首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The metabolism of sulphadimethoxine (2,4-dimethoxy-6-sulphanilamidopyrimidine) was examined in nine species of primates and nine species of non-primates. 2. The main metabolite of the drug in the urine in man, rhesus monkey, baboon, squirrel monkey, capuchin, bushbaby, slow loris and tree shrew was sulphadimethoxine N(1)-glucuronide. In the green monkey, although the main metabolite was N(4)-acetylsulphadimethoxine, the N(1)-glucuronide was also a major metabolite. 3. In the dog, rat, mouse, guinea pig, Indian fruit bat and hen the N(1)-glucuronide was a minor metabolite in the urine, whereas in the cat, ferret and rabbit this glucuronide was not found in the urine. 4. All the species examined except the dog excreted some N(4)-acetylsulphadimethoxine, which was the major metabolite in the green monkey, rabbit and guinea pig. 5. In the tree shrew, a doubtful primate, N(1)-glucuronide formation was similar to that in the other primates. 6. It is suggested that the slow excretion of the drug by the rat may be due partly to strong binding of the drug to tissue proteins and that the strength of binding may vary with species. 7. In the rat the amount of N(1)-glucuronide found in the urine is not a true indication of the extent of this conjugation since much more of the conjugate was found in the bile (7% of the dose) than in the urine (1%). In the rabbit, no N(1)-glucuronide was found in the bile or urine, but a small amount of sulphadimethoxine N(4)-glucuronide was found in the bile of the rat (0.5% of dose) and rabbit (0.8%).  相似文献   

2.
1. The biliary excretion of injected [14C]aniline, [14C]benzoic acid, 4-amino-hippuric acid and 4-acetamidohippuric acid in six or eight species of animal (rat, dog, hen, cat, rabbit, guinea pig, rhesus monkey and sheep) was studied. 2. These compounds, with molecular weights in the range 93–236, are poorly excreted in the bile in all the species examined and, in effect, there is little significant species difference in the extent of their biliary excretion. 3. Compounds of higher molecular weight (355–495) were also studied, namely succinylsulphathiazole, [14C]stilboestrol glucuronide, sulphadimethoxine N1-glucuronide and phenolphthalein glucuronide. 4. With these compounds a clear species difference in the extent of biliary excretion was found, the rat, dog and hen being good excretors, the rabbit, guinea pig and monkey poor excretors, and the cat and sheep taking an intermediary position. 5. There was a general trend for biliary excretion to be higher in all species when the compounds were of higher molecular weight. 6. These results are discussed in their relation to species differences in drug metabolism.  相似文献   

3.
Biliary excretion in foreign compounds. Sulphonamide drugs in the rat   总被引:14,自引:13,他引:1       下载免费PDF全文
1. The extent of biliary excretion in the rat of 15 sulphonamide compounds was studied. 2. Most of the sulphonamides studied, with molecular weights from 172 (sulphanilamide) to 352 (N4-acetylsulphadimethoxine) are poorly excreted in the bile (0–4% of the dose), except sulphapyridine, sulphamethoxypyridazine and sulphadimethoxine. The last three are partly metabolized to glucuronides, whose molecular weights and polarities are such as to allow them to be excreted in the bile in appreciable amounts. 3. Succinylsulphathiazole and phthalylsulphathiazole are polar and have molecular weights (355 and 403) of an appropriate order, and are excreted unchanged in the bile in appreciable amounts. 4. Sulphadimethoxine N1-glucuronide (mol.wt. 487) is extensively excreted in the bile unchanged. 5. The results are examined in the light of the hypotheses put forward in the preceding paper (Millburn, Smith & Williams, 1967).  相似文献   

