首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The function of the stacking tryptophan, W290, a second-coordination sphere residue in galactose oxidase, has been investigated via steady-state kinetics measurements, absorption, CD and EPR spectroscopy, and X-ray crystallography of the W290F, W290G, and W290H variants. Enzymatic turnover is significantly slower in the W290 variants. The Km for D-galactose for W290H is similar to that of the wild type, whereas the Km is greatly elevated in W290G and W290F, suggesting a role for W290 in substrate binding and/or positioning via the NH group of the indole ring. Hydrogen bonding between W290 and azide in the wild type-azide crystal structure are consistent with this function. W290 modulates the properties and reactivity of the redox-active tyrosine radical; the Y272 tyrosyl radicals in both the W290G and W290H variants have elevated redox potentials and are highly unstable compared to the radical in W290F, which has properties similar to those of the wild-type tyrosyl radical. W290 restricts the accessibility of the Y272 radical site to solvent. Crystal structures show that Y272 is significantly more solvent exposed in the W290G variant but that W290F limits solvent access comparable to the wild-type indole side chain. Spectroscopic studies indicate that the Cu(II) ground states in the semireduced W290 variants are very similar to that of the wild-type protein. In addition, the electronic structures of W290X-azide complexes are also closely similar to the wild-type electronic structure. Azide binding and azide-mediated proton uptake by Y495 are perturbed in the variants, indicating that tryptophan also modulates the function of the catalytic base (Y495) in the wild-type enzyme. Thus, W290 plays multiple critical roles in enzyme catalysis, affecting substrate binding, the tyrosyl radical redox potential and stability, and the axial tyrosine function.  相似文献   

2.
A parallel study of the radical copper enzyme galactose oxidase (GOase) and a low molecular weight analog of the active site was performed with dynamical density functional and mixed quantum-classical calculations. This combined approach enables a direct comparison of the properties of the biomimetic and the natural systems throughout the course of the catalytic reaction. In both cases, five essential forms of the catalytic cycle have been investigated: the resting state in its semi-reduced (catalytically inactive) and its oxidized (catalytically active) form, A semi and A ox, respectively; a protonated intermediate B; the transition state for the rate-determining hydrogen abstraction step C, and its product D. For A and B the electronic properties of the biomimetic compound are qualitatively very similar to the ones of the natural target. However, in agreement with the experimentally observed difference in catalytic activity, the calculated activation energy for the hydrogen abstraction step is distinctly lower for GOase (16 kcal/mol) than for the mimetic compound (21 kcal/mol). The enzymatic transition state is stabilized by a delocalization of the unpaired spin density over the sulfur-modified equatorial tyrosine Tyr272, an effect that for geometric reasons is essentially absent in the biomimetic compound. Further differences between the mimic and its natural target concern the structure of the product of the abstraction step, which is characterized by a weakly coordinated aldehyde complex for the latter and a tightly bound linear complex for the former. Received 14 October 1999 · Accepted: 19 January 2000  相似文献   

3.
Galactose oxidase is a radical copper oxidase, an enzyme making use of a covalently modified tyrosine residue as a free radical redox cofactor in alcohol oxidation catalysis. We report here a combination of spectroscopic and magnetochemical studies developing insight into the interactions between the active site Cu(II) and two distinct tyrosine ligands in the biological complex. One of the tyrosine ligands (Y495) is coordinated to the Cu(II) metal center as a phenolate in the resting enzyme and serves as a general base to abstract a proton from the coordinated substrate, thus activating it for oxidation. The structure of the resting enzyme is temperature-dependent as a consequence of an internal proton equilibrium associated with this tyrosine that mimics this catalytic proton transfer step. The other tyrosine ligand (Y272) is covalently crosslinked to a cysteine residue forming a tyrosine–cysteine dimer free radical redox site that is required for hydrogen atom abstraction from the activated substrate alkoxide. The presence of the free radical in the oxidized active enzyme results in formation of an EPR-silent Cu(II) complex shown by multifield magnetic saturation experiments to be a diamagnetic singlet arising from antiferromagnetic exchange coupling between the metal and radical spins. A paramagnetic contribution observed at higher temperature may be associated with thermal population of the triplet state, thus permitting an estimate of the magnitude of the isotropic exchange coupling (J>200 cm−1, JS1·S2) in this complex. Structural correlations and the possible mechanistic significance of metal–radical coupling in the active enzyme are discussed.  相似文献   

