共查询到20条相似文献,搜索用时 15 毫秒
1.
Kasheverov IE Zhmak MN Maslennikov IV Utkin YN Tsetlin VI 《Neurochemical research》2003,28(3-4):599-606
Comparative structure-function studies have been carried out for -conotoxin GI acting on nicotinic acetylcholine receptors (AChR) from mammalian muscles and from the electric organ of the Torpedo californica ray and for -conotoxin ImI, which targets the neuronal a7 AChR. A series of analogs has been prepared for this purpose: chemically modified derivatives, including a covalently linked dimer of GI, as well as analogs wherein one or several amino acid residues have been changed using solid-phase peptide synthesis. The activity of all compounds was assessed in competition with radioiodinated and/or tritiated -conotoxin GI for binding to the membrane-bound AChR of Torpedo californica. Binding of radioiodinated -conotoxin GI dimer was also monitored directly, revealing the largest, as compared to all other analogues, difference in the affinity between the two binding sites in the receptor (KD 11 and 1200 nM). Comparison of binding data with the results of CD measurements point to important role of the spatial organization of the -conotoxin second loop in manifestation of their muscle or neuronal specificity. 相似文献
2.
Zhmak M. N. Kasheverov I. E. Utkin Yu. N. Tsetlin V. I. Vol'pina O. M. Ivanov V. T. 《Russian Journal of Bioorganic Chemistry》2001,27(2):67-71
An efficient scheme for the synthesis of -conotoxins, containing 12–18 amino acid residues and two disulfide bridges, was proposed. Its advantages are: (1) the avoidance of orthogonal protections of Cys residues; (2) a lower number of stages in a cycle of the peptide chain elongation by the method of solid phase synthesis; (3) the linear product is sufficiently pure for being used at the next stage of the disulfide bond formation without additional purification; and (4) a substantially reduced time of oxidation to disulfides at pH 10, which led to the target product in a high yield. A number of natural -conotoxins (GI, ImI, EI, MII, and SIA), affecting the muscle and neuronal nicotinic acetylcholine receptors of various types, and several new analogues of these conotoxins (in particular, [Tyr10]ImI, [Gln12]GI, and [Ser1]GI) were synthesized by this scheme. They were used for elucidating the spatial structure of -conotoxins by 1H NMR spectroscopy and for studying the ligand-binding sites of their receptors. 相似文献
3.
Flavio H. Beraldo Camila P. Arantes Tiago G. Santos Nicolle G. T. Queiroz Kirk Young R. Jane Rylett Regina P. Markus Marco A. M. Prado Vilma R. Martins 《The Journal of biological chemistry》2010,285(47):36542-36550
The prion protein (PrPC) is a conserved glycosylphosphatidylinositol-anchored cell surface protein expressed by neurons and other cells. Stress-inducible protein 1 (STI1) binds PrPC extracellularly, and this activated signaling complex promotes neuronal differentiation and neuroprotection via the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP-dependent protein kinase 1 (PKA) pathways. However, the mechanism by which the PrPC-STI1 interaction transduces extracellular signals to the intracellular environment is unknown. We found that in hippocampal neurons, STI1-PrPC engagement induces an increase in intracellular Ca2+ levels. This effect was not detected in PrPC-null neurons or wild-type neurons treated with an STI1 mutant unable to bind PrPC. Using a best candidate approach to test for potential channels involved in Ca2+ influx evoked by STI1-PrPC, we found that α-bungarotoxin, a specific inhibitor for α7 nicotinic acetylcholine receptor (α7nAChR), was able to block PrPC-STI1-mediated signaling, neuroprotection, and neuritogenesis. Importantly, when α7nAChR was transfected into HEK 293 cells, it formed a functional complex with PrPC and allowed reconstitution of signaling by PrPC-STI1 interaction. These results indicate that STI1 can interact with the PrPC·α7nAChR complex to promote signaling and provide a novel potential target for modulation of the effects of prion protein in neurodegenerative diseases. 相似文献
4.
