首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basal lamina is present in many stem cell niches, but we still have a poor understanding of the role of this and other extracellular matrix (ECM) components. Here, we review current knowledge regarding ECM expression and function in the neural stem cell niche, focusing on the subependymal zone of the adult CNS. An increasing complexity of ECM molecules has been described, and a number of receptors expressed on the stem cells identified. Experiments perturbing the niche using genetics or cytotoxic ablation of the rapidly dividing precursors, or using explant culture models to examine specific growth factors, have been influential in showing how changes in these ECM receptors might regulate neural stem cell behavior. However the role of changes in the matrix itself remains to be determined. The answers will be important, as they will point to the molecules required to engineer niches ex-vivo so as to provide tools for regenerative neuroscience.  相似文献   

2.
Adult stem cells generally reside in supporting local micro environments or niches, and intimate stem cell and niche association is critical for their long-term maintenance and function. Recent studies in model organisms especially Drosophila have started to unveil the underlying mechanisms of stem anchorage in the niche at the molecular and cellular level. Two types of cell adhesion molecules are emerging as essential players: cadherin-mediated cell adhesion for keeping stem cells within stromal niches, whereas integrin-mediated cell adhesion for keeping stem cells within epidermal niches. Further understanding stem cell anchorage and release in coupling with environmental changes should provide further insights into homeostasis control in tissues that harbor stem cells.Key words: stem cell, niche, anchorage, cell adhesion, extracellular matrix, cadherin, integrinTissue-specific adult stem cells are characterized by their prolonged self-renewal ability and potentiality to differentiate into one or more types of mature cells. These unique properties make stem cells essential for maintaining tissue homeostasis throughout life. It is generally believed that all adult stem cells reside in specific microenvironments named niches, which provide physical support and produce critical signals to maintain stem cell identity and govern their behavior.14 Consequently, intimate stem cell and niche association is a pre-requisite for stem cell''s long-term maintenance and function. How stem cells are kept within the niche is thus an important issue in stem cell biology. Characterization of a number of stem cell niches in model organisms has led to the classification of niches into two general types: stromal niches where stem cells have direct membrane contact with the niche cells and epidermal niches where stem cells are usually associated with the extracellular matrix (ECM), and do not directly contact any fixed stromal cells.1 Studies in Drosophila have led to the cellular and functional verification of the stem cell niche theory5,6 and not surprisingly, have also led to the discovery of the molecular mechanisms anchoring stem cells to the niche. Here I consider recent studies in Drosophila on types of cell adhesions used to anchor stem cells in the niches, and summarize cell adhesion molecules utilized in the most characterized niches in the mammalian tissues, and suggest that cadherin-mediated cell-to-cell adhesion and integrin-mediated cell-to-ECM adhesion are possibly two general mechanisms that function in respective stromal or epidermal niches for stem cell anchorage in diverse organisms.  相似文献   

3.
4.
Astrocyte-like cells, which act as stem cells in the adult brain, reside in a few restricted stem cell niches. However, following brain injury, glia outside these niches acquire or reactivate stem cell potential as part of reactive gliosis. Recent studies have begun to uncover the molecular pathways involved in this process. A comparison of molecular pathways activated after injury with those involved in the normal neural stem cell niches highlights strategies that could overcome the inhibition of neurogenesis outside the stem cell niche and instruct parenchymal glia towards a neurogenic fate. This new view on reactive glia therefore suggests a widespread endogenous source of cells with stem cell potential, which might potentially be harnessed for local repair strategies.  相似文献   

5.
Ultrastructure of the putative stem cell niche in rat mammary epithelium   总被引:5,自引:0,他引:5  
There is now strong evidence that the stem cells of many tissues reside in specialized structures termed niches. The stem cell niche functions to house and regulate symmetric and asymmetric mitosis of stem cells in mammalian skin, mouse and human bone marrow, mouse brain, gut, and hair follicle, and Drosophila ovary and testis. This regulation is effected through the action of various signaling pathways such as Notch, Hedgehog, Wnt and others. The hormones of the estrous cycle, pregnancy and lactation that initiate growth in mouse mammary epithelium appear to act at a paracrine level to regulate mitosis through Notch receptors. Previous work has established that the putative stem cells of the mammary epithelium in several animal species reside near the basement membrane and never make contact with the ductal lumen. We show that these putative stem cells are found in anatomically specialized places created by the cytoplasmic extensions and modifications of neighboring differentiated cells. Such specializations may help to regulate stem cell activity by modulating molecular traffic to putative stem cells and contact with signaling molecules in the basement membrane. The histological characteristics of these putative niches vary as to the kinds of relationships the cells can have with the basement membrane and neighboring cells and as to how many stem or progenitor cells they may contain. This suggests a plasticity that may be relevant to the response of niches to tissue demands, such as wound healing, the periodic growth and regression of mammary epithelium, the process of mammary tumorigenesis therapeutic strategies for breast cancer.  相似文献   