4.
 Reactions (25  °C) of galactose oxidase, GOaseox from Fusarium NRRL 2903 with five different primary-alcohol-containing substrates RCH2OH:- D-galactose (I) and 2-deoxy-d-galactose (II) (monosaccharides); methyl-β-d-galactopyranoside (III) (glycoside);d-raffinose (IV) (trisaccharide); and dihydroxyacetone (V) have been studied in the presence of O2. The GOaseox state has a tyrosyl radical coordinated at a square-pyramidal CuII active site, and is a two-equivalent oxidant. Reactant concentrations were [GOaseox] (0.8–10 μM), RCH2OH (1.0–6.0 mM), and O2 (0.14–0.29 mM), with I=0.100 M (NaCl). The reactions, monitored at 450 nm by stopped-flow spectrophotometry, terminated with depletion of the O2. Each trace was fitted to the competing reactions GOaseox+RCH2 OH → GOaseredH2+RCHO (k 1), and GOaseredH2+O2→ GOaseox+H2O2 (k 2), with GOaseredH2 written as the doubly protonated two-electron-reduced CuI product. It was necessary to avoid auto-redox interconversion of GOaseox and GOasesemi . Information obtained at pH 7.5 indicates a 5 : 95 (ox : semi) "native" mix equilibration complete in ∼3 h. At pH >7.5, rate constants 10–4k 1 / M–1 s–1 for the reactions of GOaseox with (I) (1.19), (II) (1.07), (III) (1.29), (IV) (1.81), (V) (2.94) were determined. On decreasing the pH to 5.5, k 1 values decreased by factors of up to a half, and acid dissociation pK as in the range 6.6–6.9 were obtained. UV-Vis spectrophotometric studies on GOaseox gave an independently determined pK a of 6.7. No corresponding reactions of the Tyr495Phe variant were observed, and there are no similar UV-Vis absorbance changes for this variant. The pK a is therefore assigned to protonation of Tyr-495 which is a ligand to the Cu. The rate constant k 2 (1.01×107 M–1 s–1) is independent of pH in the range 5.5–9.0 investigated, suggesting that H+ (or H-atoms) for the O2 → H2O2 change are provided by the active site of GOasered . The CuI of GOasered is less extensively complexed, and a coordination number of three is likely. Received: 4 February 1997 / Accepted: 16 May 1997  相似文献   

5.
The copper enzyme galactose oxidase (GOase, EC 1.1.3.9) catalyses the oxidation of D-galactose and other primary alcohols in air to the corresponding aldehydes and hydrogen peroxide. The current mechanistic hypothesis for this two-electron redox reaction involves a Cu(I)/Cu(II) couple and the reversible oxidation of a ligating phenolate (tyrosine residue of the Tyr272-Cys228 conjugate) to a phenoxyl radical. Our approaches to functional models for galactose oxidase comprise both the use of low-molecular-weight copper complexes of a Schiff-base and sulfonamide ligands, and the synthesis/screening of combinatorial libraries. With regard to the latter, we have synthesized (by the IRORI-directed synthesis approach) peptide libraries carrying either His or the redox-active amino acids Tyr, mod-Cys (a model for the Tyr272-Cys228 conjugate) or TOAC (a TEMPO-derived alpha-amino acid) at four variable positions. After incubation with copper ions, the catalytically active library members were identified by specially designed screening methods.  相似文献   

6.
Nitrile hydratases (NHase), which catalyze the hydration of nitriles to amides, have an unusual Fe3+ or Co3+ center with two modified Cys ligands: cysteine sulfininate (Cys-SO2 ) and either cysteine sulfenic acid or cysteine sulfenate [Cys-SO(H)]. Two catalytic mechanisms have been proposed. One is that the sulfenyl oxygen activates a water molecule, enabling nucleophilic attack on the nitrile carbon. The other is that the Ser ligand ionizes the strictly conserved Tyr, activating a water molecule. Here, we characterized mutants of Fe-type NHase from Rhodococcus erythropolis N771, replacing the Ser and Tyr residues, αS113A and βY72F. The αS113A mutation partially affected catalytic activity and did not change the pH profiles of the kinetic parameters. UV–vis absorption spectra indicated that the electronic state of the Fe center was altered by the αS113A mutation, but the changes could be prevented by a competitive inhibitor, n-butyric acid. The overall structure of the αS113A mutant was similar to that of the wild type, but significant changes were observed around the catalytic cavity. Like the UV–vis spectra, the changes were compensated by the substrate or product. The Ser ligand is important for the structure around the catalytic cavity, but is not essential for catalysis. The βY72F mutant exhibited no activity. The structure of the βY72F mutant was highly conserved but was found to be the inactivated state, with αCys114-SO(H) oxidized to Cys-SO2 , suggesting that βTyr72 affected the electronic state of the Fe center. The catalytic mechanism is discussed on the basis of the results obtained.  相似文献   