Frank R. Rommel Badrinarayanan Raghavan Renate Paddenberg Wolfgang Kummer Susanne Tumala Günter Lochnit Uwe Gieler Eva M. J. Peters 《The journal of histochemistry and cytochemistry》2015,63(5):329-339
Recent evidence reveals a crucial role for acetylcholine and its receptors in the regulation of inflammation, particularly of nicotinic acetylcholine receptor α7 (Chrna7) and muscarinic acetylcholine receptor 3 (Chrm3). Immunohistochemistry is a key tool for their cellular localization in functional tissues. We evaluated nine different commercially available antibodies on back skin tissue from wild-type (Wt) and gene-deficient (KO) mice. In the immunohistochemical analysis, we focused on key AChR-ligand sensitive skin cells (mast cells, nerve fibers and keratinocytes). All five antibodies tested for Chrm3 and the first three Chrna7 antibodies stained positive in both Wt and respective KO skin. With the 4th antibody (ab23832) nerve fibers were unlabeled in the KO mice. By western blot analysis, this antibody detected bands in both Wt and Chrna7 KO skin and brain. qRT-PCR revealed mRNA amplification with a primer set for the undeleted region in both Wt and KO mice, but none with a primer set for the deleted region in KO mice. By 2D electrophoresis, we found β-actin and β-enolase cross reactivity, which was confirmed by double immunolabeling. In view of the present results, the tested antibodies are not suitable for immunolocalization in skin and suggest thorough control of antibody specificity is required if histomorphometry is intended. 相似文献
5.
Marjolein A. van Maanen Roger L. Papke Frieda A. Koopman Jessica Koepke Lisette Bevaart Roger Clark Diana Lamppu Daniel Elbaum Gregory J. LaRosa Paul P. Tak Margriet J. Vervoordeldonk 《PloS one》2015,10(1)
Introduction
The cholinergic anti-inflammatory pathway can downregulate inflammation via the release of acetylcholine (ACh) by the vagus nerve. This neurotransmitter binds to the α7 subunit of nicotinic acetylcholine receptors (α7nAChR), expressed on macrophages and other immune cells. We tested the pharmacological and functional profile of two novel compounds, PMP-311 and PMP-072 and investigated their role in modulating collagen-induced arthritis (CIA) in mice.Methods
Both compounds were characterized with binding, electrophysiological, and pharmacokinetic studies. For in vivo efficacy studies in the CIA model the compounds were administered daily by oral gavage from day 20 till sacrifice at day 34. Disease progression was monitored by visual clinical scoring and measurement of paw swelling. Inflammation and joint destruction were examined by histology and radiology.Results
Treatment with PMP-311 was effective in preventing disease onset, reducing clinical signs of arthritis, and reducing synovial inflammation and bone destruction. PMP-072 also showed a trend in arthritis reduction at all concentrations tested. The data showed that while both compounds bind to α7nAChR with high affinity, PMP-311 acts like a classical agonist of ion channel activity, and PMP-072 can actually act as an ion channel antagonist. Moreover, PMP-072 was clearly distinct from typical competitive antagonists, since it was able to act as a silent agonist. It synergizes with the allosteric modulator PNU-120596, and subsequently activates desensitized α7nAChR. However, PMP-072 was less efficacious than PMP-311 at both channel activation and desensitization, suggesting that both conducting and non-conducting states maybe of importance in driving an anti-inflammatory response. Finally, we found that the anti-arthritic effect can be observed despite limited penetration of the central nervous system.Conclusions
These data provide direct evidence that the α7nAChR in immune cells does not require typical ion channel activation to exert its antiinflammatory effects. 相似文献6.
7.
Shiva N. Kompella Andrew Hung Richard J. Clark Frank Marí David J. Adams 《The Journal of biological chemistry》2015,290(2):1039-1048
Activation of the α3β4 nicotinic acetylcholine receptor (nAChR) subtype has recently been implicated in the pathophysiology of various conditions, including development and progression of lung cancer and in nicotine addiction. As selective α3β4 nAChR antagonists, α-conotoxins are valuable tools to evaluate the functional roles of this receptor subtype. We previously reported the discovery of a new α4/7-conotoxin, RegIIA. RegIIA was isolated from Conus regius and inhibits acetylcholine (ACh)-evoked currents mediated by α3β4, α3β2, and α7 nAChR subtypes. The current study used alanine scanning mutagenesis to understand the selectivity profile of RegIIA at the α3β4 nAChR subtype. [N11A] and [N12A] RegIIA analogs exhibited 3-fold more selectivity for the α3β4 than the α3β2 nAChR subtype. We also report synthesis of [N11A,N12A]RegIIA, a selective α3β4 nAChR antagonist (IC50 of 370 nm) that could potentially be used in the treatment of lung cancer and nicotine addiction. Molecular dynamics simulations of RegIIA and [N11A,N12A]RegIIA bound to α3β4 and α3β2 suggest that destabilization of toxin contacts with residues at the principal and complementary faces of α3β2 (α3-Tyr92, Ser149, Tyr189, Cys192, and Tyr196; β2-Trp57, Arg81, and Phe119) may form the molecular basis for the selectivity shift. 相似文献
8.