6.
Adult epithelial stem cells are thought to reside in specific niches, where they are maintained by adhesion to stromal cells and by intercellular signals. In niches that harbor multiple adjacent stem cells, such as those maintaining Drosophila germ cells, lost stem cells are replaced by division of neighboring stem cells or reversion of transit cells. We have characterized the Drosophila follicle stem cell (FSC) niche as a model of the epithelial niche to learn whether nonneighboring cells can also generate stem cell replacements. Exactly two stroma-free FSC niches holding single FSCs are located in fixed locations on opposite edges of the Drosophila ovariole. FSC daughters regularly migrate across the width of the ovariole to the other niche before proliferating and contributing to the follicle cell monolayer. Crossmigrating FSC daughters compete with the resident FSC for niche occupancy and are the source of replacement FSCs. The ability of stem cell daughters to target a distant niche and displace its resident stem cell suggests that precancerous mutations might spread from niche to niche within stem cell-based tissues.  相似文献   

7.
Whether embryonic, hematopoietic or cancer stem cells, this metabolic reprogramming is dependent on the nutrient-status and bioenergetic pathways that is influenced by the micro-environmental niches like hypoxia. Thus, the microenvironment plays a vital role in determining the stem cell fate by inducing metabolic reprogramming. Under the influence of the microenvironment, like hypoxia, the stem cells have increased glucose and glutamine uptake which result in activation of hexosamine biosynthesis pathway (HBP) and increased O-GlcNAc Transferase (OGT). The current review is focused on understanding how HBP, a nutrient-sensing pathway (that leads to increased OGT activity) is instrumental in regulating self-renewal not only in embryonic and hematopoietic stem cells (ESC/HSC) but also in cancer stem cells.  相似文献   

8.
Stem cell niches     
The nature of the stem cell niche and its interaction with stem cells is one of fundamental problems in the biology of stem cells. Stem cell niches are formed during ontogeny. A niche can remain vacant and exist independently of stem cells; however, stem cell self-renewal cannot be maintained for long periods outside of the niche except for particular conditions, e.g., in vitro. A vacant niche can be occupied by excessive or transplanted stem cells and can provide for their functioning. A niche size allows a definite number of stem cells to be maintained. Excessive stem cells either differentiate in the presence of specific signal(s) or undergo apoptosis in the absence of such signal. Thus, the niches control the number of stem cells in the body and protect it from excessive stem cell proliferation. Under particular conditions, stem cells can leave and return to their niches. Stem cells are retained in the niche by cell-to-cell interactions and adhesion to the extracellular matrix. Both the niches and stem cells arise at a particular ontogenetic stage and are capable of long self-renewal. The development can be described in terms of the formation of stem cells and their niches.  相似文献   

9.
In situ stem cell therapy: novel targets, familiar challenges   总被引:4,自引:0,他引:4  
Tissue engineering approaches for expanding, differentiating and engrafting embryonic or adult stem cells have significant potential for tissue repair but harnessing endogenous stem cell populations offers numerous advantages over these approaches. There has been rapid basic biological progress in the identification of stem cell niches throughout the body and the molecular factors that regulate their function. These niches represent novel therapeutic targets and efforts to use them involve the familiar challenges of delivering molecular medicines in vivo. Here we review recent progress in the use of genes, proteins and small molecules for in situ stem cell control and manipulation, with a focus on using stem cells of the central nervous system for neuroregeneration.  相似文献   

10.
Experience dictates stem cell fate in the adult hippocampus   总被引:1,自引:0,他引:1  
Adult hippocampal neurogenesis has been implicated in cognitive and emotional processes, as well as in response to antidepressant treatment. However, little is known about how the adult stem cell lineage contributes to hippocampal structure and function and how this process is modulated by the animal's experience. Here we perform an indelible lineage analysis and report that neural stem cells can produce expanding and persisting populations of not only neurons, but also stem cells in the adult hippocampus. Furthermore, the ratio of stem cells to neurons depends on experiences of the animal or the location of the stem cell. Surprisingly, social isolation facilitated accumulation of stem cells, but not neurons. These results show that neural stem cells accumulate in the adult hippocampus and that the stem cell-lineage relationship is under control of anatomic and experiential niches. Our findings suggest that, in the hippocampus, fate specification may act as a form of cellular plasticity for adapting to environmental changes.  相似文献   