4.
1. The excretion of 2,4-dimethyl-6-sulphanilamidopyrimidine (sulphasomidine; Elkosin) and 4-methoxy-2-methyl-6-sulphanilamidopyrimidine (sulphamethomidine) given orally was examined in man, rhesus monkey, rabbit and rat. 2. About 70% of sulphasomidine (0.1g./kg.) is excreted mainly unchanged in the urine by these species in 24hr.; less than 15% of the dose is acetylated and there is no marked species difference in the fate of this drug. 3. Sulphamethomidine is excreted more slowly than sulphasomidine, and in the rat, rabbit and monkey the main metabolite is the N(4)-acetyl derivative. In man, only 20-30% of the dose is excreted in 24hr. and nearly 70% of this is sulphamethomidine N(1)-glucuronide, which is also excreted by the monkey but not by the rat or rabbit. There is therefore a marked species difference in the metabolism of sulphamethomidine. 4. Sulphamethomidine N(1)-glucuronide was synthesized and shown to be identical with the glucuronide isolated from monkey urine. 5. Sulphasomidine, sulphamethomidine and sulphadimethoxine (2,4-dimethoxy-6-sulphanilamidopyrimidine) were acetylated by rabbit or monkey liver homogenates. Although sulphasomidine is poorly acetylated in vivo, it is acetylated in vitro at rates comparable with those of the other two drugs. 6. The solubilities, partition coefficients and plasma-protein-binding of the drugs were measured. 7. The results are discussed.  相似文献   

5.
A new chromatographic detection method for oxidized metabolites has been developed based on the reaction of eluted compounds with an Fe+3-bathophenanthroline colorimetric reagent in a postcolumn reactor. The method is sensitive to N-hydroxyarylamines, aryldiamines, phenolic amines, and ascorbic acid. It has been applied to the analysis of toxic N-oxidized metabolites in rhesus monkey urine after the animals were dosed with the bladder carcinogens, 1- and 2-napthylamine. These compounds are oxidized to the corresponding N-hydroxyarylamines in the liver, conjugated as the N-glucuronide, and excreted in the urine. The N-glucuronide has been shown to undergo acidic hydrolysis in the urine to release the free N-hydroxyarylamine, an ultimate carcinogen for the induction of bladder tumors. In this study, the N-hydroxy-N-glucuronide of 2-naphthylamine was found to be excreted at a rate that was 6.8 times that of the 1-naphthylamine isomer. This is consistent with the much higher carcinogenic potency of 2-naphthylamine in a variety of species.  相似文献   

6.
Three nitrogen-containing metabolites of safrole (1-allyl-3,4-methylenedioxy-benzene) are excreted in the urine of rats and/or guinea pigs following oral or intraperitoneal administration. The major safrole basic ninhydrin-positive metabolites of the guinea pig and rat are 3-N-N-dimethylamino-1-(3′,4′-methylenedioxyphenyl)-1-propanone and 3-piperidyl-1-(3′,4′-methylenedioxyphenyl)-1-propanone, respectively. In addition, the rat also excretes the above N,N-dimethylaminoketone and trace amounts of 3-pyrrolidinyl-1-(3′,4′-methylenedioxyphenyl)-1-propanone. All three of these aminoketones decompose to form 1-(3′,4−methylenedioxyphenyl)-3-propen-1-one.  相似文献   

7.
Some metabolites of 1-bromobutane in the rabbit and the rat   总被引:2,自引:2,他引:0  
1. Rabbits and rats dosed with 1-bromobutane excrete in urine, in addition to butylmercapturic acid, (2-hydroxybutyl)mercapturic acid, (3-hydroxybutyl)mercapturic acid and 3-(butylthio)lactic acid. 2. Although both species excrete both the hydroxybutylmercapturic acids, only traces of the 2-isomer are excreted by the rabbit. The 3-isomer has been isolated from rabbit urine as the dicyclohexylammonium salt. 3. 3-(Butylthio)lactic acid is formed more readily in the rabbit; only traces are excreted by the rat. 4. Traces of the sulphoxide of butylmercapturic acid have been found in rat urine but not in rabbit urine. 5. In the rabbit about 14% and in the rat about 22% of the dose of 1-bromobutane is excreted in the form of the hydroxymercapturic acids. 6. Slices of rat liver incubated with S-butylcysteine or butylmercapturic acid form both (2-hydroxybutyl)mercapturic acid and (3-hydroxybutyl)mercapturic acid, but only the 3-hydroxy acid is formed by slices of rabbit liver. 7. S-Butylglutathione, S-butylcysteinylglycine and S-butylcysteine are excreted in bile by rats dosed with 1-bromobutane. 8. Rabbits and rats dosed with 1,2-epoxybutane excrete (2-hydroxybutyl)mercapturic acid to the extent of about 4% and 11% of the dose respectively. 9. The following have been synthesized: N-acetyl-S-(2-hydroxybutyl)-l-cysteine [(2-hydroxybutyl)mercapturic acid] and N-acetyl-S-(3-hydroxybutyl)-l-cysteine [(3-hydroxybutyl)mercapturic acid] isolated as dicyclohexylammonium salts, N-toluene-p-sulphonyl-S-(2-hydroxybutyl)-l-cysteine, S-butylglutathione and N-acetyl-S-butylcysteinyl-glycine ethyl ester.  相似文献   

