首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Lazaroff, Norman (British Columbia Research Council, Vancouver, B.C., Canada). Sulfate requirement for iron oxidation by Thiobacillus ferrooxidans. J. Bacteriol. 85:78-83. 1963.-The growth of Thiobacillus ferrooxidans is initially inhibited in media containing ferrous chloride in place of ferrous sulfate. This inhibition of growth is due to the requirement of a high relative proportion of sulfate ions to chloride (or other anions) for iron oxidation. Adaptation takes place, producing strains which are able to oxidize iron in media containing an initially unfavorable anionic composition. Adaptation is possibly due to the selection of spontaneous mutants capable of oxidizing iron in high chloride, low sulfate media. Such cells are found at a frequency of 10(-5) of the population of unadapted cultures.  相似文献   

2.
The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS(2)) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn.  相似文献   

3.
It is generally accepted that iron‐oxidizing bacteria, Thiobacillus ferrooxidans, enhance chalcopyrite leaching. However, this article details a case of the bacteria suppressing chalcopyrite leaching. Bacterial leaching experiments were performed with sulfuric acid solutions containing 0 or 0.04 mol/dm3 ferrous sulfate. Without ferrous sulfate, the bacteria enhance copper extraction and oxidation of ferrous ions released from chalcopyrite. However, the bacteria suppressed chalcopyrite leaching when ferrous sulfate was added. This is mainly due to the bacterial consumption of ferrous ions which act as a promoter for chalcopyrite oxidation with dissolved oxygen. Coprecipitation of copper ions with jarosite formed by the bacterial ferrous oxidation also causes the bacterial suppression of copper extraction. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 478–483, 1999.  相似文献   

4.
The influence of temperature, pH, and substrate and product concentrations on the oxidation rate of ferrous iron by biofilm of Thiobacillus ferrooxidans was determined. The experiments were performed in an inverse fluidized-bed biofilm reactor in which the biofilm thickness was kept constant at 80 mum. Oxygen concentration and diffusion through the biofilm did not limit the oxidation rate. The oxidation rate was almost unaffected by temperature between 13 and 38 degrees C, pH between 1.3 and 2.2, ferric iron concentration up to 14 g/L, or ferrous iron concentration from 4 to 13 g/L. The kinetics of the process was described by the Monod equation with respect to the mass of the biofilm and with ferrous ions as the limiting substrate.  相似文献   

5.
Thiobacillus ferrooxidans is a chemolithotrophic bacterium capable of fulfilling all of its energy requirements from the oxidation of soluble ferrous sulfate. Rusticyanin is a soluble blue copper protein found in abundance in the periplasmic space of this bacterium. The one-electron transfer reaction between soluble iron and purified rusticyanin has been studied by stopped flow spectrophotometry in acidic solutions containing sulfate. Second order rate constants for the reduction of rusticyanin by Fe2+, FeHSO4+, and FeSO4(0) were 0.022, 0.73, and 2.30 M-1 s-1, respectively. The pseudo-first order rate constant for the reduction of rusticyanin exhibited substrate saturation when the concentration of the total ferrous ion was varied in solutions of limiting sulfate. This saturation behavior was quantitatively described using the values of the second order rate constants listed above and the distribution of the total ferrous ion into its water-, bisulfate-, and sulfate-coordinated forms. Second order rate constants for the oxidation of rusticyanin by Fe3+ and FeSO4+ were 0.73 and 0.26 M-1 s-1, respectively. The electron transfer reactions between iron and rusticyanin monitored in vitro were far too slow to support the hypothesis that rusticyanin is the primary oxidant of ferrous ions in the iron-dependent respiratory electron transport chain of T. ferrooxidans.  相似文献   

6.
采用非稳态法测定FeSO4在包埋和未包埋氧化亚铁硫杆菌的凝胶中的有效扩散系数。结果表明,FeSO4在凝胶中的有效扩散系数De随着海藻酸钠浓度的升高而降低,当海藻酸钠浓度为2%时最优;凝胶剂CaCl2的浓度对扩散系数的影响较小。包埋的氧化亚铁硫杆菌在10h达到增殖平衡,而FeSO4在包埋细菌的凝胶内扩散系数明显减少。  相似文献   