11.
The vertebrate ectoderm gives rise to organs that produce mineralized or keratinized substances, including teeth, hair, and claws. Most of these ectodermal derivatives grow continuously throughout the animal?s life and have active pools of adult stem cells that generate all the necessary cell types. These organs provide powerful systems for understanding the mechanisms that enable stem cells to regenerate or renew ectodermally derived tissues, and remarkable progress in our understanding of these systems has been made in recent years using mouse models. We briefly compare what is known about stem cells and their niches in incisors, hair follicles, and claws, and we examine expression of Gli1 as a potential example of a shared stem cell marker. We summarize some of the features, structures, and functions of the stem cell niches in these ectodermal derivatives; definition of the basic elements of the stem cell niches in these organs will provide guiding principles for identification and characterization of the niche in similar systems.  相似文献   

12.
Loss of stem cell regenerative capacity within aged niches   总被引:7,自引:1,他引:6  
Carlson ME  Conboy IM 《Aging cell》2007,6(3):371-382
This work uncovers novel mechanisms of aging within stem cell niches that are evolutionarily conserved between mice and humans and affect both embryonic and adult stem cells. Specifically, we have examined the effects of aged muscle and systemic niches on key molecular identifiers of regenerative potential of human embryonic stem cells (hESCs) and post-natal muscle stem cells (satellite cells). Our results reveal that aged differentiated niches dominantly inhibit the expression of Oct4 in hESCs and Myf-5 in activated satellite cells, and reduce proliferation and myogenic differentiation of both embryonic and tissue-specific adult stem cells (ASCs). Therefore, despite their general neoorganogenesis potential, the ability of hESCs, and the more differentiated myogenic ASCs to contribute to tissue repair in the old will be greatly restricted due to the conserved inhibitory influence of aged differentiated niches. Significantly, this work establishes that hESC-derived factors enhance the regenerative potential of both young and, importantly, aged muscle stem cells in vitro and in vivo; thus, suggesting that the regenerative outcome of stem cell-based replacement therapies will be determined by a balance between negative influences of aged tissues on transplanted cells and positive effects of embryonic cells on the endogenous regenerative capacity. Comprehensively, this work points toward novel venues for in situ restoration of tissue repair in the old and identifies critical determinants of successful cell-replacement therapies for aged degenerating organs.  相似文献   

13.
Stemness,fusion and renewal of hematopoietic and embryonic stem cells   总被引:7,自引:0,他引:7  
Development of replacement cell therapies awaits the identification of factors that regulate nuclear reprogramming and the mechanisms that control stem cell renewal and differentiation. Once such factors and signals will begin to be elucidated, new technologies will have to be envisaged where uniform differentiation of adult or embryonic stem cells along one differentiation pathway can be induced. Controlled differentiation of stem cells will require the engineering of niches and extracellular signal combinations that would amplify a particular signaling network and allow uniform and selective differentiation. Three recent advances in stem cell research open the possibility to approach engineering studies for cell replacement therapies. Fusion events between stem cells and adult cells or between adult and embryonic stem cells have been shown to result in altered fates and nuclear reprogramming of cell hybrids. Hematopoietic stem cells were shown to require Wnt signaling in order to renew. The purification of Wnt proteins would allow their use as exogenous purified cytokines in attempts to amplify stem cells before bone marrow transplantation. The homeodomain protein Nanog has been shown to be crucial for the embryonic stem cell renewal and pluripotency. However, the cardinal question of how stemness is preserved in the early embryo and adult stem cells remains opened.  相似文献   

14.
Socializing with the neighbors: stem cells and their niche   总被引:90,自引:0,他引:90  
Fuchs E  Tumbar T  Guasch G 《Cell》2004,116(6):769-778
The potential of stem cells in regenerative medicine relies upon removing them from their natural habitat, propagating them in culture, and placing them into a foreign tissue environment. To do so, it is essential to understand how stem cells interact with their microenvironment, the so-called stem cell niche, to establish and maintain their properties. In this review, we examine adult stem cell niches and their impact on stem cell biology.  相似文献   

