首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Crayfish (Procambarus clarki) myosin was obtained from abdominal flexor muscle. The Ca2+-ATPase activity of crayfish myosin was much lower than that of rabbit skeletal myosin. However, F-actin-activated Mg2+-ATPase of crayfish and its superprecipitation closely resembled those of rabbit skeletal myosin. This fact suggests that the ability of crayfish myosin to combine with F-actin is essentially the same as that of skeletal myosin, although the chemical structures of both the myosin molecules when involved in their Ca2+-ATPast activity must be different from each other. 2. Crayfish and rabbit skeletal myosins were subjected to SDS-polyacrylamide gel electrophoresis. Crayfish myosin was found to have one heavy chain and two distinct light chain components (CF-gl and CF-g2), which have molecular weights of 18,000 and 16,000, respectively. These light chains correspond in molecular weight to the light chains (SK-g2 and SK-g3) in rabbit skeletal myosin. 3. CF-g1 could be liberated from the crayfish myosin molecule reacting with 5,5'-dithio-bis (2-nitrobenzoic acid), (Nbs2), without recovery of ATPase activity by the addition of DTT. These properties are equivalent to those of SK-g2 in rabbit skeletal myosin, although Nbs2-treated crayfish myosin did not recover its ATPase activity at all.  相似文献   

2.
Calcium regulation of porcine aortic myosin   总被引:1,自引:0,他引:1  
Calcium regulation of actin-activated porcine aortic myosin MgATPase was studied. The MgATPase of the purified actomyosin was stimulated about 10-fold by 0.1 mM Ca2+. The 20,000 molecular weight light chain subunit (LC20) of myosin was phosphorylated by an endogenous kinase that required Ca2+. Half-maximal activation of both kinase and ATPase occurred at about 0.9 microM Ca2+. Phosphorylated and unphosphorylated myosins, free of actin, kinase, and phosphatase, were purified by gel filtration. The MgATPase of phosphorylated myosin was activated by rabbit skeletal muscle actin; unphosphorylated myosin was actin activated to a much lesser extent. Actin activation was maximal in the presence of Ca2+. Regulation of the aortic myosin MgATPase seems to involve both direct interaction of calcium with phosphorylated myosin and calcium activation of the myosin kinase. The MgATPase of trypsin-treated actomyosin did not require Ca2+ for full activity. The trypsin-treated actomyosin was devoid of LC20. When purified unphosphorylated aortic myosin was treated with trypsin, the LC20, was cleaved and the MgATPase, which was not appreciably actin activated before exposure to protease, was increased and was activated by skeletal muscle actin. After incubation of this light chain-depleted myosin with light chain from rabbit skeletal muscle myosin, the actin activation but not the increased activity, was abolished. Unphosphorylated LC20 seems to inhibit actin activation in this smooth muscle.  相似文献   

3.
Dissociation and reassociation of rabbit skeletal muscle myosin.   总被引:2,自引:0,他引:2  
J Wikman-Coffelt  S Srivastava  D T Mason 《Biochimie》1979,61(11-12):1309-1314
Whereas dissociation of rabbit skeletal muscle myosin light chains occurs at an increased temperature (25 degrees) and in the absence of divalent cations, reassociation of the myosin oligomer requires a low temperature (4 degrees C) and the presence of divalent cations, thus resulting in the original light to heavy chain stoichiometry. With a 5-10 per cent release of alkali light chains, LC1 and LC3, and a 50 per cent dissociation of the Ca2+ binding light chain, LC2, there is no significant decrease in myosin ATPase activity irrespective of the cation activator, however, there is an approximate 15-20 per cent decrease in actomyosin ATPase activity. With reassociation of the myosin oligomer, actomyosin ATPase activity is partially restored as well as the original number of Ca2+ binding sites.  相似文献   