7.
从我国三大铜矿的酸性矿坑水中富集分离出9个具有较强活性的嗜酸氧化亚铁硫杆菌菌株,经过Cu~(2 )的系列浓度梯度的培养,选出其中天然抗铜能力最强的菌株26~#,在Cu~(2 )浓度为0.20mol/L的9K培养基中能在72h内完全氧化培养基中的Fe~(2 ),在含0.22mol/L Cu2~(2 )的9K培养基中能在192h内完全氧化培养基中的Fe~(2 )。以CuSO_4·5H_2O为单变量驯化介质驯化该26~#抗铜菌株,26~#驯化菌株的Fe~(2 )氧化能力明显增强:在含0.25mol/LCu~(2 )的9K培养基中能在84h内完全氧化其中的Fe~(2 )。为了提高驯化菌的稳定性,将驯化后的26~#菌株用紫外线进行诱变。研究结果表明:驯化诱变对菌种的改良有重要的作用,诱变后菌株的生长性能稳定,氧化活性进一步提高,26~#驯化诱变菌在0.25mol/LCu~(2 )存在的条件下完全氧化9K培养基中Fe~(2 )的时间约为60h,对Fe~(2 )氧化能力明显强于驯化菌及野生菌。  相似文献   

8.
V N Ivanov 《Mikrobiologiia》1986,55(5):768-774
The balance of energy-rich compounds (ERC) was drawn up for the growth of Thiobacillus ferrooxidans in a medium with ferrous ions as an energy source. The balance items and the phosphorylating efficiency of oxidation (P/2e-) were calculated basing on the experimental yield values using the ERC balance equation. At a specific growth rate of 0.1 h-1, 55% of ferrous ions are used for the synthesis of cell biomass, 7.5% for maintainance, 4% of the ions are oxidized to reduce NAD+, and 34% are used to produce ERC necessary for the reduction. Here, 24% of ERC are used for the synthesis of monomers from CO2, 42% for the production of NADH, 24% for the biomass synthesis from monomers, and 10% for maintaining cell activity. The P/2e- for the oxidation of ferrous ions is 0.19 mole of ERC per 2e-. This is possible only when the [Fe3+]/[Fe2+] ratio in the cell periplasm is 1 X 10(3)-1 X 10(4).  相似文献   

9.
Iron and sulfur oxidation by Thiobacillus ferrooxidans as well as growth on ferrous iron were inhibited by a variety of low molecular weight organic compounds. The influences of chemical structure of the organic inhibitors, pH, temperature, physical treatment of cells, and added inhibitory or stimulatory inorganic ions and iron oxidation suggest that a major factor contributing to the inhibitory effects on iron oxidation is the relative electronegativity of the organic molecule. The data also suggest that inhibitory organic compounds may (i) directly affect the iron-oxidizing enzyme system, (ii) react abiologically with ferrous iron outside the cell, (iii) interfere with the roles of phosphate and sulfate in iron oxidation, and (iv) nonselectively disrupt the cell envelope or membrane.  相似文献   

10.
A chemo-biochemical process using Thiobacillus ferrooxidans for desulphurization of gaseous fuels and emissions containing hydrogen sulphide (H2S) has been developed. In the first stage, H2S present in fuel gas and emissions is selectively oxidized to elemental sulphur using ferric sulphate. The ferrous sulphate produced in the first stage of the process is oxidized to ferric sulphate using Thiobacillus ferrooxidans for recycle and reuse in the process. The effects of process variables, temperature, pH, total dissolved solids (TDS), elemental sulphur, ferric and magnesium ions on bio-oxidation of ferrous ions to ferric ions were investigated using flask culture experiments. The bio-oxidation of ferrous ions to ferric ions could be achieved efficiently in the temperature range of 20(+/-1)-44(+/-1) degrees C. A pH range of 1.8(+/-0.02)-2.2(+/-0.02) was optimum for the growth of culture and effective bio-oxidation of ferrous ions to ferric ions. The effect of TDS on bio-oxidation of ferrous ions indicated that a preacclimatized culture in a growth medium containing high dissolved solid was required to achieve effective bio-oxidation of ferrous ions. Elemental sulphur ranging from 1000 to 100,000 mg/l did not have any effect on efficiency of ferrous ion oxidation. The efficiency of bio-oxidation of ferrous ions to ferric ions was not affected in the presence of ferric ions up to a concentration of 500 mg/l while 3 mg/l of magnesium ion was optimal for achieving effective bio-oxidation.  相似文献   

