首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Mucus-producing cells were isolated from swine trachea mucosa by a method that included enzymatic digestion of the epithelial surface with Dispase, a neutral protease fromBacillus polymyxa, and differential attachment of the washed cells to culture flasks coated with collagen. Epithelial cells were the major cell type isolated by these procedures. Ciliated cells that did not attach to the flasks were removed by decantation, and fibroblasts were destroyed by the bacterial protease. The isolated cells synthesized respiratory mucins and the rate of secretion was increased about threefold when tracheas were exposed to sulfur dioxide. The cultured cells incorporated both [35S]O4 and [I-14C]N-acetylglucosamine into secreted mucin glycoproteins. The secretion of glycoprotein increased for about 3 d until the cells became confluent, and then a constant rate was observed for a period of at least 7 d. This increase in the output of mucin glycoprotein during the initial 3 d of culture was accompanied by a corresponding increase in the number of mucus-producing cells in the flasks. The results obtained in these and subsequent studies suggest that the rate of formation of mucus-producing cells may be a rate limiting step in the regulation of mucin glycoprotein synthesis in tracheal epithelium. The chemical, physical, and immunological properties of the glycoprotein secreted by isolated tracheal epithelial cells were very similar to the mucin glycoprotein purified from washes of swine trachea epithelium. The purified mucin glycoproteins showed complete cross-reaction with antibodies to trachea mucin glycoprotein. They were eluted near the void volume during gel filtration on Sepharose CL-6B columns. The glycoprotein isolated from culture media under the standard assay conditions had nearly the same carbohydrate composition as samples purified from washes of trachea epithelium. Reduced oligosaccharides released by β-elimination with dilute alkaline borohydride showed similar elution profiles during chromatography on Bio Gel P-6 colums. Taken collectively, these results suggest that the isolated epithelial cells secreted mucin glycoproteins that were very similar to those synthesized by the intact trachea epithelium under standard incubation conditions. This investigation was supported by United States Public Health Service Grant HL 20868 from the National Heart, Lung and Blood Institute and AM 28187 from the National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases.  相似文献   

2.
Summary RNA was isolated from cultured swine trachea epithelial cells and mucus-secreting tumor cell lines from human pancreas, lung and colon by extraction with guanidine isothiocyanate. Poly(A)+mRNA rich fractions were purified by repeated chromatography on oligo (dT)-cellulose columns and they were translated in a cell-free rabbit reticulocyte system. Translation products labelled with 35S-methionine were isolated by immunoprecipitation with specific antibodies to the polypeptide chains of mucin glycoproteins and they were analyzed by SDS-PAGE and fluorography. A single principal polypeptide band of 67 kDa was found in all cases when the immunoprecipitates were washed with buffer containing bovine serum albumin and unlabeled deglycosylated mucin glycoprotein. The intensity of the 67 kDa band decreased when unlabeled deglycosylated mucin glycoprotein was added to the translation mixture before immunoprecipitation. Affinity purified monospecific antibodies elicited against chemically deglycosylated polypeptide chains of purified mucin glycoproteins from human and swine trachea and Cowper's gland were all equally effective in immunoprecipitating the 67 kDa translation product. Monospecific antibodies directed against the glycosylated and unglycosylated regions of the polypeptide chain yielded single bands with a molecular size of 67 kDa in each case. Peptide profiles obtained by digestion of the 67 kDa translation product with S. aureus V-8 protease were identical to those obtained with deglycosylated human and swine trachea mucin glycoproteins.These stydies clearly demonstrate that the translation product of swine trachea and human lung, colon and pancreatic mucin glycoprotein gene is a single polypeptide chain of 67 kDa. The relative size and properties of the translation products synthesized with poly (A)+RNA isolated from mucus-secreting cells derived from three different tissues are similar to those of mucin glycoproteins purified directly from mucus secretions of human and swine trachea epithelium.Abbreviations TFMS Trifluoromethanesulfonic acid - SDS Sodium Dodecyl Sulfate - PAGE Polyacrylamide Gel Electrophoresis - GalNAc N-Acetylgalactosamine - HTMG Human Trachea Mucin Glycoprotein - deHTMG deglycosylated Human Trachea Mucin Glycoprotein - STMG Swine Trachea Mucin Glycoprotein - deSTMG deglycosylated Swine Trachea Mucin Glycoprotein - CCMG Cowper's Gland Mucin Glycoprotein - deCGMG deglycosylated Cowper's Gland Mucin Glycoprotein - HPMG Pancreatic Mucin Glycoprotein from BxPC-3 cells - HCMG Colon Mucin Glycoprotein from SW 403 cells - HLMG Human Lung Mucin Glycoprotein from A-549 cells - STMG+deSTMG antibodies which bind to immobilized STMG but do not bind to immobilized deSTMG - deSTMG+STMG antibodies which bind to immobilized deSTMG but do not bind to immobilized STMG - STMG+deSTMG+ antibodies which bind to both STMG and deSTMG - HTMG+deHTMG antibodies which bind to immobilized HTMG but do not bind to immobilized deHTMG - deHTMG+HTMG antibodies which bind to immobilized deHTMG but do not bind to immobilized HTMG - HTMG+deHTMG+ Antibodies which bind to both HTMG and deHTMG  相似文献   

