首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative destruction of DNA by the adriamycin-iron complex   总被引:7,自引:0,他引:7  
H Eliot  L Gianni  C Myers 《Biochemistry》1984,23(5):928-936
The 2:1 adriamycin-Fe(III) complex is able to bind to DNA and to catalyze its oxidative destruction. The binding of the drug-metal complex to DNA is indicated by characteristic spectral changes which are different from those seen with adriamycin intercalation and by the propensity of the drug-metal complex to precipitate DNA. Furthermore, intercalated adriamycin appears not to be available for iron binding. The resulting ternary complex is quite stable: it is not disrupted by incubation in the presence of EDTA and can be isolated by using Sephadex G-50 column chromatography. Disruption of the ternary complex requires vigorous conditions (extraction with phenol at 60 degrees C). The adriamycin-iron complex in free solution has the capacity to catalyze the reduction of oxygen by thiols. The DNA-bound drug-metal complex preserves this capacity over a wide range of complex/DNA ratios. As a consequence of this thiol-dependent oxygen reduction, DNA is cleaved. This thiol-dependent DNA cleavage has been shown to require hydrogen peroxide as an intermediate product. These results have led us to propose that the thiol-dependent DNA cleavage reaction has two stages involving (1) reduction of oxygen leading to hydrogen peroxide and then (2) peroxide-dependent DNA cleavage. An unusual property of this reaction is that the cleavage is not random but gives rise to a defined 2300 base pair fragment.  相似文献   

2.
Fe(III) complexes of two anthracyclines, adriamycin and daunorubicin, have been studied. Using potentiometric and spectroscopic measurements, we have shown that adriamycin and daunorubicin form two well-defined species with Fe(III), which can be formulated as respectively Fe(HAd)3 and Fe(HDr)3. In these formulas, HAd and HDr stand for adriamycin and daunorubicin in which the 1,4-dihydroxy-anthraquinone moiety is half-deprotonated. Both complexes are six-membered chelates. The stability constant is beta = (2.5 +/- 0.5) X 10(28) for both complexes. Interaction with DNA has been studied showing that, despite strong coordination to Fe(III), anthracyclines are able to intercalate between DNA bases pairs, releasing the metal. These complexes display antitumor activity against P 388 leukemia that compares with that of the free drug. Fe(HAd)3, unlike adriamycin, does not catalyze the flow of electrons from NADH to molecular oxygen through NADH dehydrogenase. Moreover, it is shown that the triferric adriamycin compound so called "quelamycin" is in fact a mixture of Fe(HAd)3 and polymeric ferric hydroxide.  相似文献   

3.
Adriamycin-Fe3+ complex catalyzes the formation of hydroxyl radical from hydrogen peroxide but the DNA-adriamycin-iron ternary complex is much more effective. 11-Deoxyadriamycin, which shows no spectral evidence of complex formation with iron, was ineffective. The generation of hydroxyl radical by adriamycin-Fe3+ complex in the presence of DNA correlates with its ability to cleave DNA. Hydroxyl radicals are thus implicated as the reactive oxygen species involved in the DNA damage caused by the adriamycin-Fe3+ complex.  相似文献   

4.
The formation of hydroxyl radical (OH·) from the oxidation of glutathione, ascorbic acid, NADPH, hydroquinone, catechol, and riboflavin by hydrogen peroxide was studied using a range of enzymes and copper and iron complexes as possible catalysts. Copper-1,10-phenanthroline appears to catalyze the production of OH· from hydrogen peroxide without superoxide radical being formed as an intermediate, and without the involvement of a catalyzed Haber-Weiss (Fenton) reaction. Superoxide radical is involved, however, in the Cu2+ -catalyzed decomposition of hydrogen peroxide, and in the oxidation of glutathione by atmospheric oxygen. For this latter oxidation, copper-4,7-dimethyl-1,10-phenanthroline was found to be a much more effective catalyst than the copper complex of 1,10-phenanthroline, which is normally used. Mechanisms for these reactions are proposed, and the toxicological significance of the ability of a variety of biological reductants to provide a prolific source of OH· when oxidized by hydrogen peroxide is discussed.  相似文献   