15.
16.
Boyle M  Wong C  Rocha M  Jones DL 《Cell Stem Cell》2007,1(4):470-478
Aging is characterized by compromised organ and tissue function. A decrease in stem cell number and/or activity could lead to the aging-related decline in tissue homeostasis. We have analyzed how the process of aging affects germ line stem cell (GSC) behavior in the Drosophila testis and report that significant changes within the stem cell microenvironment, or niche, occur that contribute to a decline in stem cell number over time. Specifically, somatic niche cells in testes from older males display reduced expression of the cell adhesion molecule DE-cadherin and a key self-renewal signal unpaired (upd). Loss of upd correlates with an overall decrease in stem cells residing within the niche. Conversely, forced expression of upd within niche cells maintains GSCs in older males. Therefore, our data indicate that age-related changes within stem cell niches may be a significant contributing factor to reduced tissue homeostasis and regeneration in older individuals.  相似文献   

17.
Biomaterials are increasingly being developed as in vitro microenvironments mimicking in vivo stem cell niches. However, current macroscale methodologies to produce these niche models fail to recapitulate the spatial and temporal characteristics of the complex native stem cell regulatory systems. Microfluidic technology offers unprecedented control over the spatial and temporal display of biological signals and therefore promises new avenues for stem cell niche engineering. Here we discuss how the two approaches can be combined to generate more physiological models of stem cell niches that could facilitate the identification of new mechanisms of stem cell regulation, profoundly impacting drug discovery and ultimately therapeutic applications of stem cells.  相似文献   

18.
Ju XF  An TZ  Teng CB 《生理科学进展》2007,38(3):213-218
干细胞巢即干细胞周围的微环境构成,一般包括干细胞的相邻细胞、粘附分子及基质等,但不同的干细胞有不同的巢结构。干细胞巢通过不同信号途径调控着干细胞的行为,使干细胞的自我更新和分化处于平衡状态。根据近年来有关干细胞巢的研究,本文从果蝇生殖系干细胞巢、哺乳动物造血干细胞巢、肠干细胞巢、毛囊表皮干细胞巢和神经干细胞巢等五个系统分别综述了干细胞巢的构成及其对干细胞的调节作用,探讨了干细胞巢作用于干细胞的内在机制。  相似文献   

19.
Development and homeostasis of the haematopoietic system is dependent upon stem cells that have the unique ability to both self-renew and to differentiate in all cell lineages of the blood. The crucial decision between haematopoietic stem cell (HSC) self-renewal and differentiation must be tightly controlled. Ultimately, this choice is regulated by the integration of intrinsic signals together with extrinsic cues provided by an exclusive microenvironment, the so-called haematopoietic niche. Although the haematopoietic system of vertebrates has been studied extensively for many decades, the specification of the HSC niche and its signals involved are poorly understood. Much of our current knowledge of how niches regulate long-term maintenance of stem cells is derived from studies on Drosophila germ cells. Now, two recently published studies by Mandal et al.1 and Krezmien et al.2 describe the Drosophila haematopoietic niche and signal transduction pathways that are involved in the maintenance of haematopoietic precursors. Both reports emphasize several features that are important for controlling stem cell behavior and show parallels to both the vertebrate haematopoietic niche as well as the Drosophila germline stem cell niches in ovary and testis. The findings of both papers shed new light on the specific interactions between haematopoietic progenitors and their microenvironment.  相似文献   

20.
Stem cell niches are composed of numerous microenvironmental features, including soluble and insoluble factors, cues from other cells, and the extracellular matrix (ECM), which collectively serve to maintain stem cell quiescence and promote their ability to support tissue homeostasis. A hallmark of many adult stem cell niches is their proximity to the vasculature in vivo, a feature common to neural stem cells, mesenchymal stem cells (MSCs) from bone marrow and adipose tissue, hematopoietic stem cells, and many tumor stem cells. In this study, we describe a novel 3D microfluidic device (MFD) as a model system in which to study the molecular regulation of perivascular stem cell niches. Endothelial cells (ECs) suspended within 3D fibrin gels patterned in the device adjacent to stromal cells (either fibroblasts or bone marrow‐derived MSCs) executed a morphogenetic process akin to vasculogenesis, forming a primitive vascular plexus and maturing into a robust capillary network with hollow well‐defined lumens. Both MSCs and fibroblasts formed pericytic associations with the ECs but promoted capillary morphogenesis with distinct kinetics. Biochemical assays within the niche revealed that the perivascular association of MSCs required interaction between their α6β1 integrin receptor and EC‐deposited laminin. These studies demonstrate the potential of this physiologically relevant ex vivo model system to study how proximity to blood vessels may influence stem cell multipotency. Biotechnol. Bioeng. 2010;107: 1020–1028. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号