7.
 Dithionite has been found to reduce directly (without mediators) the Escherichia coli R2 subunit of ribonucleotide reductase. With dithionite (∼10 mM) in large excess, the reaction at 25  °C is complete in ∼10 h. Preparations of E. coli R2 have an FeIII 2 (met-R2) component in this work at ∼40% levels, alongside the fully active enzyme FeIII 2 . . . Tyr*, which has a tyrosyl radical at Tyr-122. In the pH range studied (7–8) the kinetics are biphasic. Rate laws for both phases give [S2O4 2–] and not [S2O4 2–]1/2 dependencies, and saturation kinetics are observed for the first time in R2 studies. No dependence on pH was detected. The kinetics (25  °C) of the first phase are reproduced in separate experiments using only met-R2, with association of S2O4 2– to met-R2, K=330 M–1, occurring prior to electron transfer, k et=4.8×10–4 s–1, I=0.100 M (NaCl). The second phase assigned to the reaction of FeIII 2 . . . Tyr* with S2O4 2– gives K=800 M–1 and k et=5.6×10–5 s–1. Bearing in mind the substantially smaller reduction potential for FeIII 2 compared to Tyr*, this is a quite remarkable finding, with implications similar to those already reported for the reaction of R2 with hydrazine, but with additional information provided by the saturation kinetics. The similarity in rates for the two phases (∼fourfold difference) suggests that reduction of FeIII 2 is occurring in both cases, and since S2O4 2– is involved a two-equivalent change is proposed with the formation of FeII 2 . . . Tyr* in the case of active R2. As a sequel to the second phase, intramolecular reduction of the strongly oxidising Tyr* by the FeII 2 is rapid, and further decay of FeIIFeIII is also fast. There is no stable mouse met-R2 form, and the single-phase reaction with dithionite gives saturation kinetics with K=208 M–1 and k et=1.7±10–3 s–1. Mechanistic implications, including the applicability of a pathway for electron transfer via FeA, are considered. Received: 25 February 1998 / Received: 20 August 1998  相似文献   

8.
 We purified two catechol oxidases from Lycopus europaeus and Populus nigra which only catalyze the oxidation of catechols to quinones without hydroxylating tyrosine. The molecular mass of the Lycopus enzyme was determined to 39 800 Da and the mass of the Populus enzyme was determined to 56 050 Da. Both catechol oxidases are inhibited by thiourea, N-phenylthiourea, dithiocarbamate, and cyanide, but show different pH behavior using catechol as substrate. Atomic absorption spectroscopic analysis found 1.5 copper atoms per protein molecule. Using EPR spectroscopy we determined 1.8 Cu per molecule catechol oxidase. Furthermore, EPR spectroscopy demonstrated that catechol oxidase is a copper enzyme of type 3. The lack of an EPR signal is due to strong antiferromagnetic coupling that requires a bridging ligand between the two copper ions in the met preparation. Addition of H2O2 to both enzymes leads to oxy catechol oxidase. In the UV/Vis spectrum two new absorption bands occur at 345 nm and 580 nm. In accordance with the oxy forms of hemocyanin and tyrosinase the absorption band at 345 nm is due to an O2 2–σ*)→Cu(II) (d x2–y2 ) charge transfer (CT) transition. The absorption band at 580 nm corresponds to the second O2 2–v*)→Cu(II) (d x2–y2 ) CT transition. The UV/Vis bands in combination with the resonance Raman spectra of oxy catechol oxidase indicate a μ-η2 : η2 binding mode for dioxygen. The intense resonance Raman peak at 277 cm–1, belonging to a Cu-N (axial His) stretching mode, suggests that catechol oxidase has six terminal His ligands, as known for molluscan and arthropodan hemocyanin. Received: 30 July 1998 / Accepted: 26 October 1998  相似文献   