11.
Activation of bovine plasminogen by Streptococcus uberis   总被引:3,自引:0,他引:3  
Abstract Thiosulfate and tetrathionate oxidation activity of Thiobacillus ferrooxidans were found to be absent in iron-growth cell as well as in the cells grown anaerobically on elemental sulfur. While the thiosulfate oxidase activity was absent in the cell-free extract of the above cells, the activity of rhodanese was present irrespective of the culture condition of T. ferrooxidans . It is thus conceivable that rhodanese is not involved in thiosulfate metabolism. During growth in presence of ferrous sulfate plus elemental sulfur, the thiosulfate/tetrathionate oxidation activity was absent till the oxidation of ferrous iron was complete and the cells harvested only in the latter period acquired the thiosulfate/tetrathionate oxidation activity. Thus it becomes evident that the inhibition of thiosulfate and tetrathionate oxidation is solely due to presence of ferrous iron.  相似文献   

12.
Dave SR 《Bioresource technology》2008,99(16):7803-7806
Presence of Leptospirillum ferrooxidans plays significant role in ferric sulphate generation during bioleaching process. Thus, an attempt was made to select L. ferrooxidans from the polymetallic concentrate leachate and further developed it for enhanced ferric iron regeneration from the leachate in shake flask, stirred tank and column reactor. When ferric to ferrous iron ratio in the shake flask reached to 20:1, L. ferrooxidans out competed Acidithiobacillus ferrooxidans and accounted for more than 99% of the total population. The isolate was confirmed by 16S rRNA genes sequence analysis and named as L. ferrooxidans SRPCBL. When the culture was exposure to UV dose and the oxidation-reduction potential of the inoculation medium was adjusted to 40 0mV by ferrous:ferric iron ratio, the IOR reached to as high as 1.2 g/L/h in shake flask, even with initial ferrous iron concentration of 200 g/L. The chalcopyrite concentrate leachate containing 12.8, 15.7, and 42.0 g/L ferrous iron, ferric iron and copper, respectively was studied for ferric iron regeneration with the developed polymetallic resistant L. ferrooxidans SRPCBL in stirred tank and a developed biofilm airlift column, the highest IOR achieved were 2.20 g/L/h and 3.1 g/L/h, respectively, with ferrous oxidation efficiency of 98%. The ferric regeneration ability of the developed isolate from the leachate proves useful for a two-stage metal extraction process.  相似文献   

13.
An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5 degrees C than at 30 degrees C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7 degrees C is that ferric iron remained in the soluble phase whereas, at 21 degrees C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5 degrees C.  相似文献   

14.
A method for direct, continuous determination of ferric ions produced in autotrophic iron oxidation, which depends upon the measurement of ferric ion absorbance at 304 nm, is described. The use of initial rates is shown to compensate for such changes in extinction during oxidation, which are due to dependence of the extinction coefficient on the ratio of complexing anions to ferric ions. A graphical method and a computer method are given for determination of absolute ferric ion concentration, at any time interval, in reaction mixtures containing Thiobacillus ferrooxidans and ferrous ions at known levels of SO(4) (2+) and hydrogen ion concentrations. Some examples are discussed of the applicability of these methods to study of the rates of ferrous ion oxidation related to sulfate concentration.  相似文献   

15.
The concentrations of ferrous and ferric ions change dramatically during the course of the batch experiments usually performed to study the kinetics of the bacterial oxidation of ferrous ions and sulfide minerals. This change in concentration of the iron species during the course of the experiment often makes it difficult to interpret the results of these experiments, as is evidenced by the lack of consensus concerning the mechanism of bacterial leaching. If the concentrations of ferrous and ferric ions were constant throughout the course of the batch experiment, then the role of the bacteria could be easily established, because the rate of the chemical leaching should be the same at a given redox potential in the presence and in the absence of bacteria. In this paper we report an experiment designed to obtain kinetic data under these conditions. The redox potential is used as a measure of the concentrations of ferrous and ferric ions, and the redox potential of the leaching solution is controlled throughout the experiment by electrolysis. The effects of ferrous, ferric, and arsenite ions on the rate of growth of Thiobacillus ferrooxidans on ferrous ions in this redox-controlled reactor are presented. In addition, the growth of this bacterium on ferrous ions in batch culture was also determined, and it is shown that the parameters obtained from the batch culture and the redox-controlled batch culture are the same. An analysis of the results from the batch culture indicates that the initial number of bacteria that are adapted to the solution depends on the concentrations of ferrous and arsenite ions.  相似文献   