5.
5-Iminodaunomycin forms a 3:1 complex with Fe(III) at pH 7.4. Drug-metal complex formation is associated with a marked decline in absorbance at 548 and 593 nm and the appearance of a broad band above 625 nm. The 5-iminodaunomycin-Fe(III) complex reacts with hydrogen peroxide to yield .OH radicals. This reaction is at a maximum at a drug/iron ratio of 2:1, and the yield is far less than that obtained with the doxorubicin-iron complex. In contrast to the results with doxorubicin, the production of .OH declines markedly at high 5-iminodaunomycin/iron ratios. There is a close parallel between the formation of hydroxyl radicals and the ability of the 5-iminodaunomycin complex to nick supercoiled SV40 DNA. The suppression of both .OH and DNA damage at high 5-iminodaunomycin:iron ratios is the result of several factors. 1) The presence of DNA stimulates .OH production from the doxorubicin complex, but not 5-iminodaunomycin; 2) doxorubicin reduces its chelated Fe(III) to Fe(II), but 5-iminodaunomycin does not; 3) 5-iminodaunomycin forms such a stable drug-metal complex that solvent water and, therefore, presumably H2O2, has diminished access to the chelated iron. The affinity of 5-iminodaunomycin is such that it can quantitatively abstract iron from doxorubicin. As a result, 5-iminodaunomycin is an effective competitive inhibitor of .OH radical formation by the doxorubicin-iron complex.  相似文献   

6.
The hydrogen peroxide dependent oxidation of the epinephrinecopper complex to adrenochrome is mediated by free copper ions. The oxidation is enhanced by chloride ions and by the presence of serum albumin. The reaction is not inhibited by SOD or by hydroxyl radical scavengers.

The 2:1 epinephrine or dopamine:Cu(II) complexes are able to bind to DNA and to catalyze its oxidative destruction in the presence of hydrogen peroxide. The DNA-epinephrine-Cu(II) terenary complex has characteristic spectral properties. It has the capacity to catalyze the reduction of oxygen or H2O2 and it preserves the capacity over a wide range of comp1ex:DNA ratios. The rate of DNA cleavage is proportional to the rate of epinephrine oxidation and the rate determining step of the reaction Seems to be the reduction of free Cu(II) ions. The ability to form redox active stable DNA ternary complexes, suggests that under specific physiological conditions, when “free” copper ions are available. catecholamina may induce oxidative degradation of DNA and other biological macromolecules.  相似文献   

7.
《Free radical research》2013,47(1):499-508
The hydrogen peroxide dependent oxidation of the epinephrinecopper complex to adrenochrome is mediated by free copper ions. The oxidation is enhanced by chloride ions and by the presence of serum albumin. The reaction is not inhibited by SOD or by hydroxyl radical scavengers.

The 2:1 epinephrine or dopamine:Cu(II) complexes are able to bind to DNA and to catalyze its oxidative destruction in the presence of hydrogen peroxide. The DNA-epinephrine-Cu(II) terenary complex has characteristic spectral properties. It has the capacity to catalyze the reduction of oxygen or H2O2 and it preserves the capacity over a wide range of comp1ex:DNA ratios. The rate of DNA cleavage is proportional to the rate of epinephrine oxidation and the rate determining step of the reaction Seems to be the reduction of free Cu(II) ions. The ability to form redox active stable DNA ternary complexes, suggests that under specific physiological conditions, when “free” copper ions are available. catecholamina may induce oxidative degradation of DNA and other biological macromolecules.  相似文献   