4.
In this study, myosin types in human skeletal muscle fibers were investigated with electrophoretic techniques. Single fibers were dissected out of lyophilized surgical biopsies and typed by staining for myofibrillar ATPase after preincubation in acid or alkaline buffers. After 14C-labelling of the fiber proteins in vitro by reductive methylation, the myosin light chain pattern was analysed on two-dimensional gels and the myosin heavy chains were investigated by one-dimensional peptide mapping. Surprisingly, human type I fibers, which contained only the slow heavy chain, were found to contain variable amounts of fast myosin light chains in addition to the two slow light chains LC1s and LC2s. The majority of the type I fibers in normal human muscle showed the pattern LC1s, LC2s and LC1f. Further evidence for the existence in human muscle of a hybrid myosin composed of a slow heavy chain with fast and slow light chains comes from the analysis of purified human myosin in the native state by pyrophosphate gel electrophoresis. With this method, a single band corresponding to slow myosin was obtained; this slow myosin had the light chain composition LC1s, LC2s and LC1f. Type IIA and IIB fibers, on the other hand, revealed identical light chain patterns consisting of only the fast light chains LC1f, LC2f and LC3f but were found to have different myosin havy chains. On the basis of the results presented, we suggest that the histochemical ATPase normally used for fibre typing is determined by the myosin heavy chain type (and not by the light chains). Thus, in normal human muscle a number of 'hybrid' myosins were found to occur, namely two extreme forms of fast myosins which have the same light chains but different heavy chains (IIA and IIB) and a continuum of slow forms consisting of the same heavy chain and slow light chains with a variable fast light chain composition. This is consistent with the different physiological roles these fibers are thought to have in muscle contraction.  相似文献   

5.
Abalone myosin contains two kinds of light chain, regulatory light chain (LC2) and essential light chain (LC1) according to SDS-PAGE. Three distinct light chain bands were observed on polyacrylamide gel electrophoresis of purified abalone myosin in the presence of urea (urea-PAGE). The slower two components showed had mobility on SDS-PAGE and they also showed regulatory activity as the regulatory light chain. They were termed LC2-a and LC2-b in order of increasing mobility on urea-PAGE and isolated by DE-32 ion exchange column chromatography in the presence 8 M urea. The ratio of LC2-a and LC2-b in the central portion of adductor muscle of abalone (LC2-a: LC2-b = 7:3) was different from that (1:1) in the peripheral portion. These results suggest that the two light chains are isoforms of the regulatory light chain. The amino acid compositions of LC2-a and LC2-b were very similar to each other except for the Cys content. The UV absorption spectra were also quite similar, as were the UV difference absorption spectra induced by Ca2+. Phosphorylation was not detectable with the myosin light chain kinase of chicken gizzard. The Ca2+ concentration dependencies of Mg-ATPase activity of LC2-a or LC2-b hybridized abalone myosin (a-myosin, b-myosin) were similar to each other in the absence of rabbit F-actin, but differed in the presence of actin. The b-myosin had a higher maximum value of actomyosin ATPase activity and a lower apparent binding constant of actin and myosin than a-myosin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Summary Physarum myosin is composed of a heavy chain of about 225,000 daltons and two small polypeptides of 17,700 and 16,100 daltons, called light chain one (LC 1) and two (LC 2). Light chain one is shown to belong to the general class of regulating light chains by two independent criteria. After denaturation, purification and renaturation of thePhysarum light chains only LC 1 will combine with scallop myofibrils in which one myosin regulatory light chain has been removed. This LC 1 can restore inhibition of the ATPase activity of the myofibrils at 10–8 M Ca++ just as well as light chains from rabbit skeletal myosin. Secondly, this LC 1 is the only component of the myosin that is significantly phosphorylated by an endogenous kinase present in crude actomyosin. An active phosphatase is also present. Preliminary results could not detect calcium sensitivity for either kinase or phosphatase, nevertheless the importance of phosphorylation in affecting activity of biological systems suggests that LC 1 may serve some regulating function for plasmodial actomyosin.  相似文献   