3.
Mucus-producing cells were isolated from swine trachea mucosa by a method that included enzymatic digestion of the epithelial surface with Dispase, a neutral protease from Bacillus polymyxa, and differential attachment of the washed cells to culture flasks coated with collagen. Epithelial cells were the major cell type isolated by these procedures. Ciliated cells that did not attach to the flasks were removed by decantation , and fibroblasts were destroyed by the bacterial protease. The isolated cells synthesized respiratory mucins and the rate of secretion was increased about threefold when tracheas were exposed to sulfur dioxide. The cultured cells incorporated both [35S]O4 and [I-14C]N-acetylglucosamine into secreted mucin glycoproteins. The secretion of glycoprotein increased for about 3 d until the cells became confluent, and then a constant rate was observed for a period of at least 7 d. This increase in the output of mucin glycoprotein during the initial 3 d of culture was accompanied by a corresponding increase in the number of mucus-producing cells in the flasks. The results obtained in these and subsequent studies suggest that the rate of formation of mucus-producing cells may be a rate limiting step in the regulation of mucin glycoprotein synthesis in tracheal epithelium. The chemical, physical, and immunological properties of the glycoprotein secreted by isolated tracheal epithelial cells were very similar to the mucin glycoprotein purified from washes of swine trachea epithelium. The purified mucin glycoproteins showed complete cross-reaction with antibodies to trachea mucin glycoprotein. They were eluted near the void volume during gel filtration of Sepharose CL-6B columns. The glycoprotein isolated from culture media under the standard assay conditions had nearly the same carbohydrate composition as samples purified from washes of trachea epithelium. Reduced oligosaccharides released by beta-elimination with dilute alkaline borohydride showed similar elution profiles during chromatography on Bio Gel P-6 columns. Taken collectively, these results suggest that the isolated epithelial cells secreted mucin glycoproteins that were very similar to those synthesized by the intact trachea epithelium under standard incubation conditions.  相似文献   

4.
Membrane differentiation markers of airway epithelial secretory cells   总被引:2,自引:0,他引:2  
We describe here a system for culturing epithelial cells isolated from hamster trachea, which results in a highly enriched population of mucus-secreting cells. The culture system has enabled us to study the process of secretory cell differentiation in vitro. We found that epithelial secretory cells, in vivo and after 5 days in vitro, selectively bind the lectin Helix pomatia agglutinin (HPA) to apical and, to a lesser extent, basolateral surfaces as well as to mucin granules and intracellular secretory organelles. SDS-PAGE gels of detergent extracts of secretory cells cultured for 5 days reveal three HPA-binding glycoproteins with MW of 120 KD, 220 KD, and greater than 400 KD. The high-MW glycoprotein appears identical to mucin, since it is found in secretions from intact trachea and in spent media from 5-day cultures. It does not appear in spent media from 3-day cultures when cells contain few mucous granules and secrete little mucin. The 220 KD HPA-binding glycoprotein is also present in 5-day but not in 3-day cultures. In contrast, the 120 KD glycoprotein is present at both times. HPA-gp120 is a hydrophobic integral membrane protein, whereas HPA-gp220 and mucin are hydrophilic and are membrane associated. These studies define three membrane glycoproteins, one of which is specific for the tracheal epithelial secretory cell regardless of its mucous content, whereas the other two glycoproteins correlate with mucin secretion. They also demonstrate that, in the fully differentiated state, mucin is bound in a non-covalent fashion to the apical plasma membrane of the tracheal epithelial secretory cell.  相似文献   

