首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell recruitment is a multistep process regulated by cytokines, chemokines, and growth factors. Previous work has indicated that the urokinase plasminogen activator receptor (uPAR) may also play a role in this mechanism, presumably by an interaction with the beta(2) integrin CD11b/CD18. Indeed, an essential role of uPAR in neutrophil recruitment during pulmonary infection has been demonstrated for beta(2) integrin-dependent respiratory pathogens. We investigated the role of uPAR and urokinase plasminogen activator (uPA) during pneumonia caused by a beta(2) integrin-independent respiratory pathogen, Streptococcus pneumoniae. uPAR-deficient (uPAR(-/-)), uPA-deficient (uPA(-/-)), and wild-type (Wt) mice were intranasally inoculated with 10(5) CFU S. pneumoniae. uPAR(-/-) mice showed reduced granulocyte accumulation in alveoli and lungs when compared with Wt mice, which was associated with more S. pneumoniae CFU in lungs, enhanced dissemination of the infection, and a reduced survival. In contrast, uPA(-/-) mice showed enhanced host defense, with more neutrophil influx and less pneumococci in the lungs compared with Wt mice. These data suggest that uPAR is necessary for adequate recruitment of neutrophils into the alveoli and lungs during pneumonia caused by S. pneumoniae, a pathogen eliciting a beta(2) integrin-independent inflammatory response. This function is even more pronounced when uPAR is unoccupied by uPA.  相似文献   

2.
Secondary pneumococcal pneumonia is a serious complication during and shortly after influenza infection. We established a mouse model to study postinfluenza pneumococcal pneumonia and evaluated the role of IL-10 in host defense against Streptococcus pneumoniae after recovery from influenza infection. C57BL/6 mice were intranasally inoculated with 10 median tissue culture infective doses of influenza A (A/PR/8/34) or PBS (control) on day 0. By day 14 mice had regained their normal body weight and had cleared influenza virus from the lungs, as determined by real-time quantitative PCR. On day 14 after viral infection, mice received 10(4) CFU of S. pneumoniae (serotype 3) intranasally. Mice recovered from influenza infection were highly susceptible to subsequent pneumococcal pneumonia, as reflected by a 100% lethality on day 3 after bacterial infection, whereas control mice showed 17% lethality on day 3 and 83% lethality on day 6 after pneumococcal infection. Furthermore, 1000-fold higher bacterial counts at 48 h after infection with S. pneumoniae and, particularly, 50-fold higher pulmonary levels of IL-10 were observed in influenza-recovered mice than in control mice. Treatment with an anti-IL-10 mAb 1 h before bacterial inoculation resulted in reduced bacterial outgrowth and markedly reduced lethality during secondary bacterial pneumonia compared with those in IgG1 control mice. In conclusion, mild self-limiting influenza A infection renders normal immunocompetent mice highly susceptible to pneumococcal pneumonia. This increased susceptibility to secondary bacterial pneumonia is at least in part caused by excessive IL-10 production and reduced neutrophil function in the lungs.  相似文献   

3.
The fatality rate associated with Streptococcus pneumoniae meningitis remains high despite adequate antibiotic treatment. IL-1 is an important proinflammatory cytokine, which is up-regulated in brain tissue after the induction of meningitis. To determine the role of IL-1 in pneumococcal meningitis we induced meningitis by intranasal inoculation with 8 x 10(4) CFU of S. pneumoniae and 180 U of hyaluronidase in IL-1R type I gene-deficient (IL-1R(-/-)) mice and wild-type mice. Meningitis resulted in elevated IL-1alpha and IL-1beta mRNA and protein levels in the brain. The absence of an intact IL-1 signal was associated with a higher susceptibility to develop meningitis. Furthermore, the lack of IL-1 impaired bacterial clearance, as reflected by an increased number of CFU in cerebrospinal fluid of IL-1R(-/-) mice. The characteristic pleocytosis of meningitis was not significantly altered in IL-1R(-/-) mice, but meningitis was associated with lower brain levels of cytokines. The mortality was significantly higher and earlier in the course of the disease in IL-1R(-/-) mice. These results demonstrate that endogenous IL-1 is required for an adequate host defense in pneumococcal meningitis.  相似文献   

