首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Melatonin has recently been suggested as an antioxidant that may protect neurons from oxidative stress. Acute ethanol administration produces both lipid peroxidation as an indicator of oxidative stress in the brain and impairs water-maze performance in spatial learning and memory tasks. The present study investigated the effect of melatonin against ethanol-induced oxidative stress and spatial memory impairment. The Morris water maze was used to evaluate the cognitive functions of rats. Thiobarbituric acid reactive substances (TBARS), which are the indicators of lipid peroxidation, and the activities of antioxidative enzymes (glutathione peroxidase and superoxide dismutase) were measured in the rat hippocampus and prefrontal cortex which form interconnected neural circuits for spatial memory. Acute administration of ethanol significantly increased TBARS levels in the hippocampus. Combined melatonin-ethanol treatment caused a significant increase in glutathione peroxidase activities and a significant decrease of TBARS in the rat hippocampus. In the prefrontal cortex, there was only a significant decrease of TBARS levels in the combined melatonin-ethanol receiving group as compared to the ethanol-treated group. Melatonin did not affect the impairment of spatial memory due to acute ethanol exposure, but melatonin alone had a positive effect on water maze performances. Our study demonstrated that melatonin decreased ethanol-induced lipid peroxidation and increased glutathione peroxidase activity in the rat hippocampus.  相似文献   

2.
Abstract: Aging in rats is associated with a loss of hippocampal neurons, which may contribute to age-related cognitive deficits. Several lines of evidence suggest that stress and glucocorticoids may contribute to age-related declines in hippocampal neuronal number. Excitatory amino acids (EAAs) have been implicated in the glucocorticoid endangerment and stress-induced morphological changes of hippocampal neurons of young rats. Previously, we have reported that acute immobilization stress can increase extracellular concentrations of the endogenous excitatory amino acid, glutamate, in the hippocampus. The present study examined the effect of an acute bout of immobilization stress on glutamate levels in the hippocampus and medial prefrontal cortex of young (3–4-month) and aged (22–24-month) Fischer 344 rats. In addition, the effect of stress on spectrin proteolysis in these two brain regions was also examined. Spectrin is a cytoskeleton protein that contributes to neuronal integrity and proteolysis of this protein has been proposed as an important component of EAA-induced neuronal death. There was no difference in basal glutamate levels between young and old rats in the hippocampus or medial prefrontal cortex. During the period of restraint stress a modest increase in glutamate levels in the hippocampus of young and aged rats was observed. After the termination of the stress procedure, hippocampal glutamate concentrations continued to rise in the aged rats, reaching a level approximately five times higher than the young rats, and remained elevated for at least 2 h after the termination of the stress. A similar pattern was also observed in the medial prefrontal cortex with an augmented post-stress-induced glutamate response observed in the aged rats. There was no increase in spectrin proteolysis in the hippocampus or medial prefrontal cortex of young or aged rats after stress or under basal nonstress conditions. The enhanced poststress glutamate response in the aged rats may contribute to the increased sensitivity of aged rats to neurotoxic insults.  相似文献   

3.
Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne's muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (1) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum; and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain.  相似文献   

4.
Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne's muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (1) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum; and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain.  相似文献   

5.
Elderly patients are more likely to suffer from postoperative memory impairment for volatile anesthetics could induce aging neurons degeneration and apoptosis while the mechanism was still elusive. Therefore we hypothesized that ER stress mediated hippocampal neurons apoptosis might play an important role in the mechanism of sevoflurane-induced cognitive impairment in aged rats. Thirty 18-month-old male Sprague-Dawley rats were divided into two groups: the sham anesthesia group (exposure to simply humidified 30–50% O2 balanced by N2 in an acrylic anesthetizing chamber for 5 hours) and the sevoflurane anesthesia group (received 2% sevoflurane in the same humidified mixed air in an identical chamber for the same time). Spatial memory of rats was assayed by the Morris water maze test. The ultrastructure of the hippocampus was observed by transmission electron microscopy (TEM). The expressions of C/EBP homologous protein (CHOP) and caspase-12 in the hippocampus were observed by immunohistochemistry and real-time PCR analysis. The apoptosis neurons were also assessed by TUNEL assay. The Morris water maze test showed that sevoflurane anesthesia induced spatial memory impairment in aging rats (P<0.05). The apoptotic neurons were condensed and had clumped chromatin with fragmentation of the nuclear membrane, verifying apoptotic degeneration in the sevoflurane group rats by TEM observation. The expressions of CHOP and caspase-12 increased, and the number of TUNEL positive cells of the hippocampus also increased in the sevoflurane group rats (P<0.05). The present results suggested that the long time exposure of sevoflurane could induce neuronal degeneration and cognitive impairment in aging rats. The ER stress mediated neurons apoptosis may play a role in the sevoflurane-induced memory impairment in aging rats.  相似文献   