5.
Summary Swine tracheal epithelium has been cultured as explants in a chemically defined medium for periods of up to 2 wk. The viability of the explants was shown by the preservation of the ultrastructural features of cells in the epithelial layer and by the active incorporation of radioactive glucosamine and sulfate into secreted mucin glycoproteins. The rate of secretion of mucin glycoprotein was about 0.035 mg per cm2 per d. After initial 24 h lag period was shown to be due to the equilibration of intracellular mucin glycoprotein pools with radioactive precursors. The rate of secretion of glycoprotein showed a linear dependence on the area of the explant, and maximal incorporation was observed at 200 μM glucosamine. A higher concentration of35SO4, 1000 μM, was required for maximal incorporation of the precursor. Insulin at 0.1 to 1 μg/ml increased the rate of secretion twofold, whereas 0.1 to 100 μg/ml of hydrocortisone and 0.1 to 100 μg/ml of epinephrine significantly decreased the rate of secretion. Vitamin A had little or no effect of normal trachea explants at low concentrations, and, at higher concentrations, 10−5 M, it decreased the secretion of mucin glycoproteins. Vitamin A, at a concentration of 10−9 M, increased the rate of synthesis of glycoprotein at least fourfold in trachea explants from vitamin A-deficient rats. Mucus secretions collected from the surface of swine trachea and from the culture medium of trachea explants were purified. The mucus was solubilized by reduction and carboxymethylation, and the high molecular weight mucin glycoproteins were purified by chromatography on Sepharose CL-6B columns under dissociating conditions in 2M guanidine HCl. The mucin glycoproteins purified from swine trachea and from the culture medium of trachea explants were virtually indistingushable. They showed the same properties when examined by gel electrophoresis and immunoprecipitation. The purified glycoproteins contained about 25% protein, and serine, threonine, and proline were the principal amino acids present. More than 80% of the carbohydride chains in both samples were released by treatment with alkaline borohydride. Nearly the same molar ratio ofN-acetylgalactosamine,N-acetylglucosamine, galactose, fucose, sulfate, and sialic acid was found in both preparations. This investigation was supported by U.S. Public Health Service Grants HL 20868, HL 24688, and HL 24718 from the National Heart, Lung and Blood Institute, Bethesda, MD, and AM 28187 from the National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases, Bethesda, MD.  相似文献   

6.
C Lloyd  J R Kennedy  J Mendicino 《In vitro》1984,20(5):416-432
Swine tracheal epithelium has been cultured as explants in a chemically defined medium for periods of up to 2 wk. The viability of the explants was shown by the preservation of the ultrastructural features of cells in the epithelial layer and by the active incorporation of radioactive glucosamine and sulfate into secreted mucin glycoproteins. The rate of secretion of mucin glycoprotein was about 0.035 mg per cm2 per d. After initial 24 h lag period was shown to be due to the equilibration of intracellular mucin glycoprotein pools with radioactive precursors. The rate of secretion of glycoprotein showed a linear dependence on the area of the explant, and maximal incorporation was observed at 200 microM glucosamine. A higher concentration of 35SO4, 1000 microM, was required for maximal incorporation of the precursor. Insulin at 0.1 to 1 microgram/ml increased the rate of secretion twofold, whereas 0.1 to 100 micrograms/ml of hydrocortisone and 0.1 to 100 micrograms/ml of epinephrine significantly decreased the rate of secretion. Vitamin A had little or no effect of normal trachea explants at low concentrations, and, at higher concentrations, 10(-5) M, it decreased the secretion of mucin glycoproteins. Vitamin A, at a concentration of 10(-9) M, increased the rate of synthesis of glycoprotein at least fourfold in trachea explants from vitamin A-deficient rats. Mucus secretions collected from the surface of swine trachea and from the culture medium of trachea explants were purified. The mucus was solubilized by reduction and carboxymethylation, and the high molecular weight mucin glycoproteins were purified by chromatography on Sepharose CL-6B columns under dissociating conditions in 2 M guanidine HCl. The mucin glycoproteins purified from swine trachea and from the culture medium of trachea explants were virtually indistinguishable. They showed the same properties when examined by gel electrophoresis and immunoprecipitation. The purified glycoproteins contained about 25% protein, and serine, threonine, and proline were the principal amino acids present. More than 80% of the carbohydride chains in both samples were released by treatment with alkaline borohydride. Nearly the same molar ratio of N-acetylgalactosamine, N-acetylglucosamine, galactose, fucose, sulfate, and sialic acid was found in both preparations.  相似文献   

