首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conservation of large carnivores such as leopards requires large and interconnected habitats. Despite the wide geographic range of the leopard globally, only 17% of their habitat is within protected areas. Leopards are widely distributed in Nepal, but their population status and occupancy are poorly understood. We carried out the sign‐based leopard occupancy survey across the entire Chure range (~19,000 km2) to understand the habitat occupancy along with the covariates affecting their occupancy. Leopard signs were obtained from in 70 out of 223 grids surveyed, with a naïve leopard occupancy of 0.31. The model‐averaged leopard occupancy was estimated to be 0.5732 (SE 0.0082) with a replication‐level detection probability of 0.2554 (SE 0.1142). The top model shows the additive effect of wild boar, ruggedness, presence of livestock, and human population density positively affecting the leopard occupancy. The detection probability of leopard was higher outside the protected areas, less in the high NDVI (normalized difference vegetation index) areas, and higher in the areas with livestock presence. The presence of wild boar was strong predictor of leopard occupancy followed by the presence of livestock, ruggedness, and human population density. Leopard occupancy was higher in west Chure (0.70 ± SE 0.047) having five protected areas compared with east Chure (0.46 ± SE 0.043) with no protected areas. Protected areas and prey species had positive influence on leopard occupancy in west Chure range. Similarly in the east Chure, the leopard occupancy increased with prey, NDVI, and terrain ruggedness. Enhanced law enforcement and mass awareness activities are necessary to reduce poaching/killing of wild ungulates and leopards in the Chure range to increase leopard occupancy. In addition, maintaining the sufficient natural prey base can contribute to minimize the livestock depredation and hence decrease the human–leopard conflict in the Chure range.  相似文献   

2.
Large carnivore-human coexistence is a challenging issue in wildlife conservation worldwide. An adequate and diverse prey spectrum favours carnivore persistence. Prey depletion and habitat loss elicit conflict with humans and require sound conservation measures. We evaluated the conflict between common leopards and humans in a densely populated Himalayan forest area of Pakistan. In two decades, the local forests decreased at an average rate of 65.5 ha/year (6.6%), with a concomitant increase in areas covered by human settlements (81.5%) and agricultural lands (15.4%). Ranging movements of a GPS/GSM-radiotagged male leopard over 16 months encompassed an area inhabited by c. 124,000 people. Livestock dominated the leopard’s diet (absolute frequency of occurrence: 80%), while wild ungulates were rarely eaten (absolute occurrence: 22%). Domestic goats were the most frequent diet item (61%), followed by domestic dogs (12%) and Bos spp. (6%). Wild prey included canids, small carnivores, rhesus monkeys, small mammals and gallinaceous birds. Socioeconomic implications of human-leopard coexistence were investigated: 18.5% of the households interviewed (N?=?1016) suffered livestock depredation by leopards, with an overall loss of 123 USD/km2/year, in an area of 328 km2. In the first c. 15 years of this century, about 2 attacks to humans/year were recorded, half of which were lethal, whereas c. 6 leopards/year were killed in retaliation. The common leopard is ‘critically endangered’ in Pakistan mainly because of habitat loss and concurrent prey depletion. To increase the long-term survival of leopards and mitigate human-carnivore conflicts, priority should be given to restoration of a diverse natural prey assembly and protection of forest habitats, together with improved livestock management practices and livestock compensation. The latter will require a sustainable financial mechanism.  相似文献   