8.
The effect of the purple acid phosphatases with binuclear iron centers (uteroferrin and bovine spleen phosphatase) on hydroxyl radical formation by iron-catalyzed Haber-Weiss-Fenton chemistry has been compared to that of lactoferrin and transferrin. Using 5,5-dimethyl-1-pyrroline-1-oxide to detect superoxide and hydroxyl radicals and the xanthine-xanthine oxidase system to generate superoxide and hydrogen peroxide, we have observed by ESR spectroscopy that both phosphatases were able to promote hydroxyl radical formation. Lactoferrin and transferrin were found incapable of giving rise to these reactive species. This can be explained by the fact that lactoferrin and transferrin carry two Fe(III) atoms per molecule, neither of which are readily reduced by biological reductants. In contrast, the phosphatases possess a binuclear iron center in which one of the iron atoms is stabilized in the ferric state, but the other freely undergoes one-electron redox reactions. The redox-active iron may act as a catalyst of the Haber-Weiss-Fenton sequence, thus enabling the reactions generating hydroxyl radical to proceed. The iron complex of diethylenetriamine penta-acetic acid, also redox active, was investigated and found as well to promote Haber-Weiss-Fenton chemistry.  相似文献   

9.
Hydroxyl radicals yield footprints of DNA-ligand interactions that are uniform in intensity and display single base pair resolution. It is shown here that brief illumination of dilute aqueous solutions of hydrogen peroxide with a standard uv transilluminator can be used to generate hydroxyl radicals for footprinting studies. Photogenerated hydroxyl radicals are used to footprint netropsin, a drug that interacts with the minor groove of DNA. The method presented eliminates two of the reagents used in conventional Fenton-reaction-based hydroxyl radical footprinting. It has the further advantage that the extent of cleavage of the DNA can be precisely regulated by controlling the illumination time. Because light is used to drive the reaction, photogenerated hydroxyl radicals can be used to footprint DNA-ligand interactions under experimental conditions of temperature and pressure inaccessible to Fenton-reaction chemistry.  相似文献   

10.
Anaerobic reduction of hydrogen peroxide in a xanthine/xanthine oxidase system by adriamycin semiquinone in the presence of chelators and radical scavengers was investigated by direct electron paramagnetic resonance and spin trapping techniques. Under these conditions, adriamycin semiquinone appears to react with hydrogen peroxide forming the hydroxyl radical in the presence of chelators such as ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid. In the absence of chelators, a related, but unknown oxidant is formed. In the presence of desferrioxamine, adriamycin semiquinone does not disappear in the presence of hydrogen peroxide at a detectable rate. The presence of adventitious iron is therefore implicated during adriamycin semiquinone-catalyzed reduction of hydrogen peroxide. Formation of alpha-hydroxyethyl radical and carbon dioxide radical anion from ethanol and formate, respectively, was detected by spin trapping. Both the hydroxyl radical and the related oxidant react with these scavengers, forming the corresponding radical. In the presence of scavengers from which reducing radicals are formed, the rate of consumption of hydrogen peroxide in this system is increased. This result can be explained by a radical-driven Fenton reaction.  相似文献   

11.
To help settle controversy as to whether the chelating agent diethylenetriaminepentaacetate (DTPA) supports or prevents hydroxyl radical production by superoxide/hydrogen peroxide systems, we have reinvestigated the question by spectroscopic, kinetic, and thermodynamic analyses. Potassium superoxide in DMSO was found to reduce Fe(III)DTPA. The rate constant for autoxidation of Fe(II)DTPA was found (by electron paramagnetic resonance spectroscopy) to be 3.10 M-1 s-1, which leads to a predicted rate constant for reduction of Fe(III)DTPA by superoxide of 5.9 x 10(3) M-1 s-1 in aqueous solution. This reduction is a necessary requirement for catalytic production of hydroxyl radicals via the Fenton reaction and is confirmed by spin-trapping experiments using DMPO. In the presence of Fe(III)DTPA, the xanthine/xanthine oxidase system generates hydroxyl radicals. The reaction is inhibited by both superoxide dismutase and catalase (indicating that both superoxide and hydrogen peroxide are required for generation of HO.). The generation of hydroxyl radicals (rather than oxidation side-products of DMPO and DMPO adducts) is attested to by the trapping of alpha-hydroxethyl radicals in the presence of 9% ethanol. Generation of HO. upon reaction of H2O2 with Fe(II)DTPA (the Fenton reaction) can be inhibited by catalase, but not superoxide dismutase. The data strongly indicate that iron-DTPA can catalyze the Haber-Weiss reaction.  相似文献   

