首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stabilities of phenol oxidase and peroxidase from tea plant (Camellia sinensis L.) clone Kolkhida leaves, apple (Mallus domestica L.) cultivar Kekhura fruits, walnut (Juglans regia L.) green pericarp, and horseradish (Armoracia lapathifolia Gilib) roots were studied using different storage temperature modes and storage duration. It was demonstrated that both enzymes retained residual activities (10%) upon 20-min incubation at 8°C. Phenol oxidases from tea, walnut, and especially apple, as well as tea peroxidase, were stable during storage. A technology for the treatment of plant oxidases was proposed, based on the use of a natural inhibitor of phenol oxidase and peroxidase, isolated from tea leaves, which solves the problem of residual activities of these enzymes that arises during pasteurization and storage of beverages and juices. It was demonstrated that browning of apple juice during pasteurization and beer turbidity during storage could be efficiently prevented using the natural inhibitor of these enzymes.Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 2, 2005, pp. 165–170.Original Russian Text Copyright © 2005 by Mchedlishvili, Omiadze, Gulua, Sadunishvili, Zamtaradze, Abutidze, Bendeliani, Kvesitadze.  相似文献   

2.
Cotton (Gossypium hirsutum L.) ovule cultures secreted a soluble peroxidase into the surrounding medium, resulting in a 200-fold increase in this activity during the 30-day growth period. The peroxidase activity was thermostable from 4°C to 60°C and displayed a pH optimum of 5.5 to 6.0. The ovule peroxidase was susceptible to periodate treatment and very resistant to protease digestion. The data suggest that the peroxidase activity is a glycoprotein. Interpretation of peroxidase data may be complicated by the presence of phenol oxidase activity in the same preparations. The presence of phenol oxidases was ruled out by the inaction of a tyrosinase-specific inhibitor, tropolone.Abbreviations PMSF phenylmethylsulfonyl fluoride  相似文献   

3.
Differential expression of antioxidant enzymes in various growth and differentiation stages has been documented in several plant species. We studied here, the difference in the levels of protein content and antioxidant enzymes activity at two stages of maturity, named young and mature in neem (Azadirachta indica A. Juss), pigeonpea (Cajanus cajan (L.) mill sp) and mulberry (Morus Alba L.) leaves. The results showed that detached neem and pigeonpea mature leaves possessed higher activities of catalase (CAT) and peroxidase (POD) and lower activities of polyphenol oxidase (PPO) and ascorbate peroxidase (APX) as compared with young leaves. However, glutathione reductase (GR) showed higher activity in mature leaves of neem, whereas no change in its activity was observed in pigeonpea. On the other hand, antioxidant enzymes in mulberry showed either positive (PPO) or negative (POD, GR, APX) correlation with the progression of leaf maturity. Apparently the trend of changes in antioxidant enzymes activity during leaf development is species-specific: their activity higher at mature stage in some plants and lower in others.  相似文献   

4.
Application of regurgitant from Leptinotarsa decemlineata Say on wound surfaces of one wounded leaf of intact bean (Phaseolus vulgaris L.) plants resulted in activation of ethylene biosynthesis followed by an increase of both peroxidase and polyphenol oxidase activity. The aim of the present investigation was to study the source of increased oxidative enzyme activities in regurgitant-treated bean leaves and to determine if hydrogen peroxide and ethylene biosynthesis is responsible for regurgitant-induced amplification of wound responses in bean plants. As the regurgitant contained relative high activities of both peroxidase and polyphenol oxidase, there is a possibility that increased enzyme activities in bean leaves following regurgitant treatment is an artifact of insect-derived enzymes. Localisation experiments and electrophoretic analysis revealed that only part of the increased enzyme activities could be attributed to regurgitant-derived enzymes. Both increase of ethylene production and oxidative enzyme activities depended on protein synthesis. To demonstrate if the increase of oxidative metabolism was ethylene-dependent, seedlings were pretreated with aminooxyacetic acid, an inhibitor of ethylene biosynthesis, and 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action. Increase of both peroxidase and polyphenol oxidase activity in wounded and subsequently regurgitant-treated leaf was abolished by both aminooxyacetic acid and 1-MCP. Inhibitor studies indicated that H2O2 generated through NADPH oxidase and superoxide dismutase is necessary for regurgitant-induced increase of ethylene production and oxidative enzyme activities.  相似文献   

5.
凤眼莲能够吸收和在体内聚集外源苯酚,体内的酸含量随着环境中酚浓度的上升而上升。从生长于合酚培养液中的凤眼莲体内能够检测到酚糖苷,说明凤眼莲体内有酚精苷转移酶的存在。浓度小于50mg/L的外源酚能提高凤眼莲体内的多酚氧化酶和过氧化物酶的活性。多酚氯化酶与过氧化物酶在线粒体和微粒体中均有不同程度的分布,而酚糖苷转移酶则不存在于这些细胞器中。  相似文献   