3.
The nocturnal activities of predators and prey are influenced by several factors, including physiological adaptations, habitat quality and, we suspect, corresponds to changes in brightness of moonlight according to moon phase. In this study, we used a dataset from 102 camera traps to explore which factors are related to the activity pattern of North China leopards (Panthera pardus japonensis) in Shanxi Tieqiaoshan Provincial Nature Reserve (TPNR), China. We found that nocturnal activities of leopards were irregular during four different lunar phases, and while not strictly lunar philic or lunar phobic, their temporal activity was highest during the brighter moon phases (especially the last quarter) and lower during the new moon phase. On the contrary, roe deer (Capreolus pygargus) exhibited lunar philic activity, while wild boar (Sus scrofa) and tolai hare (Lepus tolai) were evidently lunar phobic, with high and low temporal activity during the full moon, respectively. In terms of temporal overlap, there was positive overlap between leopards and their prey species, including roe deer and tolai hare, while leopard activity did not dip to the same low level of wild boar during the full moon phase. Human activities also more influenced the temporal activity of leopards and wild boar than other species investigated. Generally, our results suggested that besides moonlight risk index (MRI), cloud cover and season have diverse effects on leopard and prey nocturnal activity. Finally, distinct daytime and nighttime habitats were identified, with leopards, wild boar, and tolai hare all using lower elevations at night and higher elevations during the day, while leopards and roe deer were closer to secondary roads during the day than at night.  相似文献   

4.
Having knowledge of the habitat requirements of top predators is important for their conservation and also for the stability of wildlife communities since they are keystone species of ecosystems. This study aims to predict suitable habitats for the Persian leopard (Panther pardus saxicolor, Pocock 1927) in Tandooreh National Park, Iran. This species is the largest leopard subspecies in the Middle East and is at high risk of extinction. Presence points for the species have been obtained from field data, literature review, atlas data, and IUCN records. Variables related to human disturbance, terrain, land use/land cover, and the leopards’ prey were used to predict the habitat selection of the Persian leopard by employing binary logistic regression. Our model predicted that the presence of Persian leopards is restricted to the southern, north-western, and western areas of the park which are under severe fragmentation threat. Moreover, leopards avoided areas near human development such as roads. We have also found that the availability of prey such as Capra aegagrus, Ovis vignei, and Ovis orientalis is one of the important parameters to predict habitat suitability for leopards. Our model provides a suitable tool for national park managers to identify biodiversity hotspots since leopards are often associated with high biodiversity.  相似文献   

5.
Camera trapping can detect and monitor rare species in landscapes spanning thousands of square kilometres but placement of cameras in areas where the animals most likely occur will increase detection success. This vital information is lacking for the critically endangered Arabian leopard (Panthera pardus nimr) that has undergone a 90% decline across its range in Saudi Arabia. We aimed to identify suitable Arabian leopard habitat and potential population capacity in Saudi Arabia using data from leopards living in ecologically analogous habitat in South Africa and Oman. We developed a resource selection function (RSF) from 14 leopards’ GPS data in the Cederberg, South Africa, and validated the model using three leopards in the Little Karoo, and two Arabian leopards in Oman. We then projected the model to the historical range of Arabian leopards in Saudi Arabia to estimate likely leopard locations and potential population sizes based on home range metrics. The RSF successfully discriminated between used and available locations (specificity = 96.7%) and had high predictive ability (Rho > 0.9). Leopards selectively used areas away from human settlements and roads, with high enhanced vegetation index, and intermediate slopes and elevations. Saudi Arabia could theoretically host 4 distinct populations totalling 162–362 Arabian leopard females, depending on home range size. Camera traps deployed in the south-western mountains of Saudi Arabia may be most likely to detect remnant populations of Arabian leopards. Further research is needed into the local abundance of prey species and human activity to ensure the persistence of suitable leopard ranges and inform conservation actions.  相似文献   

6.
The snow leopard Panthera uncia coexists with the wolf Canis lupus throughout most of its distribution range. We analysed the food habits of snow leopards and wolves in their sympatric range in the Karakoram mountains of Pakistan. A total of 131 genotyped scats (N?=?74, snow leopard; N?=?57, Tibetan wolf) were collected during the cold periods (i.e. winter and spring) of 2011 and 2012 in the Hushey valley. Large mammals, i.e. livestock and ibex, accounted for 84.8 and 83.1% of the diet (relative frequency) of the snow leopard and the wolf, respectively. Domestic prey was the staple of the diet of both snow leopards (66.6%) and wolves (75.1%). Ibex Capra ibex, the only wild ungulate in our study area, contributed 18.2 and 16.9% of relative frequencies in the diets of the snow leopard and the wolf, respectively. In winter, the snow leopard heavily relied on domestic sheep (43.3%) for food, whereas the wolf preyed mainly on domestic goats (43.4%). Differently from other study areas, both snow leopards and wolves showed no apparent prey preference (Jacobs index: snow leopard min. ??0.098, max. 0.102; Tibetan wolf min. ??0.120, max. 0.03). In human depauperate areas, with livestock and only a few wild prey, should competitive interactions arise, two main scenarios could be expected, with either predator as a winner. In both cases, the best solution could primarily impinge on habitat restoration, so that a balance could be found between these predators, who have already coexisted for thousands of years.  相似文献   