8.
1. A comparative study was made in man, rhesus monkey, rat and rabbit of the urinary excretion of 2-, 4- and 5-methoxy- and 2,4-, 2,5- and 4,5-dimethoxy-6-sulphanilamidopyrimidines given orally. 2. In the rabbit, 70-80% of the dose of each drug was excreted in 2 days, mainly as N(4)-acetyl derivatives, except 2,5-dimethoxy-6-sulphanilamidopyrimidine, which was mainly excreted unchanged. 3. In the rat, 50-70% of the dose of each drug was excreted in 2 days, except the 2-methoxy and 2,4-dimethoxy compounds, whose excretion was about 30%. The N(4)-acetyl derivatives accounted for 20-70% of the drugs excreted, except the 2,5-dimethoxy derivative, which was excreted unchanged. 4. In the rhesus monkey, some 40-60% of the dose of the 2-methoxy, 2,4-dimethoxy and 2,5-dimethoxy compounds was excreted in 2 days, but the 4-methoxy, 5-methoxy and 4,5-dimethoxy compounds were excreted at less than half this rate. The 4-methoxy, 5-methoxy and 4,5-dimethoxy compounds were highly acetylated (80-90%) whereas the 2-methoxy compound was poorly acetylated (17%) and the 2,5-dimethoxy compound hardly at all. The major metabolite of the 2,4-dimethoxy compound in the monkey was the N(1)-glucuronide. 5. In man, 30% of the dose of the 4-methoxy and 2,4-dimethoxy compounds was excreted in 24 hr., whereas the 4,5-dimethoxy compound (Fanasil) was very slowly excreted (12% in 2 days). The 4-methoxy compound was well acetylated (65%), but the 2,4- and 4,5-dimethoxy compounds were not (20-30%). The main metabolite of the 2,4-dimethoxy compound in man was the N(1)-glucuronide. 6. N(1)-Glucuronide formation occurred extensively only with the 2,4-dimethoxy compound and only in man and the rhesus monkey. It did not occur in the rabbit and only to a minor extent in the rat. 7. The 2,5-dimethoxy compound was not significantly acetylated in vivo in the rabbit, rat or monkey, but acetylation occurred in vitro in rabbit or monkey liver homogenates. 8. These findings are discussed.  相似文献   