6.
Poly(ADP-ribose) polymerase (PARP) is a conserved enzyme involved in the regulation of DNA repair and genome stability. The role of PARP during aging is not well known. In this study PARP activity was investigated in nuclear fractions from hippocampus, cerebellum, and cerebral cortex of adult (4 months), old adult (14 months) and aged (24-27 months) rats. Concomitantly, the free radical evoked lipid peroxidation was estimated as thiobarbituric acid reactive substances (TBARS). The specific activity of PARP in adult brain was about 25, 21 and 16 pmol/mg protein per min in hippocampus, cerebellum and cerebral cortex, respectively. The enzyme activity was higher in all investigated parts of the brain of old adults. In aged animals PARP activity was lower in hippocampus by about 50%, and was unchanged in cerebral cortex and in cerebellum comparing to adult rats. The concentration of TBARS was the same in all parts of the brain and remained unchanged during aging. There is no direct correlation between PARP activity and free radical evoked lipid peroxidation during brain aging. The lowered enzyme activity in aged hippocampus may decrease DNA repair capacity which subsequently may be responsible for the higher vulnerability of hippocampal neurons to different toxic insults.  相似文献   

7.
Cardiopulmonary arrest is a leading cause of death and disability in the United States that usually occurs in the aged population. Cardiac arrest (CA) induces global ischemia, disrupting global cerebral circulation that results in ischemic brain injury and leads to cognitive impairments in survivors. Ischemia-induced neuronal damage in the hippocampus following CA can result in the impairment of cognitive function including spatial memory. In the present study, we used a model of asphyxial CA (ACA) in nine month old male Fischer 344 rats to investigate cognitive and synaptic deficits following mild global cerebral ischemia. These experiments were performed with the goals of 1) establishing a model of CA in nine month old middle-aged rats; and 2) to test the hypothesis that learning and memory deficits develop following mild global cerebral ischemia in middle-aged rats. To test this hypothesis, spatial memory assays (Barnes circular platform maze and contextual fear conditioning) and field recordings (long-term potentiation and paired-pulse facilitation) were performed. We show that following ACA in nine month old middle-aged rats, there is significant impairment in spatial memory formation, paired-pulse facilitation n dysfunction, and a reduction in the number of non-compromised hippocampal Cornu Ammonis 1 and subiculum neurons. In conclusion, nine month old animals undergoing cardiac arrest have impaired survival, deficits in spatial memory formation, and synaptic dysfunction.  相似文献   

8.
Memory impairment in the elderly resembles a mild temporal lobe dysfunction. Alterations in the hippocampal formation are also a probable basis for cognitive deficits in some animal models of ageing. For example, aged rats are impaired in hippocampal-dependent tests of spatial memory. Recent studies have revealed considerable structural integrity in the aged hippocampus, even in aged rats with the most impaired spatial memory. In contrast, atrophy/loss of cholinergic neurons in the basal forebrain and deficiency in cholinergic transduction in hippocampus correlate with the severity of spatial memory impairment in aged rats. This evidence supports the longstanding view that age-related loss of memory has a cholinergic basis. In this context, it is somewhat surprising that the use of a selective cholinergic immunotoxin in young rats to further test this hypothesis has revealed normal spatial memory after removing septo-hippocampal cholinergic neurons. Young rats with immunotoxic lesions, however, have other behavioural impairments in tests of attentional processing. These lines of research have implications for understanding the neurobiological basis of memory deficits in ageing and for selecting an optimal behavioural setting in which to examine therapies aimed at restoring neurobiological function.  相似文献   