7.
Intraguild interactions have important implications for carnivore demography and conservation. Differences in how predators respond to different forms of disturbance might alter their interaction patterns. We sought to understand how human and livestock disturbance impact co-occurrence of sympatric large carnivores such as tiger (Panthera tigris) and leopard (P. pardus) and thereby mediate the intraguild interaction pattern to enable coexistence of the species in a human-dominated landscape. We surveyed 361 locations in Chitwan National Park, Nepal, to examine how prey abundance and disturbance factors such as human and livestock presence might influence habitat use by tigers and leopards independently and when co-occurring. Single-species single-season models and two-species single-season models were developed to examine hypotheses on unconditional detection and occupancy and species interaction respectively. Pervasive human use of the park had negative impacts on tiger occupancy while the abundance of prey had a positive influence. Despite significant prey overlap between tigers and leopards, none of the native prey species predicted leopard habitat occupancy. However, habitats used extensively by livestock were also used by leopards. Further, we found strong evidence of intraguild competition. For instance tiger occupancy was higher in prey-rich areas and leopard occupancy was low in the sites where tigers were present. These findings, and a species interaction factor of < 1 clearly indicate that leopards avoid tigers, but their use of areas of disturbance enables them to persist in fringe habitats. We provide empirical evidence of how intraguild interaction may result in habitat segregation between competing carnivores, while also showing that human and livestock use of the landscape create disturbance patterns that facilitate co-occurrence of the predators. Thus, because large carnivores compete, some disturbance may mediate coexistence in small protected areas. Understanding such interactions can help address important conservation challenges associated with maintaining diverse carnivore communities in small or disturbed landscapes.  相似文献   

8.
We investigated predictions concerning the competitive relationships between tigers Panthera tigris and leopards Panthera pardus in Bardia National Park, Nepal, based on spatial distributions of scats and territorial markings (sign), analyses of scat content and census of wild ungulate prey. Medium-sized ungulates, in particular chital Axis axis, was the main food of both predators, but leopards consumed significantly larger proportions of domestic animals, small mammals, and birds than tigers. Tiger sign were never found outside the park, while leopard sign occurred both inside and outside, and were significantly closer to the park border than tiger sign. Significantly higher prey densities at locations of tiger sign than that of leopards were mainly due to a preference of the latter species for the park border areas. Our results imply that interference competition––and not competition for food––was a limiting factor for the leopard population, whose distribution was restricted to the margins of the tiger territories. We suggest that the composition of the prey base is a key factor in understanding the different results and interpretations reported in studies on tiger/leopard coexistence. There are two potential mechanisms that link interference competition and prey: (1) low abundance of large ungulate prey decreases foraging efficiency of tigers, leading to increased energetic stress and aggression towards leopards; and (2) increased diet overlap due to scarcity of large prey leads to increased encounter rates and increased levels of interference competition.  相似文献   

9.
Hunting behaviour in West African forest leopards   总被引:1,自引:0,他引:1  
The leopard (Panthera pardus) is a major predator of mammals within the rainforest ecosystem of West Africa. Most of the available information on leopard hunting behaviour comes from studies conducted in open savannah habitats, while little is known about forest leopards. Our radio‐tracking data and scat analysis show that forest leopards differ in various ways from the savannah populations. Forest leopards are diurnal and crepuscular hunters who follow the activity pattern of their prey species. They exhibit seasonal differences in activity patterns, and they develop highly individualized prey preferences. These findings challenge the widespread notion of leopards as opportunistic nocturnal predators.  相似文献   