Zhenying Han Fanxia Shen Yue He Vincent Degos Marine Camus Mervyn Maze William L. Young Hua Su 《PloS one》2014,9(8)
Activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR) has a neuro-protective effect on ischemic and hemorrhagic stroke. However, the underlying mechanism is not completely understood. We hypothesized that α-7 nAchR agonist protects brain injury after ischemic stroke through reduction of pro-inflammatory macrophages (M1) and oxidative stress. C57BL/6 mice were treated with PHA568487 (PHA, α-7 nAchR agonist), methyllycaconitine (MLA, nAchR antagonist), or saline immediately and 24 hours after permanent occlusion of the distal middle cerebral artery (pMCAO). Behavior test, lesion volume, CD68+, M1 (CD11b+/Iba1+) and M2 (CD206/Iba1+) microglia/macrophages, and phosphorylated p65 component of NF-kB in microglia/macrophages were quantified using histological stained sections. The expression of M1 and M2 marker genes, anti-oxidant genes and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were quantified using real-time RT-PCR. Compared to the saline-treated mice, PHA mice had fewer behavior deficits 3 and 7 days after pMCAO, and smaller lesion volume, fewer CD68+ and M1 macrophages, and more M2 macrophages 3 and 14 days after pMCAO, whereas MLA''s effects were mostly the opposite in several analyses. PHA increased anti-oxidant genes and NADPH oxidase expression associated with decreased phosphorylation of NF-kB p65 in microglia/macrophages. Thus, reduction of inflammatory response and oxidative stress play roles in α-7 nAchR neuro-protective effect. 相似文献
9.
Niccolò Terrando Ting Yang Jae Kyu Ryu Phillip T Newton Claudia Monaco Marc Feldmann Daqing Ma Katerina Akassoglou Mervyn Maze 《Molecular medicine (Cambridge, Mass.)》2014,20(1):667-675
Surgery and critical illness often associate with cognitive decline. Surgical trauma or infection can lead independently to learning and memory impairments via similar, but not identical, cellular signaling of the innate immune system that promotes neuroinflammation. In this study we explored the putative synergism between aseptic orthopedic surgery and infection, the latter reproduced by postoperative lipopolysaccharide (LPS) administration. We observed that surgery and LPS augmented systemic inflammation up to postoperative d 3 and this was associated with further neuroinflammation (CD11b and CD68 immunoreactivity) in the hippocampus in mice compared with those receiving surgery or LPS alone. Administration of a selective α7 subtype nicotinic acetylcholine receptor (α7 nAChR) agonist 2 h after LPS significantly improved neuroinflammation and hippocampal-dependent memory dysfunction. Modulation of nuclear factor-kappa B (NF-κB) activation in monocytes and regulation of the oxidative stress response through nicotinamide adenine dinucleotide phosphate (NADPH) signaling appear to be key targets in modulating this response. Overall, these results suggest that it may be conceivable to limit and possibly prevent postoperative complications, including cognitive decline and/or infections, through stimulation of the cholinergic antiinflammatory pathway. 相似文献
10.
Roham Mazloom Golnar Eftekhari Maryam Rahimi Vahid Khori Sohrab Hajizadeh Ahmad R. Dehpour Ali R. Mani 《PloS one》2013,8(12)
Previous reports have indicated that artificial stimulation of the vagus nerve reduces systemic inflammation in experimental models of sepsis. This phenomenon is a part of a broader cholinergic anti-inflammatory pathway which activates the vagus nerve to modulate inflammation through activation of alpha7 nicotinic acetylcholine receptors (α7nACHR). Heart rate variability represents the complex interplay between autonomic nervous system and cardiac pacemaker cells. Reduced heart rate variability and increased cardiac cycle regularity is a hallmark of clinical conditions that are associated with systemic inflammation (e.g. endotoxemia and sepsis). The present study was aimed to assess the role of α7nACHR in modulation of heart rate dynamics during systemic inflammation. Systemic inflammation was induced by injection of endotoxin (lipopolysaccharide) in rats. Electrocardiogram and body temperature were recorded in conscious animals using a telemetric system. Linear and non-linear indices of heart rate variability (e.g. sample entropy and fractal-like temporal structure) were assessed. RT-PCR and immunohistochemistry studies showed that α7nACHR is expressed in rat atrium and is mainly localized at the endothelial layer. Systemic administration of an α7nACHR antagonist (methyllycaconitine) did not show a significant effect on body temperature or heart rate dynamics in naïve rats. However, α7nACHR blockade could further reduce heart rate variability and elicit a febrile response in endotoxemic rats. Pre-treatment of endotoxemic animals with an α7nACHR agonist (PHA-543613) was unable to modulate heart rate dynamics in endotoxemic rats but could prevent the effect of endotoxin on body temperature within 24 h experiment. Neither methyllycaconitine nor PHA-543613 could affect cardiac beating variability of isolated perfused hearts taken from control or endotoxemic rats. Based on our observations we suggest a tonic role for nicotinic acetylcholine receptors in modulation of heart rate dynamics during systemic inflammation. 相似文献
11.