7.
1. Myosin from gizzards of 15-day-old chicken embryos was highly purified by ammonium sulfate fractionation in the presence of ATP and MgCl2, ultra-centrifugation and Sepharose 4B chromatography. 2. The myosin composed of heavy and three light chains as determined by sodium dodecyl sulfate (SDS) gel electrophoresis. The molecular weights of the light chains were 23,000 (L23), 20,000 (L20), and 17,000 (L17), respectively. The amount of L23 light chain decreased and disappeared, and the L17 light chain increased steadily in the course of development. The amount of L20 light chain did not change. 3. ATPase activity of the embryonic myosin was essentially the same as that of adult myosin. The change in the light chain pattern in the course of development did not correlate to the ATPase activity. 4. Antigenicity of the heavy chains in the embryonic myosin was the same as that of the adult heavy chains. However, antibodies to light chains were not detected in the antibodies to either the embryonic or adult myosins.  相似文献   

8.
It is shown that myosin of human skeletal muscles is more difficult for purification from the actin and nucleic acids admixtures. It is also characterized by a less yield and a pronounced lability to denaturant effects as compared to rabbit myosin. The ATPase activity of human myosin is 1.5-2 times as low and the cholinesterase one--tens of times as high as those of rabbit myosin. A relative content of LC3 (LC--light chains) is approximately twice as low and that of LC1--as high as in rabbit myosin. It is supposed that the found differences in the properties may be explained to a considerable extent by a different ratio of certain light chains contained in the investigated proteins.  相似文献   

9.
The Mg2+ATPase activity of the myosin of a myeloid leukemia cell line (Ml) was not activated by purified Ml actin or by muscle actin alone. Activation required the presence of a cellular fraction as a cofactor in addition to the actin, when Mg2+ATPase was stimulated as much as 20-fold. The cofactor was partially purified and characterized. 1) Its molecular weight was estimated as 45,000 to 55,000 daltons by gel filtration and as 45,000 daltons by SDS polyacrylamide gel electrophoresis. 2) The cofactor was a light chain kinase that phosphorylated both the L1 and L2 light chains of the Ml cell myosin, but not the L3 or heavy chain.  相似文献   

10.
A method is described for the preparation of high purity myosin from the left ventricle of pig heart. The purified myosin was free from nucleic acid, actin, tropomyosin, troponin, the 150,000 molecular weight protein and other contaminants. Analyses of subunits in the purified myosin were carried out on 3.5% acrylamide gel with 0.1% SDS. Of the total protein present in myosin, 11.3% was in the light chains; light chain 1 (LC1), 5.9% and light chain 2 (LC2), 5.4%. Urea gel electrophoresis of the purified myosin showed three closely spaced bands corresponding to the 20,000 dalton, the charge-modified 20,000 dalton and the phosphorylated 20,000 dalton components. The properties of the Ca2+-activated and K+-activated ATPases [EC 3.6.1.3] of the purified myosin were also studied. The Km values were 27 and 55 muM and the Vmax values were 0.263 and 0.317 mumole P1/mg/min for the Ca2+-activated and K+-activated ATPases, respectively. The pH-activity profiles and the effects of SH modification were of the skeletal myosin type except that the activities were lower.  相似文献   

11.
Myosin was isolated from amoebae of Physarum polycephalum and compared with myosin from plasmodia, another motile stage in the Physarum life cycle. Amoebal myosin contained heavy chains (Mr approximately 220,000), phosphorylatable light chains (Mr 18,000), and Ca2+-binding light chains (Mr 14,000) and possessed a two-headed long-tailed shape in electron micrographs after rotary shadow casting. In the presence of high salt concentrations, myosin ATPase activity increased in the following order: Mg-ATPase activity less than K-EDTA-ATPase activity less than Ca-ATPase activity. In the presence of low salt concentrations, Mg-ATPase activity was activated approximately 9-fold by skeletal muscle actin. This actin-activated ATPase activity was inhibited by micromolar levels of Ca2+. Amoebal myosin was indistinguishable from plasmodial myosin in ATPase activities and molecular shape. However, the heavy chain and phosphorylatable light chains of amoebal myosin could be distinguished from those of plasmodial myosin in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peptide mapping, and immunological studies, suggesting that these are different gene products. Ca2+-binding light chains of amoebal and plasmodial myosins were found to be identical using similar criteria, supporting our hypothesis that the Ca2+-binding light chain plays a key role in the inhibition of actin-activated ATPase activity in Physarum myosins by micromolar levels of Ca2+.  相似文献   