10.
Management controversies arise when both of the prey and predator in an ecosystem are species of conservation concern. We investigated trophic interactions between the endangered Persian leopard (Panthera pardus saxicolor) and a declining mountain ungulate, urial wild sheep (Ovis vignei), on a high-altitude steppe of Iran. During two consecutive photo-trapping seasons of 1,300 nights in total, a minimum population of four adult leopards (one female and three males) was documented. Scat analysis indicated that urial wild sheep was the staple of the leopard diet with 48.44 % of total biomass consumed. Remains of domestic livestock in leopard scats were negligible yet alarming (14.53 % biomass consumed), followed by wild pigs (8.13 %) and wild goat (1.26 %). Financial costs of leopard depredation to livestock breeders during our study period were comparatively lower than livestock–leopard conflict hotspots across Iran. Using distance sampling, urial density was 15.8 individuals km?2 (±SE 6.2), and a total biomass of 47,621.5 kg for wild ungulates in the study area was estimated. We estimated that the annual removal rate of urial by leopards during our study period was 9.4 % of the total urial population. We suggest that continuous monitoring of the leopard and prey populations to assess predation impact should be considered, particularly in areas where a single species comprises a remarkable proportion of the leopard diet. In the meantime, assessing probable conflicts with local communities is recommended as a parallel management action to ensure long-term human–leopard coexistence. Our findings will aid wildlife managers in prey-depleted arid environments of western Asia to identify susceptible wild prey populations to predation by large carnivores; hence, significantly contribute in development and implementation of effective conservation measures to mitigate management conflicts.  相似文献   

11.
《农业工程》2023,43(1):99-105
There is a little understanding of how apex carnivores partition their diet to coexist. We studied food habit and trophic niche overlap of two apex carnivores, tiger and leopard in the tropical forest of Similipal tiger reserve, eastern India. We used line transect and scat analysis method, to estimate the prey availability and determine the diet and prey selection of two apex carnivores. Tigers consumed mostly large and medium-sized prey, whereas leopards mostly consumed medium and small-sized prey. Both carnivores were not random in their consumption of prey, sambar and wild pigs were selectively consumed by tigers, whereas leopards selectively consumed wild pigs, barking deer and mouse deer. Dietary overlap between two carnivore species was moderate (Pianka's niche overlap index: 0.55), and trophic niche breadth (Levin's standardized niche breadth) of the leopard (0.52) was greater than that of the tiger (0.37). Overall, tigers exhibited specialized feeding habits, whereas leopards showed generalist feeding habits. Our study highlights the opportunistic nature of leopards and probably a reason for the species successfully coexist with tigers.  相似文献   

12.
Large carnivores have been largely extirpated from Southeast Asia due to deforestation, habitat fragmentation, and poaching. Estimating the density of endangered carnivore populations, and identifying relationships between species occupancy and both environmental and anthropogenic factors, is essential for effective conservation planning. Recently, the IUCN conservation status of the Indochinese leopard (Panthera pardus delacouri) was upgraded to “Critically Endangered.” We surveyed Kweekoh Wildlife Sanctuary in Kawthoolei, an area administered by the Karen ethnic group in eastern Myanmar, to quantify (1) leopard population density using spatially explicit mark-resight (SMR) models, (2) leopard occupancy as influenced by important ecological variables, and (3) potential differences in activity between melanistic and spotted leopard morphs. Leopard density was estimated to be 1.39 ± SE 0.22/100 km2. Leopard occupancy (ψ = 0.43; 95% credible interval: 0.26–0.67) increased further from roads, at relatively higher elevations, and in areas with higher relative abundance of wild boar. Leopard activity was cathemeral, with higher activity during night hours, and significant overlap (Δ = 0.84; 95% confidence interval: 0.71–0.96) between melanistic and spotted morphs. However, melanistic leopards were more active during twilight hours than spotted individuals whose activity did not significantly vary throughout the day. Indochinese leopard density estimates in Kweekoh were among the lowest reported from Southeast Asia. Leopard occupancy was highest in the sanctuary's core areas, suggesting the presence of negative anthropogenic impacts along the sanctuary borders. We suggest our low density estimates warrant immediate and decisive conservation action, including better protection for leopards, their habitat, and their prey.  相似文献   

