Plant Mol. Biol. 13, 81-94). The two subunits share a common portion of amino acid sequence which differs by 66 amino acid residues. Subunit B has an extra C-terminal sequence of 31 amino acid residues. Chloroplast glyceraldehyde-3-phosphate dehydrogenase II was partially characterized by sequencing the N-terminal portion of the intact protein and some of its tryptic peptides. The sequences of all the examined fragments fit precisely that of the corresponding regions of subunit A from glyceraldehyde-3-phosphate dehydrogenase I.  相似文献   

20.
5-Hydroxymethyluracil (HmUra) residues formed by the oxidation of thymine are removed from DNA through the action of a DNA glycosylase activity. This activity was purified over 1870-fold from calf thymus and found to be distinct from uracil (Ura)-DNA glycosylase. The HmUra-DNA glycosylase has a molecular weight of 38,000, a pH optimum of 6.7-6.8 and an apparent Km of 0.73 +/- 0.04 microM. These values are similar to those reported for other mammalian DNA glycosylases. The enzyme removed HmUra residues from single- and double-stranded DNA with almost equal efficiency. HmUra-DNA glycosylase activity was not product inhibited by free HmUra. The DNA glycosylase activity was inhibited by Mg2+, but the purest enzyme fractions contained a Mg2+-dependent apurinic/apyrimidinic endonuclease activity. HmUra-DNA glycosylase and the recently described 5-hydroxymethylcytosine (HmCyt)-DNA glycosylase (Cannon, S. V., Cummings, A. C., and Teebor, G. W. (1988) Biochem. Biophys. Res. Commun. 151, 1173-1179) are unique among known DNA glycosylases in being present in mammalian cells and absent from bacteria. These DNA glycosylase activities were shown here to reside on different proteins. We suggest that the major function of HmUra-DNA glycosylase, together with HmCyt-DNA glycosylase, is the maintenance of methylated cytosine residues in the DNA of higher organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号