12.
The myosin light chains of cultured muscle cells and embryonic muscle tissue have been examined by two-dimensional gel electrophoresis. Myosin purified from primary cultures of rat muscle cells or the myogenic cell line L6 contain not only the light chains corresponding to those of fast twitch muscle but also another protein, differing slightly in molecular weight and isoelectric point from the adult LC1 protein. By a number of criteria this additional protein is shown to be a myosin light chain: (1) it is found in highly purified myosin preparations; (2) in L6 myosin it replaces the other LC1-type light chains in stoichiometric amounts; (3) it is part of the subfragment-1 complex of myosin produced by chymotrypsin. as expected for an LC1-type light chain. Total extracts of fused cultured muscle cells, when analyzed by two-dimensional electrophoresis, contain substantial amounts of this additional LC1-type protein, strongly suggesting that it is not a proteolytic fragment produced during myosin isolation. Unfused cultures do not synthesize detectable amounts of the adult light chains or the additional LC1-type light chain. This additional LC1 protein can be detected in embryonic or newborn muscle tissue but it is not present in adult myosin or myofibrils. These results indicate that a novel form of myosin light chain, referred to as an embryonic LC1 or LC1emb, is characteristic of the early stages of muscle development.  相似文献   

13.
Dog myocardial myosin preparations, purified according to the procedures presented here, utilizing either one or two (NH4)2SO4 fractionations, contained no major contaminants which could be detected by disc gel electrophoresis, and exhibited high myosin ATPase activity. The low molecular weight components (light chains) were dissociated from the rest of the molecule by denaturing with urea; the chains were further purified by column chromatography. Procedures were a modification of those used for purification of skeletal muscle myosin light chains. According to immunoanalyses the two myocardial myosin light chains showed antigenic specificity.  相似文献   

14.
从多头绒泡菌中纯化了肌球蛋白,并对其亚基组成及ATP酶性质进行了研究。该肌球蛋白是由一种重链(225kD)和两种轻链(20kD,17.5kD)组成的大分子,其亚基之比为HC:LC1:LC2=2:4:2。兔肌F-肌动蛋白能较大激活粘菌肌球蛋白ATP酶活性,Ca~(2+)离子也能提高其活性,Mg~(2+)离子无明显影响。钒酸盐,碘乙酸,对氯汞苯甲酸对其ATP酶活性有显著抑制作用。  相似文献   

15.
Myosin light chain kinase purified from chicken white skeletal muscle (Mr = 150,000) was significantly larger than both rabbit skeletal (Mr = 87,000) and chicken gizzard smooth (Mr = 130,000) muscle myosin light chain kinases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Km and Vmax values with rabbit or chicken skeletal, bovine cardiac, and chicken gizzard smooth muscle myosin P-light chains were very similar for the chicken and rabbit skeletal muscle myosin light chain kinases. In contrast, comparable Km and Vmax data for the chicken gizzard smooth muscle myosin light chain kinase showed that this enzyme was catalytically very different from the two skeletal muscle kinases. Affinity-purified antibodies to rabbit skeletal muscle myosin light chain kinase cross-reacted with chicken skeletal muscle myosin light chain kinase, but the titer of cross-reacting antibodies was approximately 20-fold less than the anti-rabbit skeletal muscle myosin light chain kinase titer. There was no detectable antibody cross-reactivity against chicken gizzard myosin light chain kinase. Proteolytic digestion followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or high performance liquid chromatography showed that these enzymes are structurally very different with few, if any, overlapping peptides. These data suggest that, although chicken skeletal muscle myosin light chain kinase is catalytically very similar to rabbit skeletal muscle myosin light chain kinase, the two enzymes have different primary sequences. The two skeletal muscle myosin light chain kinases appear to be more similar to each other than either is to chicken gizzard smooth muscle myosin light chain kinase.  相似文献   