13.
Understanding carnivores’ diet is key to understanding their adaptability in a rapidly changing world. However, studying diet of large carnivores is difficult due to their elusive nature. In this study, we performed DNA metabarcoding analyses of 82 putative leopard scats collected from two distinct, but connected, habitat types (rainforest and grassland) in the Udzungwa Mountains, Tanzania. Two mitochondrial markers were used to identify predator and prey. Metabarcoding confirmed that 60 of the collected scats (73%) originated from leopards, and nineteen mammalian prey DNA sequences were identified to species. Using prey size correction factors for leopards, and covariates on habitat type and prey ecology, we investigated whether differences in leopard dietary composition were detectable between habitats. We found that leopards in grassland consumed a larger mean prey size compared with leopards in rainforest. Small prey (<19 kg) constituted >70% of the biomass consumed by leopards in rainforest, while large prey (≥80 kg) were only eaten in grassland. Arboreal species constituted 50% of the biomass consumed by rainforest leopards. Our results highlight the importance of arboreal species in their diet. From a management perspective, we suggest continued protection of all prey species in the protected areas to prevent human–wildlife conflicts.  相似文献   

14.
The mainland clouded leopard (Neofelis nebulosa) is classified as vulnerable under the IUCN Red List, meaning that it faces a high risk of extinction in the wild. However, hardly any ecological research has been published on this species apart from several radiotelemetry studies in Thailand and Nepal, and one camera-trapping study in India. Here we present findings on the clouded leopard from a camera-trapping study conducted in Temengor forest reserve (a logged-over forest) and Royal Belum State Park (a primary forest) within Peninsular Malaysia. Using the spatially-explicit capture-recapture method, the density from Temengor forest reserve and Royal Belum State Park was estimated at 3.46 ± SE 1.00 and 1.83 ± SE 0.61, respectively. Clouded leopard habitat use was found to be highly influenced by the availability of small and medium prey species and therefore intrinsically highlights the potential conservation importance of species such as pig-tailed macaques, porcupine, mouse deer and small carnivores. These findings provide the first estimates of density and habitat use of this species in a logged-primary forest from both Peninsular Malaysia and South East Asia. Our study provides important baseline information on clouded leopards and contributes to filling up the knowledge gap that exists in understanding the population ecology of this species, not only within Peninsular Malaysia, but also on a regional level.  相似文献   

15.
Identifying the primary causes affecting population densities and distribution of flagship species are necessary in developing sustainable management strategies for large carnivore conservation. We modeled drivers of spatial density of the common leopard (Panthera pardus) using a spatially explicit capture–recapture—Bayesian approach to understand their population dynamics in the Maputaland Conservation Unit, South Africa. We camera‐trapped leopards in four protected areas (PAs) of varying sizes and disturbance levels covering 198 camera stations. Ours is the first study to explore the effects of poaching level, abundance of prey species (small, medium, and large), competitors (lion Panthera leo and spotted hyenas Crocuta crocuta), and habitat on the spatial distribution of common leopard density. Twenty‐six male and 41 female leopards were individually identified and estimated leopard density ranged from 1.6 ± 0.62/100 km2 (smallest PA—Ndumo) to 8.4 ± 1.03/100 km2 (largest PA—western shores). Although dry forest thickets and plantation habitats largely represented the western shores, the plantation areas had extremely low leopard density compared to native forest. We found that leopard density increased in areas when low poaching levels/no poaching was recorded in dry forest thickets and with high abundance of medium‐sized prey, but decreased with increasing abundance of lion. Because local leopard populations are vulnerable to extinction, particularly in smaller PAs, the long‐term sustainability of leopard populations depend on developing appropriate management strategies that consider a combination of multiple factors to maintain their optimal habitats.  相似文献   