9.
Prostaglandin H synthase isoforms 1 and -2 (PGHS-1 and -2) react with peroxide to form a radical on Tyr385 that initiates the cyclooxygenase catalysis. The tyrosyl radical EPR signals of PGHS-1 and -2 change over time and are altered by cyclooxygenase inhibitor binding. We characterized the tyrosyl radical dynamics using wild type human PGHS-1 (hPGHS-1) and its Y504F, Y385F, and Y385F/Y504F mutants to determine whether the radical EPR signal changes involve Tyr504 radical formation, Tyr385 radical phenyl ring rotation, or both. Reaction of hPGHS-1 with peroxide produced a wide singlet, whereas its Y504F mutant produced only a wide doublet signal, assigned to the Tyr385 radical. The cyclooxygenase specific activity and KM value for arachidonate of hPGHS-1 were not affected by the Y504F mutation, but the peroxidase specific activity and the KM value for peroxide were increased. The Y385F and Y385F/Y504F mutants retained only a small fraction of the peroxidase activity; the former had a much-reduced yield of peroxide-induced radical and the latter essentially none. After binding of indomethacin, a cyclooxygenase inhibitor, hPGHS-1 produced a narrow singlet but the Y504F mutant did not form a tyrosyl radical. These results indicate that peroxide-induced radicals form on Tyr385 and Tyr504 of hPGHS-1, with radical primarily on Tyr504 in the wild type protein; indomethacin binding prevented radical formation on Tyr385 but allowed radical formation on Tyr504. Thus, hPGHS-1 and -2 have different distributions of peroxide-derived radical between Tyr385 and Tyr504. Y504F mutants in both hPGHS-1 and -2 significantly decreased the cyclooxygenase activation efficiency, indicating that formation of the Tyr504 radical is functionally important for both isoforms.  相似文献   

10.
Microcin J25 (MccJ25) is a 21 amino acid lasso-peptide antibiotic produced by Escherichia coli and composed of an 8-residues ring and a terminal ‘tail’ passing through the ring. We have previously reported two cellular targets for this antibiotic, bacterial RNA polymerase and the membrane respiratory chain, and shown that Tyr9 is essential for the effect on the membrane respiratory chain which leads to superoxide overproduction. In the present paper we investigated the redox behavior of MccJ25 and the mutant MccJ25 (Y9F). Cyclic voltammetry measurements showed irreversible oxidation of both Tyr9 and Tyr20 in MccJ25, but infrared spectroscopy studies demonstrated that only Tyr9 could be deprotonated upon chemical oxidation in solution. Formation of a long-lived tyrosyl radical in the native MccJ25 oxidized by H2O2 was demonstrated by Electron Paramagnetic Resonance Spectroscopy; this radical was not detected when the reaction was carried out with the MccJ25 (Y9F) mutant. These results show that the essential Tyr9, but not Tyr20, can be easily oxidized and form a tyrosyl radical.  相似文献   

11.
CopC is a periplasmic copper Chaperone protein that has a β‐barrel fold and two metal‐binding sites distinct for Cu(II) and Cu(I). In the article, four mutants (Y79F, Y79W, Y79WW83L, Y79WW83F) were obtained by site‐directed mutagenesis. The far‐UV CD spectra of the proteins were similar, suggesting that mutations did not bring any significant changes in secondary structures. Meanwhile the effects of mutations on the protein's function were manifested by Cu(II) binding. Fluorescence lifetime measurement and quenching of tryptophan fluorescence by acrylamide and KI showed that the microenvironment around Trp83 was more hydrophobic than that around Tyr79 in apoCopC. Unfolding experiments induced by guanidinium chloride (GdnHCl), urea provided the conformational stability of each protein. The Δ<ΔG0element> obtained using the model of structural elements was used to show the role of Tyr79 and Trp83. On the one hand, the <ΔG0element> induced by urea for Y79F, Y79W have a loss of 6.51, 2.03 kJ/mol, respectively, compared with apoCopC, proving that replacement of Tyr79 by Phe or Trp all decreased the protein stability, meaning that the hydrogen bonds interactions between Tyr79 and Thr75 played an important role in stabilizing apoCopC. On the other hand, the <ΔG0element> induced by urea for Y79WW83L have a loss of 11.44 kJ/mol, but for Y79WW83F did a raise of 1.82 kJ/mol compared with Y79W. The replacement of Trp83 by Phe and Leu yields opposite effects on protein stability, which suggested that the aromatic ring of Trp83 was important in maintaining the hydrophobic core of apoCopC.  相似文献   