7.
Summary To characterize the biological functions of cultured hamster tracheal cells, a microassay has been developed utilizing [3H]N-acetyl-d-galactosamine and [14C] serine as a double label for glycoprotein synthesis. After a 24-hr incubation of cell monolayers with these radioactive precursors, the cell culture supernatant was precipitated with trichloroacetic acid and electrophoresed on polyacrylamide gels. A single radioactive peak was detected containing both radioisotopes with a migration corresponding to a molecular weight of approximately 18,500 daltons. Under similar culture conditions, tracheal explants produced a nearly identical gel profile; in contrast, three established cell lines lacked most of this biosynthetic capability. Collagenase and hyaluronidase did not degrade the secreted macromolecule, and its sensitivity to weak alkali treatment revealed that it is a glycoprotein withO-glycosidic linkages. Vitamin A significantly enhanced its secretion, directly correlating with previous in vivo studies demonstrating a vitamin A prerequisite for normal mucus-secreting epithelium. Histochemical staining indicated the presence of acidic mucins within secretory packets on the cell. We have therefore concluded that this epithelial cell cultured from the hamster trachea has the specialized capacity for mucus secretion, and it may serve as a versatile model system for studying the synthesis and nature of mucus glycoproteins. This research was supported by Public Health Service Grant P50-HL 19171 and Research Career Development Award 1-K04-AI 00178 to J. B. B.  相似文献   

8.
Leptin has been suggested to be involved in tissue injury and/or mucosal defence mechanisms. Here, we studied the effects of leptin on colonic mucus secretion and rat mucin 2 (rMuc2) expression. Wistar rats and ob/ob mice were used. Secretion of mucus was followed in vivo in the rat perfused colon model. Mucus secretion was quantified by ELISA, and rMuc2 mRNA levels were quantified by real-time RT PCR. The effects of leptin alone or in association with protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) inhibitors on mucin secreted by human mucus-secreting HT29-MTX cells were determined. Leptin was detected in the rat colonic lumen at substantial levels. Luminal perfusion of leptin stimulates mucus-secreting goblet cells in a dose-dependent manner in vivo in the rat. Leptin (10 nmol/l) increased mucus secretion by a factor of 3.5 and doubled rMuc2 mRNA levels in the colonic mucosa. There was no damage to mucosa 24 h after leptin, but the number of stained mucus cells significantly increased. Leptin-deficient ob/ob mice have abnormally dense mucus-filled goblet cells. In human colonic goblet-like HT29-MTX cells expressing leptin receptors, leptin increased mucin secretion by activating PKC- and PI3K-dependent pathways. This is the first demonstration that leptin, acting from the luminal side, controls the function of mucus-secreting goblet cells. Because the gel layer formed by mucus at the surface of the intestinal epithelium has a barrier function, our data may be relevant physiologically in defence mechanisms of the gastrointestinal tract.  相似文献   

9.
ME Johansson 《PloS one》2012,7(7):e41009
The enormous bacterial load and mechanical forces in colon create a special requirement for protection of the epithelium. In the distal colon, this problem is largely solved by separation of the bacteria from the epithelium by a firmly attached inner mucus layer. In addition, an outer mucus layer entraps bacteria to be cleared by distal transport. The mucus layers contain a network of Muc2 mucins as the main structural component. Here, the renewal rate of the inner protective mucus layer was studied as well as the production and secretion of Muc2 mucin in the distal colon. This was performed by intraperitoneal injection of N-azidoacetyl-galactosamine (GalNAz) that was in vivo incorporated during biosynthesis of O-glycosylated glycoproteins. The only gel-forming mucin produced in the colon is the Muc2 mucin and as it carries numerous O-glycans, the granulae of the goblet cells producing Muc2 mucin were intensely stained. The GalNAz-labeled glycoproteins were first observed in the Golgi apparatus of most cells. Goblet cells in the luminal surface epithelium had the fastest biosynthesis of Muc2 and secreted material already three hours after labeling. This secreted GalNAz-labeled Muc2 mucin formed the inner mucus layer. The goblet cells along the crypt epithelium accumulated labeled mucin vesicles for a longer period and secretion of labeled Muc2 mucin was first observed after 6 to 8 h. This study reveals a fast turnover (1 h) of the inner mucus layer in the distal colon mediated by goblet cells of the luminal surface epithelium.  相似文献   

