首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p-Hydroxyphenylacetate hydroxylase (HPAH) from Acinetobacter baumannii catalyzes the hydroxylation of p-hydroxyphenylacetate (HPA) to form 3,4-dihydroxyphenylacetate (DHPA). The enzyme system is composed of two proteins: an FMN reductase (C1) and an oxygenase that uses FMNH- (C2). We report detailed transient kinetics studies at 4 degrees C of the reaction mechanism of C2.C2 binds rapidly and tightly to reduced FMN (Kd, 1.2 +/- 0.2 microm), but less tightly to oxidized FMN (Kd, 250 +/- 50 microm). The complex of C -FMNH-2 reacted with oxygen to form C(4a)-hydroperoxy-FMN at 1.1 +/- 0.1 x 10(6) m(-1) s(-1), whereas the C -FMNH-2 -HPA complex reacted with oxygen to form C(4a)-hydroperoxy-FMN-HPA more slowly (k = 4.8 +/- 0.2 x 10(4) m(-1) s(-1)). The kinetic mechanism of C2 was shown to be a preferential random order type, in which HPA or oxygen can initially bind to the C -FMNH-2 complex, but the preferred path was oxygen reacting with C -FMNH-2 to form the C(4a)-hydroperoxy-FMN intermediate prior to HPA binding. Hydroxylation occurs from the ternary complex with a rate constant of 20 s(-1) to form the C2-C(4a)-hydroxy-FMN-DHPA complex. At high HPA concentrations (>0.5 mm), HPA formed a dead end complex with the C2-C(4a)-hydroxy-FMN intermediate (similar to single component flavoprotein hydroxylases), thus inhibiting the bound flavin from returning to the oxidized form. When FADH- was used, C(4a)-hydroperoxy-FAD, C(4a)-hydroxy-FAD, and product were formed at rates similar to those with FMNH-. Thus, C2 has the unusual ability to use both common flavin cofactors in catalysis.  相似文献   

2.
The species richness of C(4) grasses is strongly correlated with temperature, with C(4) species dominating subtropical ecosystems and C(3) types predominating in cooler climates. Here, the effects of low temperatures on C(4) and C(3) grasses are compared, controlling for phylogenetic effects by using Alloteropsis semialata, a unique species with C(4) and C(3) subspecies. Controlled environment and common garden experiments tested the hypotheses that: (i) photosynthesis and growth are greater in the C(4) than the C(3) subspecies at high temperatures, but this advantage is reversed below 20 degrees C; and (ii) chilling-induced photoinhibition and light-mediated freezing injury of leaves occur at higher temperature thresholds in the C(4) than the C(3) plants. Measurements of leaf growth and photosynthesis showed the expected advantages of the C(4) pathway over the C(3) type at high temperatures. These declined with temperature, but were not completely lost until 15 degrees C, and there was no evidence of a reversal to give a C(3) advantage. Chronic chilling (5-15 degrees C) or acute freezing events induced a comparable degree of photodamage in illuminated leaves of both subspecies. Similarly, freezing caused high rates of mortality in the unhardened leaves of both subtypes. However, a 2-week chilling treatment prior to these freezing events halved injury in the C(3) but not the C(4) subspecies, suggesting that C(4) leaves lacked the capacity for cold acclimation. These results therefore suggest that C(3) members of this subtropical species may gain an advantage over their C(4) counterparts at low temperatures via protection from freezing injury rather than higher photosynthetic rates.  相似文献   