9.
The fate of benzoic acid in various species   总被引:4,自引:2,他引:2       下载免费PDF全文
1. The urinary excretion of orally administered [14C]benzoic acid in man and 20 other species of animal was examined. 2. At a dose of 50mg/kg, benzoic acid was excreted by the rodents (rat, mouse, guinea pig, golden hamster, steppe lemming and gerbil), the rabbit, the cat and the capuchin monkey almost entirely as hippuric acid (95–100% of 24h excretion). 3. In man at a dose of 1mg/kg and the rhesus monkey at 20mg/kg benzoic acid was excreted entirely as hippuric acid. 4. At 50mg/kg benzoic acid was excreted as hippuric acid to the extent of about 80% of the 24h excretion in the squirrel monkey, pig, dog, ferret, hedgehog and pigeon, the other 20% being found as benzoyl glucuronide and benzoic acid, the latter possibly arising by decomposition of the former. 5. On increasing the dose of benzoic acid to 200mg/kg in the ferret, the proportion of benzoyl glucuronide excreted increased and that of hippuric acid decreased. This did not occur in the rabbit, which excreted 200mg/kg almost entirely as hippuric acid. It appears that the hedgehog and ferret are like the dog in respect to their metabolism of benzoic acid. 6. The Indian fruit bat produced only traces of hippuric acid and possibly has a defect in the glycine conjugation of benzoic acid. The main metabolite in this animal (dose 50mg/kg) was benzoyl glucuronide. 7. The chicken, side-necked turtle and gecko converted benzoic acid mainly into ornithuric acid, but all three species also excreted smaller amounts of hippuric acid.  相似文献   

10.
The hypothesis that N-hydroxylation of arylamides is essential for carcinogenicity was examined in vivo and in vitro with N-2-fluorenylacetamide, a potent carcinogen, and with N-3-fluorenylacetamide, an isomer with marginal carcinogenicity. About 10–20% of 2-[9-14C]fluorenylacetamide administered intraperitoneally to the rat was excreted in the bile as the N-hydroxy-2-[9-14C]-derivative, whereas <0.1% of 3-[G-3H]fluorenylacetamide was found as the N-hydroxy metabolite in bile and urine. N-Hydroxylation of the 2- isomer by hepatic microsomes of untreated or 3-methylcholanthrene-treated rats was 40 to 50-fold greater than that of the 3- isomer. The role of cytochromes P-450 and P1-450 in N-hydroxylation of arylamides by rat liver microsomes was shown by inhibition of the reaction with carbon monoxide and cobaltous chloride. Interaction of the arylamides with cytochrome P1-450 was also demonstrated by binding spectra obtained on addition on 2- and 3-fluorenylacetamide to hepatic chromosomes of methylcholanthrene-treated rats. There appeared to be no correlation between the magnitude of the spectra and the extent of N-hydroxylation. N-Hydroxylation of the 2- isomer by hepatic microsomes of the guinea pig, a species resistant to the carcinogenecity of this compound, was markedly less than N-hydroxylation by rat liver microsomes, even though, as judged by the appearance of the binding spectra, both 2- and 3- isomers were bound by cytochrome P1-450 of guinea pig-liver microsomes. The results are in agreement with the view that the microsomal N-hydroxylation of arylamides parallels their carcinogenicity.  相似文献   

11.
Summary The monoamine oxidase activity in ten species (man, dog, cat, rabbit, guinea pig, rat, hamster, mouse, chicken, goose) was histochemically studied in the myocardium, liver, kidney and psoas muscle in newborn and older individuals.An age-dependent increase of monoamine oxidase activity is established in the liver and kidney of man, dog, cat, guinea pig and hamster. In the psoas muscle of the rat the monoamine oxidase activity is consistently weak. In the myocardium only the rat shows an increase with age.  相似文献   

12.
13.
1. The metabolites of (+/-)-2-methylamino-1-phenyl[1-(14)C]propane ([(14)C]methamphetamine) in urine were examined in man, rat and guinea pig. 2. In two male human subjects receiving the drug orally (20mg per person) about 90% of the (14)C was excreted in the urine in 4 days. The urine of the first day was examined for metabolites, and the main metabolites were the unchanged drug (22% of the dose) and 4-hydroxymethamphetamine (15%). Minor metabolites were hippuric acid, norephedrine, 4-hydroxyamphetamine, 4-hydroxynorephedrine and an acid-labile precursor of benzyl methyl ketone. 3. In the rat some 82% of the dose of (14)C (45mg/kg) was excreted in the urine and 2-3% in the faeces in 3-4 days. In 2 days the main metabolites in the urine were 4-hydroxymethamphetamine (31% of dose), 4-hydroxynorephedrine (16%) and unchanged drug (11%). Minor metabolites were amphetamine, 4-hydroxyamphetamine and benzoic acid. 4. The guinea pig was injected intraperitoneally with the drug at two doses, 10 and 45mg/kg. In both cases nearly 90% of the (14)C was excreted, mainly in the urine after the lower dose, but in the urine (69%) and faeces (18%) after the higher dose. The main metabolites in the guinea pig were benzoic acid and its conjugates. Minor metabolites were unchanged drug, amphetamine, norephedrine, an acid-labile precursor of benzyl methyl ketone and an unknown weakly acidic metabolite. The output of norephedrine was dose-dependent, being about 19% on the higher dose and about 1% on the lower dose. 5. Marked species differences in the metabolism of methamphetamine were observed. The main reaction in the rat was aromatic hydroxylation, in the guinea pig demethylation and deamination, whereas in man much of the drug, possibly one-half, was excreted unchanged.  相似文献   