16.
The light chains of scallop myosin as regulatory subunits   总被引:27,自引:0,他引:27  
In molluscan muscles contraction is regulated by the interaction of calcium with myosin. The calcium dependence of the aotin-activated ATPase activity of scallop myosin requires the presence of a specific light chain. This light chain is released from myosin by EDTA treatment (EDTA-light chains) and its removal desensitizes the myosin, i.e. abolishes the calcium requirement for the actin-activated ATPase activity, and reduces the amount of calcium the myosin binds; the isolated light chain, however, does not bind calcium and has no ATPase activity. Calcium regulation and calcium binding is restored when the EDTA-light chain is recombined with desensitized myosin preparations. Dissociation of the EDTA-light chain from myosin depends on the concentration of divalent cations; half dissociation is reached at about 10?5 M-magnesium or 10?7 M-calcium concentrations. The EDTA-light chain and the residual myosin are fairly stable and the components may be kept separated for a day or so before recombination.Additional light chains containing half cystine residues (SH-light chains) are detached from desensitized myosin by sodium dodecyl sulfate. The EDTA-light chains and the SH-light chains have a similar chain weight of about 18,000 daltons; however, they differ in several amino acid residues and the EDTA-light chains contain no half cystine. The SH-light chains and EDTA-light chains have different tryptic fingerprints. Both light chains can be prepared from washed myofibrils.Densitometry of dodecyl sulfate gel electrophoresis bands and Sephadex chromatography in sodium dodecyl sulfate indicate that there are three moles of light chains in a mole of purified myosin, but only two in myosin treated with EDTA. The ratio of the SH-light chains to EDTA-light chains was found to be two to one in experiments where the total light-chain complements of myosin or myofibril preparations were carboxymethylated. A similar ratio was obtained from the densitometry of urea-acrylamide gel electrophoresis bands. We conclude that a myosin molecule contains two moles of SH-light chain and one mole of EDTA-light chain, and that the removal of a single EDTA-light chain completely desensitizes scallop myosin.Heavy meromyosin and S-1 subfragment can be prepared from scallop myosin. Both of these preparations bind calcium and contain light chains in significant amounts. The heavy meromyosin of scallop is extensively degraded; the S-1 preparation, however, is remarkably intact. Significantly, heavy meromyosin has a calcium-dependent actin-activated ATPase while the S-1 does not require calcium and shows high ATPase activity in its absence. These results suggest that regulation involves a co-operativity between the two globular ends of the myosin.Desensitized scallop myosin and scallop S-1 preparations can be made calcium sensitive when mixed with rabbit actin containing the rabbit regulatory proteins. This result makes it unlikely that specific light chains of myosin are involved in the regulation of the vertebrate system.The fundamental similarity in the contractile regulation of molluscs and vertebrates is that interaction between actin and myosin in both systems requires a critical level of calcium. We propose that the difference in regulation of these systems is that the interaction between myosin and actin is prevented by blocking sites on actin in the case of vertebrate muscles, whereas in the case of molluscan muscles it is the sites on myosin which are blocked in the absence of calcium.  相似文献   

17.
It has been shown that in the absence of KCl, the actin-stimulated Mg2+-ATPase activity of rabbit skeletal myosin minifilaments with phosphorylated regulatory lights chains (LC2) exceeds 3-4-fold that of myosin minifilaments with dephosphorylated LC2. Addition of KCl leads to a decrease in the difference between the two ATPase activities. LC2 phosphorylation considerably increases the rate of ATPase reaction and only slightly decreases the affinity of myosin minifilaments for F-actin. It is suggested that the unusual effect of LC2 phosphorylation on the kinetic parameters of the actin-stimulated ATPase reaction of myosin minifilaments can be accounted for by its influence on the interaction between myosin heads which results in the ordered self-assembly of minifilaments.  相似文献   