12.
Electron spin resonance measurements provide evidence for the formation of long-lived Cr(V) intermediates in the reduction of Cr(VI) by glutathione reductase in the presence of NADPH and for the hydroxyl radical formation during the glutathione reductase catalyzed reduction of Cr(VI). Hydrogen peroxide suppresses Cr(V) and enhances the formation of hydroxyl radicals. Thus Cr(V) intermediates catalyze generation of hydroxyl radicals from hydrogen peroxide through a Fenton-like reaction. Thus the mechanism of Cr(VI) toxicity might involve the interaction between macromolecules and the hydroxyl radicals.  相似文献   

13.
The siderophore desferrioxamine (DEFOM) binds ferric ions in a 1:1 ratio resulting in a ferrioxamine (FOM) complex. When DEFOM is stored or heat degraded, the resulting FOMD undergoes an autoreduction with the transfer of electrons to the bound ferric ions forming ferrous ions, which react with Ferrozine to yield a pink-coloured complex absorbing at 562 nm. Heat-aged DEFOM forms a FOND complex with an absorption maxima changing from 432 nm to 441 nm. When the autoreduced FOMD complex is placed in a phosphate buffer at pH 7.4, ferrous ions autoxidase transferring electrons to molecular oxygen to form superoxide and hydrogen peroxide. Fenton chemistry leading to the formation of hydroxyl radicals can then occur. Studies with a variety of reactive oxygen scavengers support a role for the hydroxyl radical in damage to the detector molecule deoxyribose. However, when EDTA is present, damage to deoxyribose is decreased and the radicals causing deoxyribose degradation no longer appear to be characteristic of the hydroxyl radical.  相似文献   

14.
《Free radical research》2013,47(3-6):383-389
Autoxidation of 5–hydroxyprimaquine, a putative metabolite of the antimalarial primaquine, was studied by oxygen consumption and ESR spectroscopy. 5–Hydroxyprirnaquine undenvent fast autoxidation under mild conditions (pH 7.4-8. 5, 25°C. and presence of I mM diethylenetriamine pentaacetic acid); each mol of the drug consumed 0.75 mol of oxygen and formed 0.5 mol of hydrogen peroxide. Direct-ESR experiments demonstrated that 5–hydroxyprimaquine autoxidation was accompanied by generation of a drug-derived free radical that is oxygen sensitive. Generation of hydroxyl radical was also established by spin-trapping experiments in the presence of 5,5–dimethyl-l-pyrroline N-oxide. The effect of antioxidant enzymes on hydroxyl radical adduct yield and analysis of autoxidation stoichiometry suggest that the main route for hydroxyl radical generation is the iron-catalyzed reaction between the drug-derived free radical and hydrogen peroxide.  相似文献   

15.
Carcinogenic chromium(VI), iron(III) nitrilotriacetate, cobalt(II), and nickel(II) react with hydrogen peroxide leading to the production of active species including hydroxyl radical and singlet oxygen, which cause DNA damage.  相似文献   