14.
N O Bodin 《Life sciences》1974,14(4):685-692
After oral administration of 3H-alprenolol to man, dog and rat, urinary metabolites of the drug have been separated by ion-exchange chromatography on Bio-Rex 70, a carboxylic acrylate resin. The major metabolite has been identified by GC-MS as 4-hydroxyalprenolol. Occurring in the urine largely in a conjugated form, it represents about 40 % of the excreted amount in man and dog and about 30 % in rat. Including alprenolol, which also appears largely as a conjugate, about 80 % of the amount of radioactivity excreted in human urine can be accounted for.  相似文献   

15.
1. Sex and species differences during the metabolism of [4-14C]progesterone by liver homogenates from rat, rabbit, guinea pig and hamster have been investigated. 2. Liver homogenate from male rat formed `water-soluble' metabolites faster and in significantly larger amounts than did liver homogenate from female rat. About 65–70% of the added progesterone was conjugated as glucuronide by liver homogenate from male rat and about 45–50% by that from female rat. Liver homogenate from male rat also formed glucuronides faster than did liver homogenate from female rat. Sulphate formation was low (8–16%) in liver homogenates from both male and female rats. 3. Hamster-liver homogenate did not show any sex difference in the rate of formation of `water-soluble' metabolites, but a sex difference was observed in the amount of free steroids recovered at low tissue:steroid ratios. Liver homogenate from female hamster formed glucuronides faster and in significantly larger amounts than did liver homogenate from male hamster, the reverse of what was found in rat liver. 4. Liver homogenates from male and female rabbits and guinea pigs formed `water-soluble' metabolites that were almost entirely glucuronides. 5. Neither rabbit liver nor guinea-pig liver showed any significant sex difference in the rate or amount of formation of total `water-soluble' metabolites or glucuronides, but guinea-pig liver was considerably less active than rabbit liver. 6. Glucuronides were quantitatively the major type of conjugate formed by the liver homogenates from both sexes of all species except the male hamster.  相似文献   

16.
The metabolites of cyclohexylamine in man and certain animals   总被引:3,自引:3,他引:0  
1. [1-(14)C]Cyclohexylamine hydrochloride was synthesized and given orally or intraperitoneally to rats, rabbits and guinea pigs (dose 50-500mg/kg) and orally to humans (dose 25 or 200mg/person). The (14)C is excreted mainly in the urine, most of the excretion occurring in the first day after dosing. Only small amounts (1-7%) are found in the faeces. 2. In the rat, guinea pig and man, the amine is largely excreted unchanged, only 4-5% of the dose being metabolized in 24h in the rat and guinea pig and 1-2% in man. In the rabbit about two-thirds of the dose is excreted unchanged and about 30% is metabolized. 3. In the rat, five minor metabolites were found, namely cyclohexanol (0.05%), trans-3- (2.2%), cis-4- (1.7%), trans-4- (0.5%) and cis-3-aminocyclohexanol (0.1% of the dose in 24h). 4. In the rabbit, eight metabolites were identified, namely cyclohexanol (9.3%), trans-cyclohexane-1,2-diol (4.7%), cyclohexanone (0.2%), cyclohexylhydroxylamine (0.2%) and trans-3- (11.3%), cis-3- (0.6%), trans-4- (0.4%) and cis-4-aminocyclohexanol (0.2%). 5. In the guinea pig, six minor metabolites were found, namely cyclohexanol (0.5%), trans-cyclohexane-1,2-diol (2.5%) and trans-3- (1.2%), cis-3- (0.2%), trans-4- (0.2%) and cis-4-aminocyclohexanol (0.2%). 6. In man only two metabolites were definitely identified, namely cyclohexanol (0.2%) and trans-cyclohexane-1,2-diol (1.4% of the dose), but man had been given a smaller dose (3mg/kg) than the other species (50mg/kg). 7. The hydroxylated metabolites of cyclohexylamine were excreted in the urine in both free and conjugated forms. 8. Although cyclohexylamine is metabolized to only a minor extent, in rats the metabolism was mainly through hydroxylation of the cyclohexane ring, in man by deamination and in guinea pigs and rabbits by ring hydroxylation and deamination.  相似文献   