16.
An understanding of species ecology is vital for effective conservation, particularly if the species forms an important constituent of the lesser mammal guild and regulates small mammal and bird populations. As the ecological role of the leopard cat (Prionailurus bengalensis) in the intricate eastern Himalayan habitats is not known, we assessed the site occupancy, detection probability and activity pattern of leopard cats in Khangchendzonga Biosphere Reserve, India, based on sign surveys and camera trapping. The estimated site occupancy was 0.352?±?0.061 and detection probability was 0.143?±?0.0484. Occupancy modelling indicated low elevation, high rodent abundance and tree cover as best predictors for the occupancy of leopard cat. Diet based on analysed scats revealed murids as the most dominant prey (89.2 %). Information based on photographic captures indicated that the leopard cat exhibited a nocturnal activity pattern (peak activity between 0200–0300 hours), which coincided with its principal prey (revealed through diet analysis), but mainly contradicted with other sympatric competitors, hence indicating a temporal partitioning of resources among them. Ecological niche factor analysis indicated that the leopard cat exhibits high global marginality (1.32) and low global tolerance (0.275). The habitat suitability map for leopard cats showed majority of the habitat as unsuitable (1,959.44 km2) and predicted only 164.54 km2 areas of lower temperate forests as moderate to highly suitable. As highly suitable habitats of the leopard cat are in close proximity to villages, conflict issues are a major threat and therefore need to be addressed in conservation program for this felid.  相似文献   

17.
In Southeast Asia, conservation of ‘Vulnerable’ clouded leopards (Neofelis nebulosa) and ‘Endangered’ tigers (Panthera tigris) might depend on the management of their preferred prey because large felid populations are limited by the availability of suitable prey. However, the diet of clouded leopards has never been determined, so the preferred prey of this felid remains unknown. The diet of tigers in the region has been studied only from one protected‐area complex in western Thailand, but prey preferences were not determined. To better understand the primary and preferred prey of threatened felids, we used DNA‐confirmed scats and prey surveys to determine the diet and prey selection of clouded leopards and tigers in a hilly evergreen forest in northern Laos. For clouded leopards, the primary prey was wild pig (Sus scrofa; 33% biomass consumed), followed by greater hog badger (Arctonyx collaris; 28%), small rodents (15%), and mainland serow (Capricornis sumatraensis; 13%; hereafter, serow). For tigers, the primary prey was wild pig (44%), followed by serow (18%), sambar (Rusa unicolor; 12%), and Asiatic black bear (Ursus thibetanus; 10%). Compared to availability, serow was positively selected by both clouded leopards (D = 0.69) and tigers (0.61), whereas all other ungulate species were consumed in proportion to the availability or avoided. Our results indicate that clouded leopards are generalist predators with a wide prey spectrum. Nonetheless, mid‐sized ungulates (50–150 kg) comprised nearly half of their diet, and were the preferred prey, supporting a previous hypothesis that the enlarged gape and elongated canines of clouded leopards are adaptations for killing large prey. Because serow was the only ungulate preferred by both felids, we recommend that serow populations be monitored and managed to help conservation efforts for clouded leopards and tigers, at least in hilly evergreen forests of Southeast Asia.  相似文献   