9.
Expression of hippocalcin and neural visinin-like calcium-binding protein 2 (NVP2) in aging rat brain was investigated by immunoblot and immunohistochemical analyses. In 3-month old rats, hippocalcin and NVP2 were present at high concentrations in hippocampal and cerebral pyramidal cells and dentate granule cells, with hippocalcin protein levels being five to ten times higher than NVP2 levels. Hippocalcin levels in hippocampus and cerebral cortex decreased by approximately 20% at 24 months. While the number of hippocalcin-positive cells in CA3, dentate gyrus and cerebral cortex were preserved, staining intensity decreased. In contrast, the number and staining intensity of hippocalcin-positive cells in CA1 were maintained. NVP2 levels in hippocampus and cerebral cortex decreased by approximately 30% at 24 months. In cerebral cortex, the number and intensity of NVP2-positive cells decreased. In CA1 through CA3 and in dentate gyrus, NVP2-positive cell numbers were preserved, but staining intensity decreased. In summary, the loss of hippocalcin and NVP2 in aging rat brain may be associated with age-related impairment of postsynaptic functions.  相似文献   

10.
Congenital muscular dystrophies present mutated gene in the LARGE mice model and it is characterized by an abnormal glycosylation of α-dystroglycan (α-DG), strongly implicated as having a causative role in the development of central nervous system abnormalities such as cognitive impairment seen in patients. However, the pathophysiology of the brain involvement remains unclear. Therefore, the objective of this study is to evaluate the oxidative damage and energetic metabolism in the brain tissue as well as cognitive involvement in the LARGE(myd) mice model of muscular dystrophy. With this aim, we used adult homozygous, heterozygous, and wild-type mice that were divided into two groups: behavior and biochemical analyses. In summary, it was observed that homozygous mice presented impairment to the habituation and avoidance memory tasks; low levels of brain-derived neurotrophic factor (BDNF) in the prefrontal cortex, hippocampus, cortex and cerebellum; increased lipid peroxidation in the prefrontal cortex, hippocampus, striatum, and cerebellum; an increase of protein peroxidation in the prefrontal cortex, hippocampus, striatum, cerebellum, and cortex; a decrease of complex I activity in the prefrontal cortex and cerebellum; a decrease of complex II activity in the prefrontal cortex and cerebellum; a decrease of complex IV activity in the prefrontal cortex and cerebellum; an increase in the cortex; and an increase of creatine kinase activity in the striatum and cerebellum. This study shows the first evidence that abnormal glycosylation of α-DG may be affecting BDNF levels, oxidative particles, and energetic metabolism thus contributing to the memory storage and restoring process.  相似文献   

11.
Iron is a highly reactive free radical catalyst that has been shown to exacerbate oxidative stress and cell death in many neurodegenerative diseases. In this study, we produced a rat model of chronic cerebral hypoperfusion (CCH) by permanent bilateral carotid artery occlusion to investigate markers of iron and oxidative stress associated with it. We found CCH led to significant spatial memory impairment in the Morris water maze at 4?months after bilateral ligation. Iron deposition was observed in both the hippocampal CA1 area and cerebral cortex, and was correlated with localized neuronal death and increased lipid peroxidation. Western blotting revealed that the expression levels of ferritin heavy chain and the transferrin receptor were significantly elevated in hippocampus and cortex after CCH, whereas expression of iron regulatory protein 1 was significantly lower than in sham-treated rats. We conclude that localized neurodegeneration and concomitant cognitive impairments following CCH may result, at least in part, from local disruption of neuronal iron metabolism.  相似文献   

12.
Aging is accompanied by the loss of memory and cognitive functions. The extracellular signal-regulated kinase (ERK) pathway has been shown to play an essential role in synaptic plasticity and memory. Although a reduction in basal ERK1/2 activity has been found in the cerebral cortex in aged rats, changes in ERK1/2 mRNA expression during aging have not been described. In this study, we investigated age differences in the mRNA expression of ERK2 in different brain regions of male Fisher 344 rats (three age-groups) using quantitative in situ hybridization. No age-dependent changes in ERK2 mRNA were detected in the cerebellum or cortical areas. However, in the hippocampus, a 20% decline in mRNA levels was observed in the CA3 region in the 12-month-old group as compared to the 3-month-old group. These results suggest that the impairment in ERK1/2 activity observed during aging is probably not regulated at the gene expression level.  相似文献   