17.
The in vivo metabolism of the cis and trans isomers of N-[3,5-3H] nitroso-2,6-dimethylmorpholine (NDMM) was studied in female Fischer rats, Syrian golden hamsters and guinea pigs by analysis of urinary metabolites using high pressure liquid chromatography (HPLC). Animals were treated by gavage with 12 mg/kg body wt. of NDMM, composed of both isomers and 12 μCi/kg body wt. of either of the separated radioactive isomers (cis or trans). Control animals received 12 mg, 12 μCi/kg body wt. NDMM with both isomers labeled in their natural proportion.There was a substantial increase in the excretion of a particular metabolite, 2-(2-hydroxyl-methyl)ethoxy propanoic acid, in the urine of rats, hamsters and guinea pigs 24 h after received the trans isomer (24, 22 and 13% of the total dose excreted, respectively). A minor metabolite was determined to be 2,6-dimethylmorpholine-3-one, another product of α-oxidation. The metabolite 1-amino-2-hydroxypropanol was identified, indicating that NDMM was metabolized by both α-and β-oxidation.In all three species, animals administered the cis isomer excreted larger amounts of N-nitroso(2-hydroxypropyl)(2-oxopropyl)amine (HPOP) and N-nitroso-bis(2-hydroxypropyl)amine (BHP) products of beta oxidation, than those treated with the trans isomer. Hamsters and guinea pigs treated with the more carcinogenic cis isomer in these species, also excreted twice as much of two other metabolites than was found in the urine of animals given the trans isomer.The trans isomer of NDMM appeared to be preferentially metabolized by α-oxidation and from earlier studies this metabolic pathway seemed to be important in carcinogenesis by NDMM in the rat. The cis isomer might be in a conformation more favorable for β-oxidation and this pathway may be of primary importance in carcinogenesis by NDMM in hamsters and guinea pigs.  相似文献   

18.
The metabolism of urethane and related compounds   总被引:4,自引:2,他引:2       下载免费PDF全文
1. Urethane is metabolized in the rat, rabbit and man by a process of N-hydroxylation. This occurs to a smaller extent when methyl, n-propyl and n-butyl carbamates are administered to the rat and rabbit. 2. Other metabolites which have been detected in urine of animals dosed with urethane and N-hydroxyurethane are ethylmercapturic acid, ethylmercapturic acid sulphoxide and N-acetyl-S-carbethoxycysteine. 3. Substances which appear to be S-ethylglutathione and S-ethylglutathione sulphoxide have been detected in the bile of rats dosed with urethane or N-hydroxyurethane. 4. Methyl, ethyl, n-propyl and n-butyl N-hydroxycarbamates are excreted unchanged in the urine of rats dosed with these compounds to extents depending on the dose administered. 5. Animals dosed with methyl, ethyl, n-propyl or n-butyl carbamate or the corresponding N-hydroxycarbamate excrete the corresponding carbamate and N-hydroxycarbamate in the urine. 6. Methyl, n-propyl and n-butyl carbamates and N-hydroxycarbamates are excreted more slowly than are urethane and N-hydroxyurethane. 7. The probable role of N-hydroxyurethane and the processes of alkylation and carbethoxylation, and of hydroxylamine, nitroxyl and hyponitrous acid in carcinogenesis and chemotherapy with urethane, have been discussed.  相似文献   