10.
Airway secretion: a cell-specific analysis   总被引:1,自引:0,他引:1  
Respiratory mucus is a complex secretion elaborated by several cell types in the airway wall: serous and mucous gland cells in the submucosa, and ciliated and goblet cells in the epithelium. The cell types are under independent regulatory mechanisms, most of which are poorly understood. Two new approaches are described which permit analysis of these mechanisms and the role of each cell type in mucus production. Using cell-specific monoclonal antibodies, we have obtained biochemical information about mucus components contributed by the various cell types. Antibodies are also being used in enzyme immunoassays (ELISA) to detect cell-specific secretion from mixed cell biopsies. In other studies, analysis of secretory products from pure cultures of serous gland cells has revealed that the major glycoconjugates released by this cell type are chondroitin sulfate proteoglycans, hyaluronic acid and N-linked glycoproteins of complex type.  相似文献   

11.
The present study was conducted to characterize and localize the glycoconjugates in the tubotympanum (auditory or eustachian tube and middle ear cavity) of chinchilla on an ultrastructural level, using lectin-gold complexes with six different lectins: BPA, ConA, RCA-1, WGA, LFA, and SNA. A comparison of the affinity of these lectins demonstrated the heterogeneity of secretory cells. The glandular serous cells and epithelial dark granulated cells produced "serum"-type glycoprotein. The glandular mucous cells and goblet cells produced dominantly "mucin"-type glycoprotein in the light granules, but "serum"-type glycoprotein in the dark cores. The labeling of LFA and SNA showed that sialic acids existed mainly in the mucinous granules of secretory cells and ciliated epithelium glycocalyx, and in the mucous blanket. The results also suggested that the dominant linkage of sialic acids of mucin is a Neu5Ac(alpha 2-6)Gal/GalNAc sequence. Furthermore, the data obtained from ConA and BPA suggested that initial O-glycosylation of mucin took place in the cis side of the Golgi apparatus and that initial N-glycosylation of the serum occurred in the rough endoplasmic reticulum.  相似文献   

12.
Abstract

Considerable advances have been made in recent years in our understanding of the biochemistry of mucin-type glycoproteins. This class of compounds is characterized mainly by a high level of O-linked oligosaccharides. Initially, the glycoproteins were solely known as the major constituents of mucus. Recent studies have shown that mucins from the gastrointestinal tract, lungs, salivary glands, sweat glands, breast, and tumor cells are structurally related to high-molecular-weight glycoproteins, which are produced by epithelial cells as membrane proteins. During mucin synthesis, an orchestrated sequence of events results in giant molecules of Mr 4 to 6·106, which are stored in mucous granules until secretion. Once secreted, mucin forms a barrier, not only to protect the delicate epithelial cells against the extracellular environment, but also to select substances for binding and uptake by these epithelia. This review is designed to critically examine relations between structure and function of the different compounds categorized as mucin glycoproteins.  相似文献   