13.
Antioxidants are free radical scavengers and protect living organisms against oxidative damage to tissues. Experimental evidence implicates oxygen-derived free radicals as important causative agents of aging and the present study was designed to evaluate the age-related effects of deprenyl on the antioxidant defense in the cerebellum of male Wistar rats. Experimental rats of three age groups (6, 12, and 18 months old) were administered with liquid deprenyl (2 mg/kg body weight/day for a period of 15 days i.p) and levels of diagnostic marker enzymes (alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and creatine phosphokinase) in plasma, lipid peroxides, reduced glutathione and activities of glutathione-dependent antioxidant enzymes (glutathione peroxidase and glutathione-S-transferase) and antiperoxidative enzymes (catalase and superoxide dismutase) in the cerebellar tissue were determined. Intraperitonial administration of deprenyl (2 mg/kg body weight/day for a period of 15 days) significantly (p < 0.05) attenuated the age-related alterations noted in the levels of diagnostic marker enzymes plasma of experimental animals. Deprenyl also exerted an antioxidant effect against aging process by hindering lipid peroxidation to an extent. Moderate rise in the levels of reduced glutathione and activities of glutathione-dependent antioxidant enzymes and antiperoxidative enzymes was also observed. The results of the present investigation indicated that the protective potential of deprenyl was probably due to the increase of the activity of the free radical scavenging enzymes or to a counteraction of free radicals by its antioxidant nature or to a strengthening of neuronal membrane by its membrane-stabilizing action. Histopathological observations also confirmed the protective effect of deprenyl against the age-related aberrations in rat cerebellum. These data on the effect of deprenyl on parameters of normal aging provides new additional information concerning the anti-aging potential of deprenyl.  相似文献   

14.
15.
Aging of the brain is characterized by several neurochemical modifications involving structural proteins, neurotransmitters, neuropeptides and related receptors. Alterations of neurochemical indices of synaptic function are indicators of age-related impairment of central functions, such as locomotion, memory and sensory performances. Several studies demonstrate that ionotropic GABA receptors, glutamate decarboxylase (GAD), and somatostatinergic subpopulations of GABAergic neurons are markedly decreased in experimental animal brains during aging. Additionally, levels of several neuropeptides co-expressed with GAD decrease during aging. Thus, the age-related decline in cognitive functions could be attributable, at least in part, to decrements in GABA inhibitory neurotransmission. In this study, we showed that chronic supplementation of taurine to aged mice significantly ameliorated the age-dependent decline in spatial memory acquisition and retention. We also demonstrated that concomitant with the amelioration in cognitive function, taurine caused significant alterations in the GABAergic and somatostatinergic system. These changes included (1) increased levels of the neurotransmitters GABA and glutamate, (2) increased expression of both isoforms of GAD (65 and 67) and the neuropeptide somatostatin, (3) decreased hippocampal expression of the β3 subunits of the GABAA receptor, (4) increased expression in the number of somatostatin-positive neurons, (5) increased amplitude and duration of population spikes recorded from CA1 in response to Schaefer collateral stimulation and (6) enhanced paired pulse facilitation in the hippocampus. These specific alterations of the inhibitory system caused by taurine treatment oppose those naturally occurring in the aging brain, suggesting a protective role of taurine in this process. An increased understanding of age-related neurochemical changes in the GABAergic system will be important in elucidating the underpinnings of the functional changes of aging. Taurine supplementation might help forestall the age-related decline in cognitive functions through interaction with the GABAergic system.  相似文献   

16.
Zeng Y  Lv F  Li L  Yu H  Dong M  Fu Q 《Journal of neurochemistry》2012,122(4):800-811
7,8-dihydroxyflavone (7,8-DHF) has recently been identified as a potential TrkB agonist that crosses the blood-brain barrier after i.p. administration. We previously demonstrated that 7,8-DHF in vitro rescues long-term synaptic plasticity in the hippocampus of aged rats. This study assessed the rescue effect of 7,8-DHF in vivo on aging-related cognitive impairment in rats, and further determined whether the effect of 7,8-DHF is age dependent. Aged rats at 22 and 30 months of age were pretested for spatial memory in Morris water maze. The aged-impaired rats were retested twice during 7,8-DHF or vehicle treatment, which started 3 weeks after the completion of the pretest. In the 22-month-old rats, daily i.p. administration of 7,8-DHF for 2 weeks improved spatial memory. The improvement in behavioral tests was associated with increases in synapse formation and facilitation of synaptic plasticity in the hippocampus, as well as the activation of several proteins crucial to synaptic plasticity and memory. A more extended treatment paradigm with 7,8-DHF was required to achieve a significant memory improvement in the severely impaired 30-month-old rats. Moreover, 7,8-DHF moderately facilitated the synaptic plasticity, modified the density but not number of spines in the hippocampus of the oldest rats. Taken together, our results suggest that 7,8-DHF can act in vivo to counteract aging-induced declines in spatial memory and synaptic plasticity and morphological changes of hippocampal neurons. The effect of 7,8-DHF is more pronounced in relatively younger impaired rats than in those of more advanced age. These findings demonstrate the reversal of age-dependent memory impairment by in vivo 7,8-DHF application and support the benefit of early treatment for cognitive aging.  相似文献   