19.
1. 2-Naphthylhydroxylamine and 2-nitrosonaphthalene were present in urine of dogs but not of guinea pigs, hamsters, rabbits or rats dosed with 2-naphthylamine. N-Acetyl-2-naphthylhydroxylamine and its O-sulphonic acid and O-glucosiduronic acid were not detected in the urine of any of these species. 2. Bile from rats dosed with 2-naphthylamine contained (2-naphthylamine N-glucosid)uronic acid and 6- and 5,6-substituted derivatives of 2-acetamidonaphthalene. 2-Amino-1-naphthyl and 2-acetamido-1-naphthyl derivatives, 2-naphthylhydroxylamine and its N-acetyl derivative or conjugates of these were not detected. Bile from a dog dosed with 2-naphthylamine contained no 2-amino-1-naphthyl derivatives. 3. 2-Naphthylhydroxylamine was metabolized by the dog, rat and guinea pig to the same products as those formed by these species from 2-naphthylamine. Rabbits formed mainly 2-amino-1-naphthyl derivatives; these are minor metabolites of 2-naphthylamine in this species. 4. (N-Acetyl-2-naphthylhydroxylamine O-glucosid)uronic acid was excreted in the urine and the bile of rats and in the urine of guinea pigs and rabbits dosed with N-acetyl-2-naphthylhydroxylamine. 5. After the administration of 2-acetamidonaphthalene, (N-acetyl-2-naphthylhydroxylamine O-glucosid)uronic acid was detected in the urine of dogs, but not in the urine of other species. The dog excreted an acid-labile cysteine derivative of 2-acetamidonaphthalene, but only traces of the corresponding mercapturic acid. 6. After dosing with N-acetyl-2-naphthylhydroxylamine-O-sulphonic acid, rats excreted derivatives of 2-amino-1-naphthol. 7. 2-Nitrosonaphthalene, N-acetyl-2-naphthylhydroxylamine, N-acetyl-2-naphthylhydroxylamine-O-sulphonic acid, 2-naphthylhydroxylamine-N-sulphonic acid, N-benzyloxycarbonyl-2-naphthylhydroxylamine and N-benzyloxycarbonyl-2-naphthylhydroxylamine-O-sulphonic acid were synthesized.  相似文献   

20.
Guinea pig aldehyde oxidase was purified about 120-fold at a yield of 26% from liver cytosol by sequential column chromatography using DEAE-cellulose, FMN-Sepharose 4B, and Sephacryl S-300. The purified enzyme showed many similarities with the rabbit liver aldehyde oxidase reported by other workers with respect to its absolute spectra, molecular weight, and cofactor compositions of molybdenum, FAD, and nonheme iron. This enzyme efficiently utilized 2-hydroxypyrimidine and benzaldehyde as electron donors while N1-methylnicotinamide was 40 times less effective than 2-hydroxypyrimidine. Diphenyl sulfoxide was reduced anaerobically to diphenyl sulfide in the presence of electron donors. This activity was highly susceptible to SKF 525-A as well as the known inhibitors for aldehyde oxidase such as menadione, estradiol, and potassium cyanide. This enzyme also reduced dibenzyl sulfoxide, phenothiazine sulfoxide, d-biotin methyl ester d-sulfoxide, and quinoline N-oxide, but not l-methionine sulfoxide, dimethyl sulfoxide, d-biotin methyl ester l-sulfoxide, and d-biotin d- and l-sulfoxides, as well as diphenyl sulfone. These results indicate that aldehyde oxidase in guinea pig liver functions as a sulfoxide reductase with selective substrate specificity under anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号