6.
通过组织化学染色、电镜观察、酶活性分析对水分胁迫诱导玉米叶片质外体产生H2O2进行了研究。结果表明:水分胁迫能够诱导玉米叶片内源ABA的积累,ABA参与了水分胁迫诱导的玉米叶片H2O2的产生,质膜NADPH氧化酶、细胞壁过氧化物酶(POD)以及质外体多胺氧化酶(PAO)是水分胁迫诱导玉米细胞在质外体产生H2O2的来源,其中质膜NADPH氧化酶是主要来源;内源ABA的积累参与了水分胁迫激活的质膜NADPH氧化酶、细胞壁POD和质外体PAO活性的提高。研究认为,水分胁迫诱导玉米细胞在质外体产生H2O2可能是由于水分胁迫下内源ABA的积累通过激活质膜NADPH氧化酶、细胞壁POD以及质外体PAO的活性而实现的。  相似文献   

7.
The activities of polyphenol oxidase, peroxidase and catalase were investigated in Glomus etunicatum an arbuscular mycorrhizal inoculated pepper plant infected with Phytophthora infestans. Pepper plant inoculated with pathogen alone, simultaneously inoculated with mycorrhizal and pathogen or dually inoculated with pathogen before mycorrhizal had increased level of the oxidative enzymes activities especially at 4 weeks after planting. Of the three oxidases investigated catalase had the highest level of activities in all the treatments while the level of peroxidase was the lowest. The results showed that pathogen alone, build up the level of the oxidases in the inoculated pepper plant while inoculation of the pepper plant with AM mycorrhizal either simultaneously or dually with pathogen lower the activity of the oxidases indicating a passive protective effect of mycorrhizal.  相似文献   

8.
黄瓜植株性别表现与3种氧化酶同工酶的关系   总被引:18,自引:0,他引:18  
采用同工酶电泳技术分析了二叶期纯雌株和雌雄株黄瓜(Cucumis sativus L.)子叶和真叶过氧化物酶、多酚氧化酶和超氧化物歧化酶同工酶,结果发现:给株比雌雄株酶活性强、酶带数量多,这种差异酶带大多与雌性或雌雄性别紧密相关,经检验可以作为黄瓜雌性株早期鉴定的生化标记,尤其以真叶中多酚氧化酶同工酶Rf0.287表现稳定,鉴定成功率高。等电聚焦电泳垂直平板聚丙烯酰胺凝胶电泳分辨效果好。  相似文献   

9.
Mango sap (latex), a by-product in mango industry, was separated into upper non-aqueous phase and lower aqueous phase. Aqueous phase contains very low protein (4.3 mg/ml) but contains high specific activities for peroxidase and polyphenol oxidase. The aqueous phase of sap was subjected to ion-exchange chromatography on DEAE-Sephacel. The bound protein was separated into three enzyme peaks: peak I showed peroxidase activity, peak II showed polyphenol oxidase activity and peak III showed activities against substrates of peroxidase as well as polyphenol oxidase. On native PAGE and SDS-PAGE, each peak showed a single band. Based on the substrate specificity and inhibitor studies peak III was identified as laccase. Although they showed variations in their mobility on native PAGE, these enzymes showed similar molecular weight of 100,000 ± 5000. These enzymes exhibited maximum activity at pH 6 however, polyphenol oxidase showed good activity even in basic pH. Peroxidase and polyphenol oxidase showed stability up to 70 °C while laccase was found to be stable up to 60 °C. Syringaldazine was the best substrate for laccase while catechol was the best for polyphenol oxidase. Thus, mango sap a by-product in mango industry is a good source of these phenol oxidases.  相似文献   

10.
Mate (Ilex paraguariensis) is an important natural product in the economic and cultural context of Brazil. Peroxidase and polyphenol oxidase have been responsible for quality deterioration and browning in mate. The objective of this work was to investigate a methodology of extraction and enzymatic activity determination of oxidases present in mate tea leaves and to evaluate the oxidases stability. The effects of raw-material mass, buffer molar concentration, Triton X-100 addition, extraction pH, pH activity measurement, polyvinylpyrrolidone K90 addition, and centrifugation time were evaluated by the experimental planning methodology. The storage of the oxidases along 150 days at low temperatures showed that no significant difference was found at -4 and -80 degrees C but significant difference was observed when compared to 4 degrees C. The results showed that higher activities of oxidases are obtained at similar conditions. The exposition to high-temperatures and the variation of the time of exposition affected the enzymatic activity significantly.  相似文献   