12.
In the crystal structure of chicken sulfite oxidase, the residue Tyr(322) (Tyr(343) in human sulfite oxidase) was found to directly interact with a bound sulfate molecule and was proposed to have an important role in mediating the substrate specificity and catalytic activity of this molybdoprotein. In order to understand the role of this residue in the catalytic mechanism of sulfite oxidase, steady-state and stopped-flow analyses were performed on wild-type and Y343F human sulfite oxidase over the pH range 6-10. In steady-state assays of Y343F sulfite oxidase using cytochrome c as the electron acceptor, k(cat) was somewhat impaired ( approximately 34% wild-type activity at pH 8.5), whereas the K(m)(sulfite) showed a 5-fold increase over wild type. In rapid kinetic assays of the reductive half-reaction of wild-type human sulfite oxidase, k(red)(heme) changed very little over the entire pH range, with a significant increase in K(d)(sulfite) at high pH. The k(red)(heme) of the Y343F variant was significantly impaired across the entire pH range, and unlike the wild-type protein, both k(red)(heme) and K(d)(sulfite) were dependent on pH, with a significant increase in both kinetic parameters at high pH. Additionally, reduction of the molybdenum center by sulfite was directly measured for the first time in rapid reaction assays using sulfite oxidase lacking the N-terminal heme-containing domain. Reduction of the molybdenum center was quite fast (k(red)(Mo) = 972 s(-1) at pH 8.65 for wild-type protein), indicating that this is not the rate-limiting step in the catalytic cycle. Reduction of the molybdenum center of the Y343F variant by sulfite was more significantly impaired at high pH than at low pH. These results demonstrate that the Tyr(343) residue is important for both substrate binding and oxidation of sulfite by sulfite oxidase.  相似文献   

13.
Phenylalanine hydroxylase converts phenylalanine to tyrosine utilizing molecular oxygen and tetrahydropterin as a cofactor, and belongs to the aromatic amino acid hydroxylases family. The catalytic domains of these enzymes are structurally similar. According to recent crystallographic studies, residue Tyr179 in Chromobacterium violaceum phenylalanine hydroxylase is located in the active site and its hydroxyl oxygen is 5.1 Å from the iron, where it has been suggested to play a role in positioning the pterin cofactor. To determine the catalytic role of this residue, the point mutants Y179F and Y179A of phenylalanine hydroxylase were prepared and characterized. Both mutants displayed comparable stability and metal binding to the native enzyme, as determined by their melting temperatures in the presence and absence of iron. The catalytic activity (kcat) of the Y179F and Y179A proteins was lower than wild-type phenylalanine hydroxylase by an order of magnitude, suggesting that the hydroxyl group of Tyr179 plays a role in the rate-determining step in catalysis. The KM values for different tetrahydropterin cofactors and phenylalanine were decreased by a factor of 3–4 in the Y179F mutant. However, the KM values for different pterin cofactors were slightly higher in the Y179A mutant than those measured for the wild-type enzyme, and, more significantly, the KM value for phenylalanine was increased by 10-fold in the Y179A mutant. By the criterion of kcat/KPhe, the Y179F and Y179A mutants display 10% and 1%, respectively, of the activity of wild-type phenylalanine hydroxylase. These results are consistent with Tyr179 having a pronounced role in binding phenylalanine but a secondary effect in the formation of the hydroxylating species. In conjunction with recent crystallographic analyses of a ternary complex of phenylalanine hydroxylase, the reported findings establish that Tyr179 is essential in maintaining the catalytic integrity and phenylalanine binding of the enzyme via indirect interactions with the substrate, phenylalanine. A model that accounts for the role of Tyr179 in binding phenylalanine is proposed.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations AAAHs aromatic amino acid hydroxylases - BH2 7,8-dihydro-l-biopterin - BH4 (6R)-5,6,7,8-tetrahydro-l-biopterin - CD circular dichroism - cPAH Chromobacterium violaceum phenylalanine hydroxylase - DMPH4 6,7-dimethyl-5,6,7,8-tetrahydropterin - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - ES-MS electrospray ionization mass spectrometry - hPAH human phenylalanine hydroxylase - ICP-AE inductively coupled plasma atomic emission - 6-MPH4 6-methyl-5,6,7,8-tetrahydropterin - PAH phenylalanine hydroxylase - PH4 tetrahydropterin - PKU phenylketonuria - RDS rate-determining step - TH tyrosine hydroxylase - THA 3-(2-thienyl)-l-alanine - TPH tryptophan hydroxylase - wt wild-type  相似文献   