13.
Mucous granule exocytosis and CFTR expression in gallbladder epithelium   总被引:2,自引:0,他引:2  
A mechanistic model of mucous granule exocytosis by columnar epithelial cells must take into account the unique physical-chemical properties of mucin glycoproteins and the resultant mucus gel. In particular, any model must explain the intracellular packaging and the kinetics of release of these large, heavily charged species. We studied mucous granule exocytosis in gallbladder epithelium, a model system for mucus secretion by columnar epithelial cells. Mucous granules released mucus by merocrine exocytosis in mouse gallbladder epithelium when examined by transmission electron microscopy. Spherules of secreted mucus larger than intracellular granules were noted on scanning electron microscopy. Electron probe microanalysis demonstrated increased calcium concentrations within mucous granules. Immunofluorescence microscopic studies revealed intracellular colocalization of mucins and the cystic fibrosis transmembrane conductance regulator (CFTR). Confocal laser immunofluorescence microscopy confirmed colocalization. These observations suggest that calcium in mucous secretory granules provides cationic shielding to keep mucus tightly packed. The data also suggests CFTR chloride channels are present in granule membranes. These observations support a model in which influx of chloride ions into the granule disrupts cationic shielding, leading to rapid swelling, exocytosis and hydration of mucus. Such a model explains the physical-chemical mechanisms involved in mucous granule exocytosis.  相似文献   

14.
Summary The oligosaccharide chains in human and swine trachea and Cowper's gland mucin glycoproteins were completely removed in order to examine the subunit structure and properties of the polypeptide chains of these glycoproteins. The carbohydrate, which constitutes more than 70% of these glycoproteins, was removed by two treatments with trifluoromethanesulfonic acid for 3 h at 3° and periodate oxidation by a modified Smith degradation. All of the sialic acid, fucose, galactose, N-acetylglucosamine and N-acetylgalactosamine present in these glycoproteins was removed by these procedures.The deglycosylated polypeptide chains were purified and characterized. The size of the monomeric forms of all three polypeptide chains were very similar. Data obtained by gel filtration, release of amino acids during hydrolysis with carboxypeptidase B and gel electrophoresis in the presence of 0.1% dodecyl sulfate showed that a major fraction from each of the three mucin glycoproteins had a molecular size of about 67 kDa. All of the deglycosylated chains had a tendency to aggregate. Digestion with carboxypeptidases showed that human and swine trachea mucin glycoproteins had identical carboxyl terminal sequences, -Val-Ala-Phe-Tyr-Leu-Lys-Arg-COOH. Cowper's gland mucin glycoprotein had a similar carboxyl terminal sequence, -Val-Ala-Tyr-Leu-Phe-Arg-Arg-COOH. The yield of amino acids after long periods of hydrolysis with carboxypeptidases showed that at least 85% of the polypeptide chains in each of the deglycosylated preparations have these sequences. These results suggested that the polypeptide chains in these deglycosylated mucin glycoprotein preparations were relatively homogeneous.The deglycosylated polypeptide chains as well as the intact mucin glycoproteins had blocked amino terminii. The purified polypeptide chains were digested with trypsin-TCPK, and S. aureus V8 protease and the resulting peptides were isolated by gel electrophoresis in the presence of 0.1% dodecyl sulfate and by HPLC. Two partial amino acid sequences from swine trachea mucin glycoprotein, two partial sequences from human trachea mucin glycoprotein and three partial sequences from Cowper's gland mucin glycoprotein were determined. The partial amino acid sequences of the peptides isolated from swine trachea mucin glycoprotein showed more than 70% sequence homology to a repeating sequence present in porcine submaxillary mucin glycoprotein. Five to eight immunoprecipitable bands with sizes ranging from about 40 kDa to 46 kDa were seen when the polypeptide chains were digested with S. aureus V8 protease. All of the bands had blocked amino terminii and differed by a constant molecular weight of about 1.5 kDa. These data suggest that the polypeptides were formed by cleavage of glutamic acid residues present at regular intervals in the chains of all three mucin glycoproteins. These large immunoreactive peptides were formed by the removal of smaller peptides from the carboxyl terminal end of the deglycosylated mucin glycoprotein chains. Taken collectively, these findings indicate that the polypeptide chains in these mucin glycoproteins are very similar in subunit structure and that there is a high degree of homology between their polypeptide chains.  相似文献   