11.
Catechin and epicatechin biosyntheses were studied of grape (Vitis vinifera L.), apple (Malus x domestica Borkh.) and other crop leaves, since these monomers and the derived proanthocyanidins are important disease resistance factors. Grape and apple leucoanthocyanidin 4-reductase (LAR; EC 1.17.1.3) enzymes were characterized on basis of plant and recombinant enzymes. In case of grape, two LAR cDNAs were cloned by assembling available EST sequences. Grape and apple leaf anthocyanidin reductase (ANR; EC 1.3.1.77) cDNAs were also obtained and the respective plant and recombinant enzymes were characterized. Despite general low substrate specificity, within the respective flavonoid biosyntheses of grape and apple leaves, both enzyme types deliver differently hydroxylated catechins and epicatechins, due to substrate availability in vivo. Furthermore, for LAR enzymes conversion of 3-deoxyleucocyanidin was shown. Beside relevance for plant protection, this restricts the number of possible reaction mechanisms of LAR. ANR enzyme activity was demonstrated for a number of other crop plants and its correlation with (-)-epicatechin and obvious competition with UDP-glycosyl:flavonoid-3-O-glycosyltransferases was considered.  相似文献   

12.
Bacillus subtilis strain BSCBE4 and Pseudomonas chlororaphis strain PA23 (=P. aureofaciens) were effective biocontrol agents against Pythium aphanidermatum, the causal agent of damping-off of hot pepper (Capsicum annum L.) in greenhouse vegetable production systems. Application of strains BSCBE4 and PA23 at the rate of 20 g kg-1 of seed significantly increased the growth of hot pepper seedlings. The efficacies of various carriers in sustaining the population of these strains in storage were assessed. Both the antagonists survived up to 180 days of storage in peat and talc-based formulations. The two bacterial strains induced development of plant defence-related enzymes including phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, phenol content, suppressed incidence of damping-off and increased growth of hot pepper seedlings.  相似文献   

13.
It has been shown that the fungus Lentinus edodes grown on a solid wort agar substrate produces intracellular enzymes, including Mn-dependent peroxidase, laccase, and tyrosinase as a family of isoforms. The composition of the complex (containing one to four forms of each enzyme) varied during the basidiomycete life cycle. The activity of oxidases was maximal at the stage of nonpigmented mycelium and at the stages of a brown mycelial mat and a fruit body. The activity of tyrosinase increased in the course of mycelium pigmentation and had two maxima: at the stage of a brown mycelial mat and at the stage of a fruit body. Laccase and tyrosinase activities were shown to increase sharply upon addition of oak sawdust extract to the culture medium as compared with the enzyme activities of mycelium grown on wort agar alone. It was established that the effect of phenol oxidase substrates on the growing mycelium consists in a twofold acceleration of the process of morphogenesis in the fungus L. edodes.  相似文献   

14.
The activities of peroxidase, polyphenol oxidase and superoxide dismutase was significantly lower in roots and leaves of NaCl stressed radish (Raphanus sativus L.) plants. Addition of triadimefon to the NaCl stressed plants increased peroxidase, polyphenol oxidase and superoxide dismutase activities, and thereby ameliorated the negative effect of NaCl stress.  相似文献   

15.
The interrelationship among water-stress-induced abscisic acid (ABA) accumulation, the generation of reactive oxygen species (ROS), and the activities of several antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) was investigated in leaves of detached maize (Zea mays L.) plants exposed to -0.7 MPa water stress induced by polyethylene glycol (PEG 6000). Time-course analyses of ABA content, the production of ROS, and the activities of antioxidant enzymes in water-stressed leaves showed that a significant increase in the content of ABA preceded that of ROS, which was followed by a marked increase in the activities of these antioxidant enzymes. Pretreatment with an ABA biosynthesis inhibitor, tungstate, significantly suppressed the accumulation of ABA, and also reduced the increased generation of ROS and the up-regulation of these antioxidant enzymes in water-stressed leaves. A mild oxidative stress induced by paraquat, which generates O(2)(-) and then H(2)O(2), resulted in a significant enhancement in the activities of antioxidant enzymes in non-water-stressed leaves. Pretreatment with some ROS scavengers, such as Tiron and dimethylthiourea (DMTU), and an inhibitor of NAD(P)H oxidase, diphenyleneiodonium (DPI), almost completely arrested the increase in ROS and the activities of these antioxidant enzymes induced by water stress or ABA treatment. These data suggest that water stress-induced ABA accumulation triggers the increased generation of ROS, which, in turn, leads to the up-regulation of the antioxidant defence system.  相似文献   