18.
Myosins prepared from chicken and rabbit fast and slow muscles were treated with 5,5'-dithiobis-(2-nitrobenzoic acid) (Nbs2). About half of the thiol groups of the fast muslce myosins reacted with Nbs 2, but in slow muscle myosins, only about 10-20% of the thiol groups reacted. This treatment removed 50-60% of the L2 components, Nbs2 light chain, from fast muscle myosins, but did not result in specific dissociation of the light chains in slow myscle myosins. The treatment sometimes released L4 component from chicken muscle myosins instead of L2 component. The changes of myosin ATPase [EC 3.6.1.3] activities caused by this treatment did not correlate with the release of Nbs2 light chain, but were dependent upon the species, chicken or rabbit.  相似文献   

19.
Antibodies specific for rabbit fast-twitch-muscle myosin LCIF light chain were purified by affinity chromatography and characterized by both non-competitive and competitive enzyme-linked immunosorbent assay (ELISA) and a gel-electrophoresis-derived assay (GEDELISA). The antibodies did not cross-react with myosin heavy chains, and were weakly cross-reactive with the LC2F [5,5'-dithio-(2-nitrobenzoic acid)-dissociated] light chain and with all classes of dissociated light chains (LC1Sa, LC1Sb and LC2S), as well as with the whole myosin, from hind-limb slow-twitch muscle. The immunoreactivity of myosins with a truly mixed light-chain pattern (e.g. vastus lateralis and gastrocnemius) correlated with percentage content of fast-twitch-muscle-type light chains. A more extensive immunoreactivity was observed with diaphragm and masseter myosins, which were also characterized, respectively, by a relative or absolute deficiency of LC1Sa light chain. Furthermore, it was found that the LC1Sb light chain of masseter myosin is antigenically different from its slow-twitch-muscle myosin analogue, and is immunologically related to the LC1F light chain. Rabbit masseter muscle from its metabolic and physiological properties and the content, activity and immunological properties of sarcoplasmic-reticulum adenosine triphosphatase, is classified as a red, predominantly fast-twitch, muscle. Therefore our results suggest that the two antigenically different iso-forms of LC1Sb light chain are associated with the myosins of fast-twitch red and slow-twitch red fibres respectively.  相似文献   

20.
The expression of myosin isoforms and their subunit composition in the white skeletal body musculature of Arctic charr (Salvelinus alpinus) of different ages (from 77-day embryos until about 5 years old) was studied at the protein level by means of electrophoretic techniques. Myosin from the white muscle displayed three types of light chain during all the developmental stages examined: two myosin light chains type 1 (LC1F) differing in both apparent molecular mass and pI, one myosin light chain type 2 (LC2F) and one myosin light chain type 3 (LC3F). The fastest-migrating form of LC1F seemed to be predominant during the embryonic and eleutheroembryonic periods. The slowest-migrating form of LC1F was predominant in the 5-year-old fish. Between 1 year and 4 years, both types of LC1F were present in similar amounts. Cardiac as well as red muscle myosin from 3-year-old fish had two types of light chain. The myosin light chains from atria and ventriculi were indistinguishable by two-dimensional electrophoresis, but were different from the myosin light chains from red muscle. Neither the light chains from cardiac nor red muscle were coexpressed with the myosin light chains of white muscle at any of the developmental stages examined. Two myosin heavy chain bands were resolved by SDS/glycerol/polyacrylamide gel electrophoresis of the extract from embryos. One of the bands was present in minor amounts. The other, and most abundant, band comigrated with the only band found in the extracts of white muscle myosin from older fish. One-dimensional Staphylococcus aureus V8 protease peptide mapping of these bands revealed some differences during development of the white muscle tentatively interpreted as follows. The myosin heavy chain band present in minor amounts in the embryos may represent an early embryonic form that is replaced by a late embryonic or foetal form in the eleutheroembryos. The foetal myosin heavy chain appears to be present until the resorption of the yolk sack and beginning of the free-swimming stage. A new form of myosin heavy chain, termed neonatal and probably expressed around hatching, is present until about 1 year of age.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号