3.
Activation of the C component C3 results in generation of the anaphylatoxin C3a. The C3a polypeptide chain consists of 77 amino acids. The active site of this potent mediator, which also has immunoregulatory function resides in its C terminus. This report demonstrates that the C terminus of C3a (C3a-desArg) exposed by proteolytic cleavage from C3 represents a neoantigenic determinant. Two mAb specific for this epitope were obtained after immunization with the synthetic octapeptide (OP) Arg-Ala-Ser-His-Leu-Gly-Leu-Ala [C3a(69-76)] coupled to the carrier keyhole limpet hemocyanin (KLH). These anti-C3a(69-76) antibodies (H453 and H454) reacted in an ELISA system with C3a and KLH-OP but not with C3 or with KLH alone. Free OP efficiently blocked binding of the antibodies to C3a, whereas binding of another anti-C3a mAb (H13) remained unaffected. In immunoblotting analysis, the anti-C3a(69-76) mAb reacted with purified C3a but failed to react with the denatured, noncleaved C3. A novel quantitative C3a-ELISA was established with the anti-C3a(69-76) mAb. It had a sensitivity in the nanogram range (1 to 5 ng/ml). The C3a determination was not impaired by the presence of high concentrations of C3. Therefore, C3 removal was not required in contrast to the previously described C3a assays. This C3a ELISA might facilitate clinical C3a quantitation, e.g., in samples from patients with adult respiratory distress syndrome. In these patients, C3a determination in the early phase of the disease is of diagnostic relevance and has prognostic value.  相似文献   

4.
Plants using the C(4) pathway of carbon metabolism are marked by greater photosynthetic water and nitrogen-use efficiencies (PWUE and PNUE, respectively) than C(3) species, but it is unclear to what extent this is the case in C(3) -C(4) intermediate species. In this study, we examined the PWUE and PNUE of 14 species of Flaveria Juss. (Asteraceae), including two C(3) , three C(4) and nine C(3) -C(4) species, the latter containing a gradient of C(4) -cycle activities (as determined by initial fixation of (14) C into C-4 acids). We found that PWUE, PNUE, leaf ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) content and intercellular CO(2) concentration in air (C(i) ) do not change gradually with C(4) -cycle activity. These traits were not significantly different between C(3) species and C(3) -C(4) species with less than 50% C(4) -cycle activity. C(4) -like intermediates with greater than 65% C(4) -cycle activity were not significantly different from plants with fully expressed C(4) photosynthesis. These results indicate that a gradual increase in C(4) -cycle activity has not resulted in a gradual change in PWUE, PNUE, intercellular CO(2) concentration and leaf Rubisco content towards C(4) levels in the intermediate species. Rather, these traits arose in a stepwise manner during the evolutionary transition to the C(4) -like intermediates, which are contained in two different clades within Flaveria.  相似文献   

5.
The normal PrP(C) (cellular prion protein) contains sLe(X) [sialyl-Le(X) (Lewis X)] and Le(X). sLe(X) is a ligand of selectins. To examine whether PrP(C) is a ligand of selectins, we generated three human PrP(C)-Ig fusion proteins: one with Le(X), one with sLe(X), and the other with neither Le(X) nor sLe(X). Only Le(X)-PrP(C)-Ig binds E-, L- and P-selectins. Binding is Ca(2+)-dependent and occurs with nanomolar affinity. Removal of sialic acid on sLe(X)-PrP(C)-Ig enables the fusion protein to bind all selectins. These findings were confirmed with brain-derived PrP(C). The selectins precipitated PrP(C) in human brain in a Ca(2+)-dependent manner. Treatment of brain homogenates with neuraminidase increased the amounts of PrP(C) precipitated. Therefore the presence of sialic acid prevents the binding of PrP(C) in human brain to selectins. Hence, human brain PrP(C) interacts with selectins in a manner that is distinct from interactions in peripheral tissues. Alternations in these interactions may have pathological consequences.  相似文献   

6.
L-type Ca(2+) channels in native tissues have been found to contain a pore-forming alpha(1) subunit that is often truncated at the C terminus. However, the C terminus contains many important domains that regulate channel function. To test the hypothesis that C-terminal fragments may associate with and regulate C-terminal-truncated alpha(1C) (Ca(V)1.2) subunits, we performed electrophysiological and biochemical experiments. In tsA201 cells expressing either wild type or C-terminal-truncated alpha(1C) subunits in combination with a beta(2a) subunit, truncation of the alpha(1C) subunit by as little as 147 amino acids led to a 10-15-fold increase in currents compared with those obtained from control, full-length alpha(1C) subunits. Dialysis of cells expressing the truncated alpha(1C) subunits with C-terminal fragments applied through the patch pipette reconstituted the inhibition of the channels seen with full-length alpha(1C) subunits. In addition, C-terminal deletion mutants containing a tethered C terminus also exhibited the C-terminal-induced inhibition. Immunoprecipitation assays demonstrated the association of the C-terminal fragments with truncated alpha(1C) subunits. In addition, glutathione S-transferase pull-down assays demonstrated that the C-terminal inhibitory fragment could associate with at least two domains within the C terminus. The results support the hypothesis the C- terminal fragments of the alpha(1C) subunit can associate with C-terminal-truncated alpha(1C) subunits and inhibit the currents through L-type Ca(2+) channels.  相似文献   