16.
The effect of salicylic acid (SA) counteracting the UV-A, UV-B, and UV-C-induced action on pepper (Capsicum annuum L.) plants was studied. For this purpose, the activities of antioxidant enzymes (peroxidase, polyphenol oxidase, ascorbate peroxidase, catalase, and glutathione reductase) were measured. Plants were sprayed with SA and treated with UV-A (320–390 nm), UV-B (312 nm), and UV-C (254 nm) radiation with a density of 6.1, 5.8, and 5.7 W/m2. The activities of antioxidant enzymes were enhanced in leaves in response to UV-B and UV-C radiation. SA treatment moderated an increase in the activities of some antioxidant enzymes (peroxidase, ascorbate peroxidase, catalase, and glutathione reductase) in plants that were treated with UV radiation. The activity of antioxidant enzyme polyphenol oxidase in plants that were treated with UV-B, UV-C, and SA was significantly increased. The aim of the present study was to investigate the possible protective effect of SA treatment on UV-A, UV-B, and UV-C stress.  相似文献   

17.
The effect of the preparations produced from needles and wood of various coniferous species on the activities of L-phenylalanine ammonia lyase (PAL; EC 4.3.1.5) and peroxidase (PO; EC 1.11.1.7), the enzymes involved in the development of plant defense response, was studied. It was demonstrated that treatment of soft wheat (Triticum aestivum L.) primary leaves with biological preparations produced from coniferous plants caused a transient increase in PAL and PO activities. The induction of these enzyme activities depends on the concentration of preparations and plant immune status. The results obtained suggest that coniferous metabolites are of interest as a source of plant extracts with the elicitor effect, increasing the resistance of plants to phytopathogens and adverse environmental factors.  相似文献   

18.
Lignin, the most abundant aromatic biopolymer on Earth, is extremely recalcitrant to degradation. By linking to both hemicellulose and cellulose, it creates a barrier to any solutions or enzymes and prevents the penetration of lignocellulolytic enzymes into the interior lignocellulosic structure. Some basidiomycetes white-rot fungi are able to degrade lignin efficiently using a combination of extracellular ligninolytic enzymes, organic acids, mediators and accessory enzymes. This review describes ligninolytic enzyme families produced by these fungi that are involved in wood decay processes, their molecular structures, biochemical properties and the mechanisms of action which render them attractive candidates in biotechnological applications. These enzymes include phenol oxidase (laccase) and heme peroxidases [lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP)]. Accessory enzymes such as H2O2-generating oxidases and degradation mechanisms of plant cell-wall components in a non-enzymatic manner by production of free hydroxyl radicals (·OH) are also discussed.  相似文献   

19.
Using pharmacological and biochemical approaches, the role of protein phosphorylation and the interrelationship between water stress-enhanced kinase activity, antioxidant enzyme activity, hydrogen peroxide (H2O2) accumulation and endogenous abscisic acid in maize (Zea mays L.) leaves were investigated. Water-stress upregulated the activities of total protein phosphorylation and Ca2+ -dependent protein kinase, and the upregulation was blocked in abscisic acid-deficient vp5 mutant. Furthermore, pretreatments with a nicotinamide adenine dinucleotide phosphate oxidase inhibitor and a scavenger of H2O2 significantly reduced the increased activities of total protein kinase and Ca2+-dependent protein kinase in maize leaves exposed to water stress. Pretreatments with different protein kinase inhibitors also reduced the water stress-induced H2O2 production and the water stress-enhanced activities of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase. The data suggest that protein phosphorylation and H2O2 generation are required for water stress-induced antioxidant defense in maize leaves and that crosstalk between protein phosphorylation and H2O2 generation may occur.  相似文献   

20.
Strips of tissue containing the germ aleurone layer were removedfrom dry, harvest-ripe grains of barley (Hordeum vulgare L.)and incubated in buffered solutions of phenolic compounds, withand without the addition of hydrogen peroxide. Peroxidase ando-diphenol oxidase activity were found in the material releasedinto the incubation medium, and in the cytoplasm of the germaleurone cells. Peroxidase activity was located in the cellwalls and appeared to be high in the region where the germ aleuronecovering the embryonic axis merges into that which adheres tothe scutellum i.e. the region in which a row of germ aleuronecells becomes lignified following germination. Monophenol oxidaseactivity was not detected in the released enzymes or in theintact tissue. Although hydroquinone was oxidized in the cytoplasmof the germ aleurone tissue, unequivocal evidence of the presenceof laccase was not obtained. The oxidation of endogenous phenolicsubstances by phenol oxidases and peroxidases is discussed inrelation to anti-microbial defence mechanisms which appear tooperate in the germ aleurone during germination.Copyright 1994,1999 Academic Press Barley, Hordeum vulgare L., germ aleurone, catechol oxidase, laccase, peroxidase, defence mechanisms, germination  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号