12.
13.
《Journal of receptor and signal transduction research》2013,33(6):989-1008
AbstractThe sequence region 55–74 of the α-subunit of the acetylcholine receptor (AChR) from Torpedo californica electroplax comprises the amino-terminal end of a sequence segment—residues α67–76—forming the main immunogenic region (MIR), which is most frequently recognized by anti-AChR autoantibodies in myasthenia gravis. The synthetic sequence α55–74 of Torpedo AChR binds α-bungarotoxin (αBTX), suggesting that amino acid residues within this sequence region may contribute to formation of an αBTX binding site.Using single-residue substituted synthetic analogues of the sequence α55–74 of Torpedo AChR, in which each residue was sequentially substituted by either glycine or alanine, we sought identification of the amino acids involved in interaction with α-neurotoxins and with three different anti-MIR monoclonal antibodies (mAbs 6, 22, and 198). Substitution of Arg55, Arg57, Trp60, Arg64, Leu65, Arg66, Trp67, or Asn68 strongly inhibited α-toxin binding, whereas substitutions of Ile61, Val63, Pro69, Ala70, Asp71, or Tyr72 had marginal effects. Substitutions within the region α68–72 significantly diminished binding of anti-MIR mAbs, although residue preferences differed among mAbs. Further, substituting Trp60 substantially reduced binding of mAb 198, and moderately affected binding of mAb 6, and substitution of Asp62 slightly but consistently affected binding of mAbs 6 and 22. 相似文献
14.
15.
Justin R. King Jacob C. Nordman Samuel P. Bridges Ming-Kuan Lin Nadine Kabbani 《The Journal of biological chemistry》2015,290(33):20060-20070
α7 nicotinic acetylcholine receptors (nAChRs) play an important role in synaptic transmission and inflammation. In response to ligands, this receptor channel opens to conduct cations into the cell but desensitizes rapidly. In recent studies we show that α7 nAChRs bind signaling proteins such as heterotrimeric GTP-binding proteins (G proteins). Here, we demonstrate that direct coupling of α7 nAChRs to G proteins enables a downstream calcium signaling response that can persist beyond the expected time course of channel activation. This process depends on a G protein-binding cluster (GPBC) in the M3-M4 loop of the receptor. A mutation of the GPBC in the α7 nAChR (α7345–348A) abolishes interaction with Gαq as well as Gβγ while having no effect on receptor synthesis, cell-surface trafficking, or α-bungarotoxin binding. Expression of α7345–348A, however, did significantly attenuate the α7 nAChR-induced Gαq calcium signaling response as evidenced by a decrease in PLC-β activation and IP3R-mediated calcium store release in the presence of the α7 selective agonist choline. Taken together, the data provides new evidence for the existence of a GPBC in nAChRs serving to promote intracellular signaling. 相似文献
16.
17.
18.
Zhifei Zhou Bei Li Zhiwei Dong Fen Liu Yu Zhang Yang Yu Fengqing Shang Lizheng Wu Xiaojing Wang Yan Jin 《PloS one》2013,8(12)
Aims
Cigarette smoking is one of the high risk factors of adult chronic periodontitis and nicotine is the well established toxic substance in cigarette. However, the mechanism of nicotine induced periodontitis is still unknown. Here we studied whether nicotine impaired the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) through activating α7 nicotinic acetylcholine receptor (α7 nAChR).Methods
hPDLSCs with multi differentiation potential and surface makers for mesenchymal stem cells were harvested by limiting dilution technique. The level of mineralized nodule formation was assessed by alizarin red S staining. Expression level of ostegenic related genes and proteins were detected by real-time PCR and western blot analysis. The expression of α7 nAChR and its downstream signaling pathway were examined by western blot. The role of the receptor and related signaling pathway in nicotine impairing the osteogenic potential of hPDLSCs were also studied in different levels.Results
Nicotine deteriorated the ostegenic differentiation of hPDLSCs in a dose dependent manner. Activation of α7 nAChR by nicotine treatment activated wnt/β-catenin signaling pathway, leading to osteogenic deficiency of hPDLSCs. Blockage of α7 nAChR and wnt pathway inhibitor treatment rescued nicotine induced osteogenic differentiation deficiency.Conclusions
These data suggested that nicotine activated α7 nAChR expressed on PDLSCs and further activated wnt signaling downstream, thus deteriorating the osteogenic potential of PDLSCs. The impairment of osteogenic differentiation of PDLSCs by nicotine might lead to cigarette smoking related periodontitis. 相似文献19.