15.
Paraffin sections of trachea, sublingual gland, and pancreas from rats, mice, and hamsters were stained with peanut agglutinin (PNA) or Dolichos biflorus agglutinin (DBA) conjugated to horseradish peroxidase before or after enzymatic removal of sialic acid. Adjacent sections were oxidized with periodate prior to incubation with sialidase and staining with PNA and DBA. PNA binding demonstrated terminal beta-galactose in secretions, at the basolateral plasmalemma of mouse tracheal serous cells, in or at the surface of zymogen granules, and at the apical and basolateral surface of mouse and hamster pancreatic acinar cells. Sialidase digestion revealed PNA binding, demonstrative of penultimate beta-galactose, in secretions of mucous cells in tracheal and sublingual glands and at the apical glycocalyx of ciliated and secretory cells in the tracheal surface epithelium of all the rodents studied. Sialidase also imparted PNA affinity to endothelium in all three species and to secretions and the basolateral plasmalemma of tracheal serous cells and pancreatic acinar cells in the rat. Periodate oxidation blocked the enzymatic removal of N-acetylneuraminic acid as judged by prevention of staining with the sialidase-PNA procedure. Sites in which periodate prevented sialidase-PNA staining included pancreatic islet cells and at the luminal glycocalyx of ciliated and secretory cells in tracheal surface epithelium in all three rodents, most sublingual mucous cells in the hamster, pancreatic acinar cells in the rat, and endothelium, except that of the rat. Glycoconjugate in other sites remained positive with the periodate-sialidase-PNA sequence. Resistance to periodate was interpreted as evidence for the presence of terminal sialic acid with an O-acetylated polyhydroxyl side chain. DBA binding demonstrated terminal alpha-N-acetylgalactosamine in the secretion of all mucous cells in the hamster trachea and 50-90% of those in the rat, secretion and the basolateral plasmalemma of all glandular serous cells in the mouse trachea, at the apical surface of most secretory cells lining the lumen of the rat and hamster trachea, and cilia of 5-10% of ciliated cells in the rat trachea. Periodate oxidation and sialidase digestion demonstrated N-acetylneuraminic acid and penultimate alpha-N-acetylgalactosamine in cilia in the mouse trachea and sialic acid containing O-acetylated polyhydroxyl side chains subtended by N-acetylgalactosamine in the secretion of all mucous cells in the rat and hamster trachea and of 80-90% of mucous cells in the hamster sublingual gland.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The pathology of chronic asthma in human and mouse is characterized by inflammation and remodeling of airway tissues. As a result of repeated inflammatory insults to the lower airways, smooth muscle thickening, mucin secretion and airway hyperreactivity may develop. In ovalbumin (OVA)-sensitized mice with repeated challenges with OVA to the lower airways, the trachea and bronchi are characterized by goblet cell hyperplasia and mucus hypersecretion from goblet cells. Previous study reports that intravenous (i.v.) application of a high dose of capsaicin releases tachykinin from capsaicin-sensitive nerves, producing acute plasma leakage and mucosal edema formation and causing depletion of mucin granules in goblet cells that results in a reduction in the number and size of Alcian blue (AB)-positive goblet cells in the rat trachea within a few minute after capsaicin application. Histamine is an important non-neural mediator of asthma from mast cells. The present study investigated whether i.v. application of a high dose of histamine (18 μmol/ml/kg) could result in these acute changes and the similar time-course changes in rat trachea. The tracheal whole mounts stained with chloroacetate esterase reagent and AB and tracheal methacrylate sections stained with AB and periodic acid-Schiff reagent were used for evaluation of histological and cellular changes. At 5 min after histamine application, mucosal leaky venules were numerous and subepithelial edema ratio (% of length of edema along the mucosal epithelial circumference of tracheal cross section) was found to be 48.2 ± 4.9, which was greater (P < 0.01) than saline-treated rats. But, the number of AB-positive goblet cells, 2,030 ± 170/mm2 of mucosal surface epithelium, was similar to saline-treated group (P > 0.05). One day later, edema ratio remained large and the number of AB-positive goblet cells was 1,140 ± 150/mm2 epithelium, reduced to half the number of the group at 5 min after histamine (P < 0.01). It is suggested that mucus hypersecretion occurred at this time point. At 3 or 5 days after histamine, edema ratio gradually decreased. The number of AB-positive goblet cells continued to remain small on day 3. On day 5 after histamine, the number of AB-positive goblet cells restored to the level of rat group at 5 min after histamine application. At 7 days after histamine, edema ratio returned to the level of saline-treated group. It is concluded that degranulation and thinning of tracheal goblet cells and mucus hypersecretion lagged behind histamine-induced acute plasma leakage and edema, and restoration of mucin store in goblet cells was associated with remission of mucosal edema.  相似文献   