16.
Mechanism of Bacterial Pyrite Oxidation   总被引:14,自引:1,他引:13       下载免费PDF全文
The oxidation by Ferrobacillus ferrooxidans of untreated pyrite (FeS(2)) as well as HCl-pretreated pyrite (from which most of the acid-soluble iron species were removed) was studied manometrically. Oxygen uptake was linear during bacterial oxidation of untreated pyrite, whereas with HCl-pretreated pyrite both a decrease in oxygen uptake at 2 hr and nonlinear oxygen consumption were observed. Ferric sulfate added to HCl-pretreated pyrite restored approximately two-thirds of the decrease in total bacterial oxygen uptake and caused oxygen uptake to revert to nearly linear kinetics. Ferric sulfate also oxidized pyrite in the absence of bacteria and O(2); recovery of ferric and ferrous ions was in excellent agreement with the reaction Fe(2)(SO(4))(3) + FeS(2) = 3FeSO(4) + 2S, but the elemental sulfur produced was negligible. Neither H(2)S nor S(2)O(3) (2-) was a product of the reaction. It is probable that two mechanisms of bacterial pyrite oxidation operate concurrently: the direct contact mechanism which requires physical contact between bacteria and pyrite particles for biological pyrite oxidation, and the indirect contact mechanism according to which the bacteria oxidize ferrous ions to the ferric state, thereby regenerating the ferric ions required for chemical oxidation of pyrite.  相似文献   

17.
Stannous ion has been used in different sectors of human interest, such as in food industry and in health sciences. Much is known about stannous chloride (SnCl(2)) toxicity, although, there is no general agreement regarding its genotoxicity. Cymbopogon citratus, Maytenus ilicifolia and Baccharis genistelloides extracts have been used in popular medicine. We evaluated the influence of these crude extracts on the survival of the Escherichia coli wild type (AB 1157) strain submitted to SnCl(2) treatment. Reactive oxygen species (ROS) can be generated by a Fenton like reaction induced by SnCl(2). E. coli culture was treated simultaneously with SnCl(2) and a specific extract. Our results showed a reduction of the SnCl(2) effect on the survival of the cultures in presence of the crude extracts. The extract of M. ilicifolia showed the highest level of protection action against the SnCl(2) effect in comparison with the other extracts. This protector effect could due to the redox properties of these crude extracts. The compounds in the crude extracts could (i) chelate stannous ions, protecting them against the oxidation and avoiding the generation of ROS, (ii) be a scavenger of the ROS generated by the SnCl(2) oxidation and/or (iii) have oxidant compounds that could oxidise the stannous ions, abolishing or reducing the SnCl(2) effect.  相似文献   

18.
In this study, the feasibility and engineering aspects of acidophilic ferrous iron oxidation in a continuous biofilm airlift reactor inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria were investigated. Specific attention was paid to biofilm formation, competition between both types of bacteria, ferrous iron oxidation rate, and gas liquid mass transfer limitations. The reactor was operated at a constant temperature of 30 degrees C and at pH values of 0-1.8. Startup of the reactor was performed with basalt carrier material. During the experiments the basalt was slowly removed and the ferric iron precipitates formed served as a biofilm carrier. These precipitates have highly suitable characteristics as a carrier material for the immobilization of ferrous iron-oxidizing bacteria and dense conglomerates were observed. Lowering the pH (0.6-1) resulted in dissolution of the ferric precipitates and induced granular sludge formation. The maximum ferrous iron oxidation rate achieved in this study was about 145 molFe(2+)/m(3).h at a hydraulic residence time of 0.25 h. Optimal treatment performance was obtained at a loading rate of 100 mol/m(3).h at a conversion efficiency as high as 98%. Fluorescent in situ hybridization (FISH) studies showed that when the reactor was operated at high ferrous iron conversion (>85%) for 1 month, the desirable L. ferrooxidans species could out-compete A. ferrooxidans due to the low Fe(2+) and high Fe(3+) concentrations.  相似文献   

19.
We have developed a mixed system, electrochemical-microbiological, that can be used for detoxifying organic compounds present in wastewater. In this system, organic matter oxidation takes place at the anode of an electrochemical reactor while ferric iron reduction takes place at the cathode. We have used a growing culture of Thiobacillus ferrooxidans to regenerate the ferric ions consumed. The culture is used as the catholyte (solution in the cathode compartment) of the system and is therefore permanently subjected to an electric field. We have verified that, under our working conditions, the culture is able to oxidize ferrous ions for long periods of time (up to 15 days) depending on the intensity of the applied current. We have checked the performance of this system in methanol oxidation. Our results show that it decreases the energy cost by 35% when com- pared with the pure electrochemical system traditionally used. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

20.
This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号