7.
H N Lin  Z Q Wang  C H Huang 《Biochemistry》1990,29(30):7063-7072
To examine the thermotropic phase behavior of various mixed-chain phosphatidylcholines in excess water and to compare it with the known behavior of identical-chain phosphatidylcholines, we have carried out high-resolution differential scanning calorimetric (DSC) studies on aqueous dispersions of 10 different mixed-chain phosphatidylcholines. These lipids, C(16):C(18)PC, C(18):C(16)PC, C(15):C(19)PC, C(19):C(15)PC, C(14):C(20)PC, C(20):C(14)PC, C(13):C(21)PC, C(21):C(13)PC, C(12):C(22)PC, and C(22):C(12)PC, have a common molecular weight which is the same as that of C(17):C(17)PC, an identical-chain phosphatidylcholine with a molecular weight of 762.2. When the values of any of the thermodynamic parameters (Tm, delta H, and delta S) of the mixed-chain phosphatidylcholines and C(17):C(17)PC are plotted against the normalized chain-length difference (delta C/CL), a linear function with negative slope is obtained provided that the value of delta C/CL is within the range of 0.09-0.4. The linear relationship suggests that these mixed-chain phospholipids are packed in the gel-state bilayer similar to the bilayer structure of C(17):C(17)PC at T less than Tm; however, the negative slope suggests that the conformational statistics of the hydrocarbon chain and the lateral lipid-lipid interactions of these phosphatidylcholines in the gel-state bilayer are perturbed proportionally by a progressive increase in the chain-length inequivalence between the two acyl chains within each lipid molecule. When the value of delta C/CL for mixed-chain phosphatidylcholines reaches the range of 0.44-0.55, the thermotropic phase behavior deviates markedly from that of less asymmetric phosphatidylcholines, suggesting that these highly asymmetric lipids are packed into mixed interdigitated bilayers at T less than Tm. The heating and cooling pathways of aqueous dispersions prepared from the 10 mixed-chain phospholipids are also discussed.  相似文献   

8.
9.
The role of short-chain fatty acids in the host-seeking behaviour of Triatoma infestans larvae was investigated using a locomotion compensator. Several short-chain fatty acids were tested alone over a wide range of doses, or in combination with L-lactic acid (L-LA; 100 microg). Bugs showed no attractive response to single carboxylic acids, but when L-LA was added to airstreams carrying specific intensities of either propionic (C3; 100 microg), butyric (C4; 1 microg) or valeric acid (C5; 1 microg), these mixtures elicited an attractive response, evincing a synergistic effect. No orientation response was observed when caproic acid (C6) was offered with L-LA at the doses tested. Two blends were created: (1) C3, C4 and C5 combined at the effective doses when added with L-LA [C3C4C5 (1)], and (2) C3, C4 and C5 combined at a third of those intensities [C3C4C5 (2)]. Both blends were tested alone, with L-LA (100 microg), with a sub-threshold concentration of CO(2) (300 p.p.m. above the ambient level), and combined with both compounds together. Oriented responses of bugs were only observed with the blend (2) added with L-LA and with the combination of this lure with CO(2). This last combination evoked a behavioural response similar in intensity to that induced by a live mouse.  相似文献   