14.
Cytochrome cbb 3 oxidase, a member of the heme–copper oxidase superfamily, catalyses the reduction of oxygen to water and generates a proton gradient. Cytochrome c oxidases are characterized by a catalytic subunit (subunit I) containing two hemes and one copper ion ligated by six invariant histidine residues, which are diagnostic of heme–copper oxidases in all type of the heme–copper oxidase superfamily. Alignments of the amino acid sequences of subunit I (FixN or CcoN) of the cbb 3-type oxidases show that catalytic subunit also contains six non-canonical histidine residues that are conserved in all CcoN subunits of the cbb 3 oxidase, but not the catalytic subunits of other members of heme–copper oxidases superfamily. The function of these six CcoN-specific conserved histidines of cbb 3-type oxidase in R. capsulatus is unknown. To analyze the contribution of the two invariant histidines of CcoN, H300 and H394, in activity and assembly of the Rhodobacter capsulatus cbb 3-type oxidase, they were substituted for valine and alanine, respectively by site-directed mutagenesis. H300V and H394A mutations were analyzed with respect to their activity and assembly. It was found that H394A mutation led to a defect in the assembly of both CcoP and CcoO in the membrane, which results in almost complete loss of activity and that although the H300V mutant is normally assembled in the membrane and retain their stability, its catalytic activity is significantly reduced when compared with wild-type oxidase.  相似文献   

15.
More than 70% of n-hexadecane-grown cells of Cladosporium resinae ATCC 22711 were converted to spheroplasts when they were treated with chitinase and lytic enzyme from Trichoderma harziamum. The light mitochondrial fraction, containing microbodies, mitochondria and vacuoles, was isolated from spheroplasts. Vacuoles in cells were demonstrated by the inability of acridine orange to stain organelles previously treated with 2.5 μM Bafilomycin A1, a vacuolar ATPase inhibitor. Microbodies, mitochondria and vacuoles were separated from the light mitochondrial fraction by self-generated density-gradient ultracentrifugation using iodixanol as gradient medium. NADH-dependent n-alkane monooxygenase activity and fatty alcohol oxidase activity were located in the cytoplasm and mitochondrial fractions respectively. Received: 21 September 1998 / Received revision: 21 January 1999 / Accepted: 31 January 1999  相似文献   

16.
 Copper(II) complexes derived from the tripodal ligand bis(3′-t–butyl-2′-hydroxybenzyl)(2-pyridylmethyl)amine (LH2) have been studied in order to mimic the redox active site of the free radical-containing copper metalloenzyme galactose oxidase. In non-coordinating solvents such as dichloromethane, only an EPR-silent dimeric complex was obtained (L2Cu2). The crystal structure of L2Cu2 revealed a "butterfly" design of the [Cu(μOR)2Cu] unit, which is not flattened and leads to a short Cu–Cu distance, the t–butyl groups being localized on the same side of the [Cu(μOR)2Cu] unit. The dimeric structure was broken down by acetonitrile or by alcohols, leading quantitatively to a brown mononuclear copper(II) complex. UV-visible and EPR data indicated the coordination of the solvent in these mononuclear complexes. Electrochemical as well as chemical (silver acetate) one-electron oxidation of acetonitrile solutions of the monomeric complex led to a yellow-green solution. Based on EPR, UV-visible and resonance Raman spectroscopy, the one-electron oxidation product was identified as a cupric phenoxyl radical system. It slowly decomposes into a product where the ligand has been substituted (dimerization) in the para position of the hydroxyl group, for one of the phenolic groups. The data for the one-electron oxidized species provides strong evidence for a free-radical copper (II) complex. Received: 19 July 1996 / Accepted: 16 October 1996  相似文献   

17.
The mechanism of ω-6 polyunsaturated fatty acid oxidation by wild-type cyclooxygenase 2 and the Y334F variant, lacking a conserved hydrogen bond to the catalytic tyrosyl radical/tyrosine, was examined for the first time under physiologically relevant conditions. The enzymes show apparent bimolecular rate constants and deuterium kinetic isotope effects that increase in proportion to co-substrate concentrations before converging to limiting values. The trends exclude multiple dioxygenase mechanisms as well as the proposal that initial hydrogen atom abstraction from the fatty acid is the first irreversible step in catalysis. Temperature dependent kinetic studies reinforce the novel finding that hydrogen transfer from the reduced catalytic tyrosine to a terminal peroxyl radical is the first irreversible step that controls regio- and stereospecific product formation.  相似文献   