16.
Quinolinate (pyridine-2,3-dicarboxylic acid, Quin) is a neurotoxic tryptophan metabolite produced mainly by immune-activated macrophages. It is implicated in the pathogenesis of several brain disorders including HIV-associated dementia. Previous evidence suggests that Quin may exert its neurotoxic effects not only as an agonist on the NMDA subtype of glutamate receptor, but also by a receptor-independent mechanism. In this study we address ability of ferrous quinolinate chelates to generate reactive oxygen species. Autoxidation of Quin-Fe(II) complexes, followed in Hepes buffer at pH 7.4 using ferrozine as the Fe(II) detector, was found to be markedly slower in comparison with iron unchelated or complexed to citrate or ADP. The rate of Quin-Fe(II) autoxidation depends on pH (squared hydroxide anion concentration), is catalyzed by inorganic phosphate, and in both Hepes and phosphate buffers inversely depends on Quin concentration. These observations can be explained in terms of anion catalysis of hexaaquairon(II) autoxidation, acting mainly on the unchelated or partially chelated pool of iron. In order to follow hydroxyl radical generation in the Fenton chemistry, electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was employed. In the mixture consisting of 100 mM DMPO, 0.1 mM Fe(II), and 8.8 mM hydrogen peroxide in phosphate buffer pH 7.4, 0.5 mM Quin approximately doubled the yield of DMPO-OH adduct, and higher Quin concentration increased the spin adduct signal even more. When DMPO-OH was pre-formed using Ti3+/hydrogen peroxide followed by peroxide removal with catalase, only addition of Quin-Fe(II), but not Fe(II), Fe(III), or Quin-Fe(III), significantly promoted decomposition of pre-formed DMPO-OH. Furthermore, reaction of Quin-Fe(II) with hydrogen peroxide leads to initial iron oxidation followed by appearance of iron redox cycling, detected as slow accumulation of ferrous ferrozine complex. This phenomenon cannot be abolished by subsequent addition of catalase. Thus, we propose that redox cycling of iron by a Quin derivative, formed by initial attack of hydroxyl radicals on Quin, rather than effects of iron complexes on DMPO-OH stability or redox cycling by hydrogen peroxide, is responsible for enhanced DMPO-OH signal in the presence of Quin. The present observations suggest that Quin-Fe(II) complexes display significant pro-oxidant characteristics that could have implications for Quin neurotoxicity.  相似文献   

17.
Reactivities of chromium compounds with DNA were investigated by the DNA sequencing technique using 32P 5'-end-labeled DNA fragments, and the reaction mechanism was investigated by ESR spectroscopy. Incubation of double-stranded DNA with sodium chromate(VI) plus hydrogen peroxide or potassium tetraperoxochromate(V) led to the cleavage at the position of every base, particularly of guanine. Even without piperidine, the formation of oligonucleotides was observed, suggesting the breakage of the deoxyribose-phosphate backbone. ESR studies using hydroxyl radical traps demonstrated that hydroxyl radical is generated both during the reaction of sodium chromate(VI) with hydrogen peroxide and the decomposition of potassium tetraperoxochromate(V), and that hydroxyl radical reacts significantly not only with mononucleotides but also with deoxyribose 5-phosphate. ESR studies using a singlet oxygen trap demonstrated that singlet oxygen is also generated both by the same reaction and decomposition, and reacts significantly with deoxyguanylate, but scarcely reacts with other mononucleotides. Furthermore, ESR studies suggested that tetraperoxochromate(V) is formed by the reaction of sodium chromate(VI) with hydrogen peroxide. These results indicate that sodium chromate(VI) reacts with hydrogen peroxide to form tetraperoxochromate(V), leading to the production of the hydroxyl radical, which causes every base alteration and deoxyribose-phosphate backbone breakage. In addition, sodium chromate(VI) plus hydrogen peroxide generates singlet oxygen, which subsequently oxidizes the guanine residue. The mechanism by which both hydroxyl radical and singlet oxygen are generated during the reaction of sodium chromate(VI) with hydrogen peroxide was presented. Finally, the possibility that this reaction may be one of the primary reactions of carcinogenesis induced by chromate(VI) is discussed.  相似文献   