10.
Brief shift of purified C5 and C6 at 0 degrees C to pH 6.4, followed by immediate neutralization, results in the generation of a factor, designated C(56)a, that lyses erythrocytes together with C7, C8, and C9. We compared C(56)a and C5b6 generated by an alternative-pathway convertase, with regard to their action on different target cells. We found tht C(56)a is similar to C5b6 in the following properties: 1) Together with C7, C(56)a forms a stable intermediate on either sheep or guinea pig erythrocytes. 2) Membrane-bound C3b, or A2C incorporated in the membrane, enhances lysis by C(56)a-9, as well as lysis by C5b6-9. We also found that the lysis of EC(56)a7 or EC5b67 intermediates by C8 and C9 depends on the species of the erythrocytes and the species of C8 and C9. Thus, lysis of sheep erythrocytes is more efficient with guinea pig C8 and C9 than with human C8 and C9. In the case of guinea pig erythrocytes, this relationship is reversed, i.e., these cells lyse more efficiently when human C8 and C9 are used. Enhancement of lysis by membrane-bound C3b or A2C does not abrogate this species incompatibility pattern.  相似文献   

11.
p-Hydroxyphenylacetate (HPA) hydroxylase (HPAH) from Acinetobacter baumannii catalyzes hydroxylation of HPA to form 3,4-dihydroxyphenylacetate. It is a two-protein system consisting of a smaller reductase component (C(1)) and a larger oxygenase component (C(2)). C(1) is a flavoprotein containing FMN, and its function is to provide reduced flavin for C(2) to hydroxylate HPA. We have shown here that HPA plays important roles in the reaction of C(1). The apoenzyme of C(1) binds to oxidized FMN tightly with a K(d) of 0.006 microM at 4 degrees C, but with a K(d) of 0.038 microM in the presence of HPA. Reduction of C(1) by NADH occurs in two phases with rate constants of 11.6 and 3.1 s(-)(1) and K(d) values for NADH binding of 2.1 and 1.5 mM, respectively. This result indicates that C(1) exists as a mixture of isoforms. However, in the presence of HPA, the reduction of C(1) by NADH occurred in a single phase at 300 s(-)(1) with a K(d) of 25 microM for NADH binding at 4 degrees C. Formation of the C(1)-HPA complex prior to binding of NADH was required for this stimulation. The redox potentials indicate that the rate enhancement is not due to thermodynamics (E degrees (m) of the C(1)-HPA complex is -245 mV compared to an E degrees (m) of C(1) of -236 mV). When the C(1)-HPA complex was reduced by 4(S)-NADH, the reduction rate was changed from 300 to 30 s(-)(1), giving a primary isotope effect of 10 and indicating that C(1) is specifically reduced by the pro-(S)-hydride. In the reaction of reduced C(1) with oxygen, the reoxidation reaction is also biphasic, consistent with reduced C(1) being a mixture of fast and slow reacting species. Rate constants for both phases were the same in the absence and presence of HPA, but in the presence of HPA, the equilibrium shifted toward the faster reacting species.  相似文献   

12.
It has recently been suggested that mixed-chain phosphatidylcholines with normalized chain length differences (deltaC/CL) in the range of 0.10-0.40 undergo spontaneous self-assembly in excess water at T less than Tm into the partially interdigitated bilayer and those with delta C/CL values in the range of 0.44-0.57 form, in excess water, mixed interdigitated bilayers at T less than Tm. The mixing behavior of binary mixtures of C(22):C(12)PC/C(17):C(17)PC, C(22):C(12)/C(15):C(19)PC, and C(15):C(19)PC/C(13):C(21)PC reported in this work is used to support this view. The values of delta C/CL for C(17):C(17)PC, C(15):C(19)PC, C(13):C(21)PC, and C(22):C(12)PC are 0.10, 0.15, 0.35, and 0.55, respectively. The binary mixture of C(15):C(19)PC/C(13):C(21)PC exhibits a lens-shaped phase diagram, indicating that these two identical molecular weight (MW) lipids with delta C/CL values less than 0.4 are completely miscible over the entire compositional range in both gel and liquid-crystalline phases. In contrast, the phase diagrams of C(22):C(12)PC/C(17):C(17)PC and C(22):C(12)PC/C(15):C(19)PC are eutectic, indicating immiscibility of the component lipids over a wide compositional range in the gel phase. This immiscibility of identical MW lipids in the bilayer plane can be attributed to the different packing properties of the component lipids in the bilayer at T less than Tm.  相似文献   