18.
The cbb 3-type oxidases are members of the heme-copper oxidase superfamily, distant by sequence comparisons, but sharing common functional characteristics. The cbb 3 oxidases are missing an active-site tyrosine residue that is absolutely conserved in all A and B-type heme-copper oxidases. This tyrosine is known to play a critical role in the catalytic mechanisms of A and B-type oxidases. The absence of this tyrosine in the cbb 3 oxidases raises the possibility that the cbb 3 oxidases utilize a different catalytic mechanism from that of the other members of the superfamily, or have this conserved residue in different helices. Recently sequence comparisons indicate that, a tyrosine residues that might be analogous to the active-site tyrosine in other oxidases are present in the cbb 3 oxidases but these tyrosines originates from a different transmembrane helix within the protein. In this research, three conserved tyrosine residues, Y294, Y308 and Y318, in helix VII were substituted for phenylalanine. Y318F mutant in the Rhodobacter capsulatus oxidase resulted in a fully assembled enzyme with nativelike structure and activity, but Y294F mutant is not assembled and have a catalytic activity. On the other hand, Y308F mutant is fully assembled enzyme with nativelike structure, but lacking catalytic activity. This result indicates that Y308 should be crucial in catalytic activity of the cbb 3 oxidase of R. capsulatus. These findings support the assumption that all of the heme-copper oxidases utilize the same catalytic mechanism and provide a residue originates from different places within the primary sequence for different members of the same superfamily.  相似文献   

19.
Plasma and urine of toadfish (Opsanus tau) in sea water and 10% sea water were analyzed to assess responses of an aglomerular fish to hypoosmotic challenge. Following transfer to 10% sea water, plasma osmotic pressure decreased slowly from 318 to 241 mmol · kg H2O−1, over a period of 10–15 days. Urine osmotic pressure decreased in parallel from 299 to 207 mmol · kg H2O−1, leaving urine/plasma ratios of osmotic pressure essentially unchanged. In contrast, the volume and composition of urine changed rapidly following transfer to 10% sea water. Urine flow rate increased 110% from 3.0 to 6.3 μl · 100g−1 · h−1 and Na+ excretion increased 346%, while excretion of Mg2− and SO4 2− decreased 81% and 90%, respectively. Excretion rates for Cl were low in seawater toadfish and decreased further in 10% sea water. An unknown sulfur-containing anion, present in the urine of seawater toadfish, contributed significantly to the composition and ionic balance in urine of toadfish in 10% sea water. These results suggest that the inability to produce strongly dilute urine obliges toadfish to lose salt in order to excrete water, in hypoosmotic media. The decrease in plasma osmotic pressure may be both a strategy to reduce osmotic and ionic gradients in dilute media and a consequence of the kidney's inability to excrete water without salt. Accepted: 22 August 1996  相似文献   

20.
 The reaction with substrates and carbonyl reagents of native lentil Cu-amine oxidase and its modified forms, i.e. Cu-fully-depleted, Cu-half-reconstituted, Cu-fully-reconstituted, Co-substituted, Ni-substituted and Zn-substituted, has been studied. Upon removal of only one of the two Cu ions, the enzyme loses 50% of its enzymatic activity. Using several substrates, Co-substituted lentil amine oxidase is shown to be active but the k c value is different from that of native or Cu-fully-reconstituted enzyme, while K m is similar. On the other hand, the Ni- and Zn-substituted forms are catalytically inactive. Enzymatic activity measurements and optical spectroscopy show that only in the Co-substituted enzyme is the organic cofactor 6-hydroxydopa quinone reactive and the enzyme catalytically competent, although less efficient. The Co-substituted amine oxidase does not form the semiquinone radical as an intermediate of the catalytic reaction. While devoid or reduced of catalytic activity, all the enzyme preparations are still able to oxidise two moles of substrate and to release two moles of aldehyde per mole of dimeric enzyme. The results obtained show that although Co-substituted amine oxidase is catalytically competent, copper is essential for the catalytic mechanism. Received: 5 March 1999 / Accepted: 22 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号