Linda M. Lucero Maegan M. Weltzin J. Brek Eaton John F. Cooper Jon M. Lindstrom Ronald J. Lukas Paul Whiteaker 《The Journal of biological chemistry》2016,291(5):2444-2459
Two α4β2 nicotinic acetylcholine receptor (α4β2-nAChR) isoforms exist with (α4)2(β2)3 and (α4)3(β2)2 subunit stoichiometries and high versus low agonist sensitivities (HS and LS), respectively. Both isoforms contain a pair of α4(+)/(−)β2 agonist-binding sites. The LS isoform also contains a unique α4(+)/(−)α4 site with lower agonist affinity than the α4(+)/(−)β2 sites. However, the relative roles of the conserved α4(+)/(−)β2 agonist-binding sites in and between the isoforms have not been studied. We used a fully linked subunit concatemeric nAChR approach to express pure populations of HS or LS isoform α4β2*-nAChR. This approach also allowed us to mutate individual subunit interfaces, or combinations thereof, on each isoform background. We used this approach to systematically mutate a triplet of β2 subunit (−)-face E-loop residues to their non-conserved α4 subunit counterparts or vice versa (β2HQT and α4VFL, respectively). Mutant-nAChR constructs (and unmodified controls) were expressed in Xenopus oocytes. Acetylcholine concentration-response curves and maximum function were measured using two-electrode voltage clamp electrophysiology. Surface expression was measured with 125I-mAb 295 binding and was used to define function/nAChR. If the α4(+)/(−)β2 sites contribute equally to function, making identical β2HQT substitutions at either site should produce similar functional outcomes. Instead, highly differential outcomes within the HS isoform, and between the two isoforms, were observed. In contrast, α4VFL mutation effects were very similar in all positions of both isoforms. Our results indicate that the identity of subunits neighboring the otherwise equivalent α4(+)/(−)β2 agonist sites modifies their contributions to nAChR activation and that E-loop residues are an important contributor to this neighbor effect. 相似文献
20.
Dongting Zhangsun Xiaopeng Zhu Yong Wu Yuanyan Hu Quentin Kaas David J. Craik J. Michael McIntosh Sulan Luo 《The Journal of biological chemistry》2015,290(15):9855-9862
α-Conotoxin LvIA (α-CTx LvIA) is a small peptide from the venom of the carnivorous marine gastropod Conus lividus and is the most selective inhibitor of α3β2 nicotinic acetylcholine receptors (nAChRs) known to date. It can distinguish the α3β2 nAChR subtype from the α6β2* (* indicates the other subunit) and α3β4 nAChR subtypes. In this study, we performed mutational studies to assess the influence of residues of the β2 subunit versus those of the β4 subunit on the binding of α-CTx LvIA. Although two β2 mutations, α3β2[F119Q] and α3β2[T59K], strongly enhanced the affinity of LvIA, the β2 mutation α3β2[V111I] substantially reduced the binding of LvIA. Increased activity of LvIA was also observed when the β2-T59L mutant was combined with the α3 subunit. There were no significant difference in inhibition of α3β2[T59I], α3β2[Q34A], and α3β2[K79A] nAChRs when compared with wild-type α3β2 nAChR. α-CTx LvIA displayed slower off-rate kinetics at α3β2[F119Q] and α3β2[T59K] than at the wild-type receptor, with the latter mutant having the most pronounced effect. Taken together, these data provide evidence that the β2 subunit contributes to α-CTx LvIA binding and selectivity. The results demonstrate that Val111 is critical and facilitates LvIA binding; this position has not previously been identified as important to binding of other 4/7 framework α-conotoxins. Thr59 and Phe119 of the β2 subunit appear to interfere with LvIA binding, and their replacement by the corresponding residues of the β4 subunit leads to increased affinity. 相似文献