13.
Purified human C3a(C3adesArg) induced dose-dependent generation of intracellular IL 1 activity and release of IL 1 in cultures of human mononuclear adherent cells in serum-free conditions. Concentrations of C3a(C3adesArg) of 10(-8) M and 6 hr of culture were sufficient to induce production of cell-associated IL 1, as detected in monocyte lysates. Ten- to 100-fold higher concentrations of C3a(C3adesArg) and 24 hr of culture were required for induction of IL 1 release. Release of IL 1 induced by suboptimal amounts of C3a(C3adesArg) was greatly enhanced by the addition of indomethacin to the culture medium. Contamination with C5a of the C3a(C3adesArg) preparation did not account for C3a(C3adesArg)-induced IL 1 production. Induction of IL 1 activity by C3a(C3adesArg) was not due to contaminating LPS, as indicated by the following observations: the amount of contaminating LPS in C3a(C3adesArg) was below that which could induce IL 1 release from human monocytes in serum-free conditions; induction of IL 1 by C3a(C3adesArg) was not suppressed by polymyxin B; kinetics of IL 1 production and release in the presence of C3a(C3adesArg) differed from those observed in the presence of LPS; and sialated gangliosides, which inhibit IL 1 release induced by LPS, had no effect on the induction of IL 1 by C3a(C3adesArg). The C3a(C3adesArg) preparation used in this study mostly contained the desArg derivative, suggesting that, in contrast with the requirement for an intact C-terminal arginyl residue for the spasmogenic activity of C3a, both C3a and its C3adesArg derivative may interact with receptors on human monocytes. By inducing IL 1 production and release, C3a(C3adesArg) may contribute to the generation of the inflammatory process and the regulation of the immune response.  相似文献   

14.
Mima J  Kondo T  Hayashi R 《FEBS letters》2002,532(1-2):207-210
Carboxypeptidase Y (CPY) inhibitor, I(C), a yeast cytoplasmic inhibitor in which the N-terminal amino acid is acetylated, was expressed in Escherichia coli and produced as an unacetylated form of I(C) (unaI(C)). Circular dichroism and fluorescence measurements showed that unaI(C) and I(C) were structurally identical and produce identical complexes with CPY. However, the K(i) values for unaI(C) for anilidase and peptidase activity of CPY were much larger, by 700- and 60-fold, respectively, than those of I(C). The reactivities of phenylmethylsulfonyl fluoride and p-chloromercuribenzoic acid toward the CPY-unaI(C) complex were considerably higher than those toward the CPY-I(C) complex. Thus, the N-terminal acetyl group of I(C) is essential for achieving a tight interaction with CPY and for its complete inactivation.  相似文献   

15.
1. (14)C from [1-(14)C]glucose injected intraperitoneally into mice is incorporated into glutamate, aspartate and glutamine in the brain to a much greater extent than (14)C from [2-(14)C]glucose. This difference for [1-(14)C]glucose and [2-(14)C]glucose increases with time. The amount of (14)C in C-1 of glutamate increases steadily with time with both precursors. It is suggested that a large part of the glutamate and aspartate pools in brain are in close contact with intermediates of a fast-turning tricarboxylic acid cycle. 2. (14)C from [1-(14)C]acetate and [2-(14)C]acetate is incorporated to a much larger extent into glutamine than into glutamate. An examination of the time-course of (14)C incorporated into glutamine and glutamate reveals that glutamine is not formed from the glutamate pool, labelled extensively by glucose, but from a small glutamate pool. This small glutamate pool is not derived from an intermediate of a fast-turning tricarboxylic acid cycle. 3. It is proposed that two different tricarboxylic acid cycles exist in brain.  相似文献   