18.
大型食肉动物对维持生态系统的结构和功能具有重要作用, 但大部分大型食肉动物处在持续的种群数量和分布面积下降之中, 面临着急迫的研究与保护需求。华北豹(Panthera pardus japonensis)是我国特有的豹亚种, 也是部分区域森林生态系统中仅存的大型食肉动物, 面临着生境破碎化等威胁。本研究使用红外相机调查了宁夏六盘山国家级自然保护区华北豹的分布, 通过构建占域模型分析了华北豹的栖息地利用, 预测了华北豹的适宜栖息地, 并评估了其生境破碎化格局。研究发现, 华北豹在六盘山的平均占域率约为0.135。华北豹偏好植被发育成熟、地势崎岖、温度较低、远离农田和公路的栖息地, 对于农田边缘和居民点等人类活动区域未显示出显著回避。研究识别的六盘山华北豹适宜栖息地主要沿六盘山东西两侧山脉分布, 55%的适宜栖息地斑块位于六盘山国家级自然保护区内。栖息地斑块面积平均为16 km2, 最大达214 km2, 约77%的栖息地斑块面积在10 km2以下。研究表明六盘山国家级自然保护区有效地保护了华北豹现有的适宜栖息地, 但仍存在栖息地破碎化和人类活动干扰等关键限制因素。建议通过栖息地改造、人类活动管理等方式增强六盘山华北豹适宜栖息地斑块连通性; 并通过推动华北豹跨省保护工作等举措促进华北豹种群扩散恢复。  相似文献   

19.
Across Asia protected areas serve as refuges for carnivores inside human-dominated landscapes. However, the creation of hard edges around reserve boundaries where conflicts with humans arise and disturbance from human activities inside the reserves may affect carnivore behaviour and ecology. Thailand’s largest protected area, Kaeng Krachan National Park (2915 km2) receives >100,000 visitors annually while maintaining an intact assemblage of prey species for large carnivores, making it a potentially important site for population recovery of leopards (Panthera pardus), tigers (Panthera tigris) and dholes (Cuon alpinus). We assessed the abundance of leopards and their prey base, and their response to changes in levels of human activity after an unexpected flooding event that resulted in the park being closed to visitors for >6 months. Using camera-traps, we identified 6 individual leopards and used spatially explicit capture-recapture (SECR) methods, incorporating humans and prey as covariates, to test for factors affecting the detection probability of leopards before and after the park closure. Leopard density was unchanged between the two periods, however the movement and activity patterns were clearly different. In the absence of tourist activity, leopards tended to move more frequently, leopard detection rates increased by 70% and activity shifted towards being more diurnal. The consequences of these changes in behaviour may include improved health, reproduction and survival. A management strategy involving seasonal closure of parks may serve to alleviate pressure on leopards and other carnivores. We recommend using information on abundance of large carnivores and their prey species, and human disturbance as the key indicators for long-term monitoring and management of protected areas in Southeast Asia.  相似文献   

20.
In this study, we investigated the impact of domestic and wild prey availability on snow leopard prey preference in the Kangchenjunga Conservation Area of eastern Nepal—a region where small domestic livestock are absent and small wild ungulate prey are present. We took a comprehensive approach that combined fecal genetic sampling, macro‐ and microscopic analyses of snow leopard diets, and direct observation of blue sheep and livestock in the KCA. Out of the collected 88 putative snow leopard scat samples from 140 transects (290 km) in 27 (4 × 4 km2) sampling grid cells, 73 (83%) were confirmed to be from snow leopard. The genetic analysis accounted for 19 individual snow leopards (10 males and 9 females), with a mean population size estimate of 24 (95% CI: 19–29) and an average density of 3.9 snow leopards/100 km2 within 609 km2. The total available prey biomass of blue sheep and yak was estimated at 355,236 kg (505 kg yak/km2 and 78 kg blue sheep/km2). From the available prey biomass, we estimated snow leopards consumed 7% annually, which comprised wild prey (49%), domestic livestock (45%), and 6% unidentified items. The estimated 47,736 kg blue sheep biomass gives a snow leopard‐to‐blue sheep ratio of 1:59 on a weight basis. The high preference of snow leopard to domestic livestock appears to be influenced by a much smaller available biomass of wild prey than in other regions of Nepal (e.g., 78 kg/km2 in the KCA compared with a range of 200–300 kg/km2 in other regions of Nepal). Along with livestock insurance scheme improvement, there needs to be a focus on improved livestock guarding, predator‐proof corrals as well as engaging and educating local people to be citizen scientists on the importance of snow leopard conservation, involving them in long‐term monitoring programs and promotion of ecotourism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号