18.
Quinolinate (pyridine-2,3-dicarboxylic acid, Quin) is a neurotoxic tryptophan metabolite produced mainly by immune-activated macrophages. It is implicated in the pathogenesis of several brain disorders including HIV-associated dementia. Previous evidence suggests that Quin may exert its neurotoxic effects not only as an agonist on the NMDA subtype of glutamate receptor, but also by a receptor-independent mechanism. In this study we address ability of ferrous quinolinate chelates to generate reactive oxygen species. Autoxidation of Quin-Fe(II) complexes, followed in Hepes buffer at pH 7.4 using ferrozine as the Fe(II) detector, was found to be markedly slower in comparison with iron unchelated or complexed to citrate or ADP. The rate of Quin-Fe(II) autoxidation depends on pH (squared hydroxide anion concentration), is catalyzed by inorganic phosphate, and in both Hepes and phosphate buffers inversely depends on Quin concentration. These observations can be explained in terms of anion catalysis of hexaaquairon(II) autoxidation, acting mainly on the unchelated or partially chelated pool of iron. In order to follow hydroxyl radical generation in the Fenton chemistry, electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was employed. In the mixture consisting of 100 mM DMPO, 0.1 mM Fe(II), and 8.8 mM hydrogen peroxide in phosphate buffer pH 7.4, 0.5 mM Quin approximately doubled the yield of DMPO-OH adduct, and higher Quin concentration increased the spin adduct signal even more. When DMPO-OH was pre-formed using Ti3+/hydrogen peroxide followed by peroxide removal with catalase, only addition of Quin-Fe(II), but not Fe(II), Fe(III), or Quin-Fe(III), significantly promoted decomposition of pre-formed DMPO-OH. Furthermore, reaction of Quin-Fe(II) with hydrogen peroxide leads to initial iron oxidation followed by appearance of iron redox cycling, detected as slow accumulation of ferrous ferrozine complex. This phenomenon cannot be abolished by subsequent addition of catalase. Thus, we propose that redox cycling of iron by a Quin derivative, formed by initial attack of hydroxyl radicals on Quin, rather than effects of iron complexes on DMPO-OH stability or redox cycling by hydrogen peroxide, is responsible for enhanced DMPO-OH signal in the presence of Quin. The present observations suggest that Quin-Fe(II) complexes display significant pro-oxidant characteristics that could have implications for Quin neurotoxicity.  相似文献   

19.
The reaction of ferrous bleomycin with dioxygen is reexamined to clarify whether radical species derived from molecular oxygen are generated. Detection of low levels of spin-trapped oxyradicals confirm the production of OH during this reaction when bleomycin is present in excess, but not when iron and drug concentrations are equal. In phosphate buffer, hydroxyl radicals continue to be spin trapped for at least 15 min after Fe(II)bleomycin has been oxidized to Fe(III)bleomycin. In HEPES buffer, detection of a HEPES radical in the absence of spin trap over the same period independently supports the conclusion that reactive radicals are present after the initial oxidation of Fe(II)bleomycin is complete. When glutathione is included in the aerobic reaction mixture, thiyl radical species are spin trapped. The reaction of Fe(III)bleomycin with cysteine produces thiyl radical without spin-trapped hydroxyl radical.  相似文献   

20.
Dissolved Fe(II) and humic acid (HA) were pre-impregnated into contaminated soil to catalyze hydrogen peroxide to remove crude oil (CO). The effects of parameters such as initial Fe(II), HA and H2O2 concentrations on the oxidation of total petroleum hydrocarbon (TPH) were investigated using response surface methodology based on Box–Behnken design. The rate of hydrogen peroxide decomposition is decreased by pre-impregnating with dissolved Fe(II) + HA compared with only pre-impregnated Fe(II) and modified Fenton (MF). Oxygen evolution is the predominant route of hydrogen peroxide decomposition at natural pH. Unlike O2 evolution, the kinetics of hydroxyl radical (OH?) production are clearly uncoupled from H2O2 decay in these systems. The steady-state hydroxyl radical production rate is higher in the systems with pre-impregnated dissolved Fe(II) and HA, and more significance is the decrease in detectable TPH (70.84% removal efficiency) when soil is pre-impregnated with dissolved 25 mM Fe(II) + 0.7 mg/mL HA, and with the application of 700 mM H2O2, possibly due to hydrogen peroxide catalyzed by the iron of this complex (CO-HA–Fe(II)) producing hydroxyl radical in close proximity to the CO. Meanwhile, the removal efficiency of C21–C30 is up to 65.69%, which is 2.6 times higher than that of the MF (25.52%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号