16.
Targeting of T cell epitopes to APC enhances T cell responses. We used an APC-specific Ab (anti-IgD) and substituted either of 18 loops connecting beta strands in human IgG constant H (C(H)) domains with a characterized T cell peptide epitope. All Ab-epitope fusion molecules were secreted from producing cells except IgG-loop 2(BC)C(H)1, and comparing levels, a hierarchy appeared with fusions involving C(H)2 > or = C(H)1 > C(H)3. Within each domain, fusion at loop 6(FG) showed best secretion, while low secretion correlated with the substitution of native loops that contain conserved amino acids buried within the folded molecule. Comparing the APC-specific rAb molecules for their ability to induce T cell activation in vitro, the six mutants with epitope in C(H)2 were the most effective, with loop 4C(H)2 ranking on top. The C(H)1 mutants were more resistant to processing, and the loop 6C(H)1 mutant only induced detectable activation. The efficiency of the C(H)3 mutants varied, with loop 6C(H)3 being the least effective and equal to loop 6 C(H)1. Considering both rAb secretion level and T cell activation efficiency, a total of eight loops may carry T cell epitopes to APC for processing and presentation to T cells, namely, all in C(H)2 in addition to loop 6 in C(H)1 and C(H)3. Comparing loop 4C(H)2 with loop 6C(H)1 mutants after injection of Ab in BALB/c mice, the former was by far the most efficient and induced specific T cell activation at concentrations at least 100-fold lower than loop 6C(H)1.  相似文献   

17.
The thionucleoside 2-thiocytidine (C2S) occurs in nature in transfer RNAs; it receives attention in diverse fields like drug research and nanotechnology. By potentiometric pH titrations we measured the acidity constants of H(C2S)(+) and the stability constants of the M(C2S)(2+) and M(C2S-H)(+) complexes (M(2+) = Zn(2+), Cd(2+)), and we compared these results with those obtained previously for its parent nucleoside, cytidine (Cyd). Replacement of the (C2)=O unit by (C2)=S facilitates the release of the proton from (N3)H(+) in H(C2S)(+) (pK (a) = 3.44) somewhat, compared with H(Cyd)(+) (pK (a) = 4.24). This moderate effect of about 0.8 pK units contrasts with the strong acidification of about 4 pK units of the (C4)NH(2) group in C2S (pK (a) = 12.65) compared with Cyd (pK (a) approximately 16.7); the reason for this result is that the amino-thione tautomer, which dominates for the neutral C2S molecule, is transformed upon deprotonation into the imino-thioate form with the negative charge largely located on the sulfur. In the M(C2S)(2+) complexes the (C2)S group is the primary binding site rather than N3 as is the case in the M(Cyd)(2+) complexes, though owing to chelate formation N3 is to some extent still involved in metal ion binding. Similarly, in the Zn(C2S-H)(+) and Cd(C2S-H)(+) complexes the main metal ion binding site is the (C2)S(-) unit (formation degree above 99.99% compared with that of N3). However, again a large degree of chelate formation with N3 must be surmised for the M(C2S-H)(+) species in accord with previous solid-state studies of related ligands. Upon metal ion binding, the deprotonation of the (C4)NH(2) group (pK (a) = 12.65) is dramatically acidified (pK (a) approximately 3), confirming the very high stability of the M(C2S-H)(+) complexes. To conclude, the hydrogen-bonding and metal ion complex forming capabilities of C2S differ strongly from those of its parent Cyd; this must have consequences for the properties of those RNAs which contain this thionucleoside.  相似文献   