17.
Xenopus embryonic epidermis changes its cellular composition during development: the appearance of ciliated epidermal cells before hatching is a remarkable characteristic. In this study, the functional change of ciliated cells to mucus-secreting cells was examined with immunocytochemistry using anti-tubulin and anti-chondroitin 6-sulfate (C6S). Before hatching, most epidermal cells were labeled with anti-C6S in a granular fashion. Immunoelectron microscopy revealed that the anti-C6S-positive structure was the mucus granule. Ciliated epidermal cells lacked anti-C6S staining, but were strongly labeled with anti-tubulin. After hatching, most ciliated cells in the surface of the embryo disappeared. During their disappearance, some ciliated cells exhibited anti-C6S-positive granular labeling. This strongly suggests that the disappearance of ciliated cells is a functional conversion to mucus-secreting cells instead of shedding through cell death.  相似文献   

18.
The mucin glycoproteins in tracheal mucus of patients with cystic fibrosis is more highly sulfated than the corresponding secretions from healthy individuals [16]. In order to further characterize these differences in sulfation and possibly also glycosylation patterns, we compared the structures of sulfated mucin oligosaccharides synthesized by continuously cultured human tracheal cells transformed by siman virus 40. The synthesis of highly sulfated oligosaccharide chains in mucins secreted by normal human epithelial and submucosal cell lines were compared with mucins formed by cystic fibrosis tracheal epithelial and submucosal cell lines.The epithelial cell lines from cystic fibrosis trachea showed a higher rate of sulfate uptake and a significantly higher rate of synthesis and sulfation of high molecular weight chains. Mucins synthesized by each cell line in the presence of 35SO4 were isolated and oligosaccharide chains were released by beta-elimination and separated by ion exchange chromatography and gel filtration. The sulfated high molecular weight chains synthesized by the cystic fibrosis cell lines were characterized by methylation analysis and sequential glycosidase digestion before and after desulfation. Carbohydrate analysis yielded Fuc, Gal and GlcNAc in a ratio of 1:2:2.2 and only one galactosaminitol residue for about every 150-200 sugar residues present. The average molecular size of oligosaccharide chains in these fractions was between 30,000-40,000 daltons.These studies show that increased sulfation of oligosaccharides in mucins synthesized by cells from cystic fibrosis trachea is accompanied by a significant increase in the extension of a basic branched structure present in many of the lower molecular weight oligosaccharides.  相似文献   

19.
Serous goblet cells in the oral epithelium of Rita rita are characterized by the presence of distinct eosinophilic granules occupying large parts of the cytoplasm. In R. rita, a range of histochemical results reveal that these cells are involved in proteinaceous secretions, and thus likely contribute to various functions analogous to those of mammalian saliva. The secretions of these cells have also been associated with specific functions and are discussed in relation to their physiological importance with special reference to their roles in lubrication, alteration in viscosity, various functions of mucus such as handling, maneuvering and driving of food items toward the esophagus, maintaining taste sensitivity and protection of the oral epithelium. In addition, the serous goblet cells may also be considered as the primary defensive cell of the oral epithelium of R. rita. The results significantly add to very limited set of literature on the serous goblet cells and provide noteworthy information on the mucous secretions in the oral cavity of fish.  相似文献   

20.
Epithelial cells were isolated from the fundic portion of the guinea pig stomach. Cells were separated by velocity sedimentation at unit gravity in a Ficoll 70 gradient and pooled in three fractions. By morphological and biochemical criteria, each fraction was characterized as a population highly enriched in one of the three main functional types: oxyntic cell; chief cell and mucus-secreting cell. Measure of the pepsinogen content and specific stainings of the secretory granules for light and electron microscopy led to the definition of two types of mucus-secreting cells in nearly equal quantity; mucous cells with smaller secretory granules entirely glycoproteic in nature and muco-peptic cells containing larger heterogeneous secretory granules. These granules were made of a proteic core containing pepsinogen surrounded by a thin membrane and a voluminous cap, both containing carbohydrates. The cap appeared as if built of orderly packed layers of glycoproteins. Secretory granules of chief cells were also surrounded by a membrane containing glycoproteins and occasionally a small glycoproteic cap. Pepsinogen content was estimated to be three times higher in a single chief cell than in a muco-peptic cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号