17.
The myelin-associated inhibitor/Nogo-66 receptor 1 (NgR1) pathway directly functions in negative modulation of structural and electrophysiological synaptic plasticity. A previous study has established an important role of NgR1 pathway signaling in cognitive function, and we have demonstrated that multiple components of this pathway, including ligands, NgR1 co-receptors, and RhoA, are upregulated at the protein level specifically in cognitively impaired, but not age-matched cognitively intact aged rats. Recent studies have identified two novel endogenous NgR1 antagonists, LOTUS and LGI1, and an alternative co-receptor, ADAM22, which act to suppress NgR1 pathway signaling. To determine whether these endogenous NgR1-inhibiting proteins may play a compensatory role in age-related cognitive impairment by counteracting overexpression of NgR1 agonists and co-receptors, we quantified the expression of LOTUS, LGI1, and ADAM22 in hippocampal CA1, CA3 and DG subregions dissected from mature adult and aged rats cognitively phenotyped for spatial learning and memory by Morris water maze testing. We have found that endogenous inhibitors of NgR1 pathway action decrease significantly with aging and cognitive decline and that lower expression levels correlate with declining cognitive ability, particularly in CA1 and CA3. These data suggest that decreased expression of NgR1-antagonizing proteins may exert a combinatorial effect with increased NgR1 signaling pathway components to result in abnormally strong suppression of synaptic plasticity in age-related cognitive impairment.  相似文献   

18.
We investigated the effects of physical exercise and green tea supplementation (associated or not) on biochemical and behavioral parameters in the time course of normal aging. Male Wistar rats aged 9 months were divided into groups: control, physical exercise (treadmill running), and supplemented with green tea while either performing physical exercise or not. A young control group was also studied. Physical exercise and green tea supplementation lasted 3 months. Afterwards, behavioral and biochemical tests were performed. Biochemical measurements revealed differences in antioxidant and oxidant responses in hippocampus, prefrontal cortex and striatum. Behavioral testing showed age-related memory impairments reversed by physical exercise. The association of green tea supplementation and physical exercise did not provide aged rats with additional improvements in memory or brain oxidative markers. Green tea per se significantly decreased reactive oxygen species levels and improved antioxidant defenses although it did not reverse memory deficits associated with normal aging.  相似文献   

19.
A number of gene expression microarray studies have been carried out in the past, which studied aging and age-associated spatial learning impairment (ASLI) in the hippocampus in animal models, with varying results. Data from such studies were never integrated to identify the most significant ASLI genes and to understand their effect. In this study we integrated these data involving rats using meta-analysis. Our results show that proper removal of batch effects from microarray data generated from different laboratories is necessary before integrating them for meta-analysis. Our meta-analysis has identified a number of significant differentially expressed genes across age or across ASLI. These genes affect many key functions in the aged compared to the young rats, which include viability of neurons, cell-to-cell signalling and interaction, migration of cells, neuronal growth, and synaptic plasticity. These functional changes due to the altered gene expression may manifest into various neurodegenerative diseases and disorders, some of which leading into syndromic memory impairments. While other aging related molecular changes can result into altered synaptic plasticity simply causing normal aging related non-syndromic learning or spatial learning impairments such as ASLI.  相似文献   

20.
The aging process is associated with cognitive impairment and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, as well as with oxidative stress. We determined some parameters of oxidative stress in homogenates of hippocampus, hypothalamus and adrenal glands from male 2-, 6- and 24-months-old Wistar rats. A significant age-dependent increase in the generation of free radicals was observed in hippocampus, hypothalamus and adrenal glands, as well as on lipid peroxidation in hippocampus and hypothalamus. The glutathione peroxidase (GPx) activity was significantly reduced in hypothalamus and hippocampus from 6-months-old rats; a decline on GPx and catalase activities in adrenal glands of 24-months-old animals was also present. Interestingly, a great decrease in total antioxidant capacity was found in all tissues tested. Reported findings support the idea that oxidative events participate on multiple neuroendocrine-metabolic impairments and suggest that the oxidative stress found in hippocampus, hypothalamus and adrenals might be associated with age-related physiological deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号