18.
The metabolic physiology of the Crested Pigeon (Ocyphaps lophotes) and the Brush Bronzewing (Phaps elegans) is generally similar to that expected for birds of their size, but the Crested Pigeon has a number of characteristics which would aid survival in hot and dry regions. Body temperature increased similarly for the Crested Pigeon (from 38.8 degrees C to 41.5 degrees C) and the Brush Bronzewing (39.3 degrees C to 41.4 degrees C) over ambient temperatures (T(a)s) from 10 degrees C to 35 degrees C. Both species became hyperthermic (body temperature, T(b)>42 degrees C) at T(a)=45 degrees C. Basal metabolic rate of the Crested Pigeon (0.65 ml O(2) g(-1) h(-1) at 40 degrees C) was approximately 71% of that predicted for a columbid bird, while BMR of the Brush Bronzewing (0.87 ml O(2) g(-1) h(-1) at 20 degrees C to 40 degrees C) was approximately 102% of predicted. Total evaporative water loss increased exponentially with T(a) for both species, from <1 mg H(2)O g(-1) h(-1) at 10 degrees C to >12 mg H(2)O g(-1) h(-1) at 45 degrees C. It was similar and low for both species at T(a)<30 degrees C, but was higher for the Brush Bronzewing than the Crested Pigeon at T(a)>30 degrees C. Ventilatory minute volume matched oxygen consumption, such that oxygen extraction efficiency did not change with T(a) and was similar for both species (approximately 20%). Expired air temperature was considerably lower than T(b) for both species at T(a)<35 degrees C, potentially reducing respiratory water loss by approximately 65% at T(a)=10 degrees C to approximately 30% at T(a)=35 degrees C. Cutaneous evaporative cooling was significant for both species, with skin resistance decreasing as T(a) increased. The Crested Pigeon had a lower skin resistance than the Brush Bronzewing at T(a)=45 degrees C. The Brush Bronzewing had apparently reached its maximum cutaneous water loss at 30 degrees C and relied on panting to cool at higher T(a).  相似文献   

19.
H Xu  C H Huang 《Biochemistry》1987,26(4):1036-1043
The asymmetric C(18):C(10)PC molecules are known by X-ray diffraction to self-assemble, in excess water, into a lamellar structure known as the mixed interdigitated bilayer at T less than Tm. In this structure, the long C(18)-acyl chain is interdigitated fully across the entire hydrocarbon width of the bilayer, while the shorter C(10)-acyl chain, which is about half as long as the C(18)-acyl chain, packs end to end with a C(10)-acyl chain of another lipid molecule in the opposing bilayer leaflet. We have synthesized the following asymmetric phosphatidylcholines (PC's): C(16):C(9)PC, C(16):C(10)PC, C(18):C(10)PC, C(18):C(11)PC, C(20):C(11)PC, C(20):C(12)PC, C(22):C(12)PC, C(22):C(13)PC, C(8):C(18)PC, and C(10):C(22)PC. These 10 asymmetric phosphatidylcholines have a common characteristic; i.e., the length of the longer extended acyl chain is about twice as long as that of the shorter acyl chain. On the basis of the known lamellar structure of C(18):C(10)PC, we anticipate that these asymmetric phosphatidylcholines will also form mixed interdigitated bilayers. We have employed high-resolution differential scanning calorimetry (DSC) to investigate the thermotropic behavior of liposomes prepared from these asymmetric phosphatidylcholines. If our anticipation is correct, one would find that the thermodynamic data (Tm, delta H, or delta S) associated with the main thermal phase transitions of these asymmetric phosphatidylcholine dispersions will fit into a continuous curve as they are plotted as a function of the hydrocarbon width of the putative mixed interdigitated bilayer. Experimental data presented in this paper indeed bear this out. For comparison, a DSC study of multilamellar dispersions prepared from a series of saturated symmetric phosphatidylcholines has also been carried out.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Factor V(a) (FV(a)) is a cofactor for the serine protease factor X(a) that activates prothrombin to thrombin in the presence of Ca(2+) and a membrane surface. FV(a) is a heterodimer composed of one heavy chain (A1 and A2 domains) and one light chain (A3, C1, and C2 domains). We use fluorescence, circular dichroism, and equilibrium dialysis to demonstrate that (1) the FV C2 domain expressed in Sf9 cells binds one molecule of C6PS with a k(d) of approximately 2 microM, (2) stabilizing changes occur in the FV C2 domain upon C6PS binding, (3) the C6PS binding site in the FV C2 domain is located near residue Cys(2113), which reacts with DTNB, and (4) binding to a PS-containing membrane is an order of magnitude tighter than that to soluble C6PS. Coupled with a recently published crystal structure of the C2 domain, these results support a model for the mechanism of C2-membrane interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号