4.
To determine the role of endogenous IL-18 during pneumonia, IL-18 gene-deficient (IL-18(-/-)) mice and wild-type (WT) mice were intranasally inoculated with Streptococcus pneumoniae, the most common causative agent of community-acquired pneumonia. Infection with S. pneumoniae increased the expression of IL-18 mRNA and was associated with elevated concentrations of both precursor and mature IL-18 protein within the lungs. IL-18(-/-) mice had significantly more bacteria in their lungs and were more susceptible for progressing to systemic infection at 24 and 48 h postinoculation. Similarly, treatment of WT mice with anti-IL-18 was associated with enhanced outgrowth of pneumococci. In contrast, the clearance of pneumococci from lungs of IL-12(-/-) mice was unaltered when compared with WT mice. Furthermore, anti-IL-12 did not influence bacterial clearance in either IL-18(-/-) or WT mice. These data suggest that endogenous IL-18, but not IL-12, plays an important role in the early antibacterial host response during pneumococcal pneumonia.  相似文献   

5.
Host defense mechanisms against Mycobacterium avium complex (MAC) are poorly understood. Recent evidence suggests the role of NK cells in the host defense against some intracellular pathogens. We investigated whether NK cells play a role in MAC infection. IL-2-activated human NK cells were incubated with human monocyte-derived macrophages either before or after infection with MAC. Macrophages were lysed 3 and 5 days after infection for quantitation of viable intracellular organisms. Although no killing was observed by nonstimulated macrophages, exposure to IL-2-treated NK cells for 24 h before infection induced macrophage to kill 70 +/- 8% of intracellular MAC by 3 days, and 81% +/- 4% in 5 days (p less than 0.01 for both compared with control). Killing was not blocked by incubation with anti-TNF antibody (Ab) or anti-IFN-gamma Ab. Similarly, incubation of macrophages for 24 h with supernatant obtained from IL-2 activated NK cells was associated with 74 +/- 4% killing of intracellular MAC in 3 days and 81 +/- 6% in 5 days (p less than 0.01 for both compared with control). However, the supernatant-mediated activation was partially blocked by anti-TNF Ab (46 +/- 6%; p less than 0.05) but not by anti-IFN gamma Ab. When infected macrophages were incubated with NK cells 24 h after infection for 48 h, they killed 54 +/- 3% of intracellular M. avium in 3 days and 73 +/- 5% in 5 days (p less than 0.02 for both compared with control). This effect was also not blocked by either anti-TNF or anti-IFN gamma Ab. These results suggest that activated NK cells may have an important role in the intracellular killing of MAC and that the NK-mediated activation of macrophages is in part mediated by TNF.  相似文献   

6.
To determine the role of endogenous IL-10 in local antibacterial host defense and in the development of a systemic inflammatory response syndrome during abdominal sepsis, IL-10 gene-deficient (IL-10(-/-)) and wild-type (IL-10(+/+)) mice received an i.p. injection with Escherichia coli. Peritonitis was associated with a bacterial dose-dependent increase in IL-10 concentrations in peritoneal fluid and plasma. The recovery of E. coli from the peritoneal fluid, blood, and lungs was diminished in IL-10(-/-) mice, indicating that endogenous IL-10 impaired bacterial clearance. Despite a lower bacterial load, IL-10(-/-) mice had higher concentrations of TNF, macrophage inflammatory protein-2 and keratinocyte in peritoneal fluid and plasma, and demonstrated more severe multiple organ damage as indicated by clinical chemistry and histopathology. Furthermore, IL-10(-/-) mice showed an increased neutrophil recruitment to the peritoneal cavity. To examine the role of elevated TNF levels in the altered host response in IL-10(-/-) mice, the effect of a neutralizing anti-TNF mAb was determined. Anti-TNF did not influence the clearance of E. coli in either IL-10(+/+) or IL-10(-/-) mice. Furthermore, anti-TNF did not affect leukocyte influx in the peritoneal fluid, multiple organ damage, or survival in IL-10(+/+) mice. In IL-10(-/-) mice, anti-TNF partially attenuated neutrophil recruitment and multiple organ damage, and prevented the increased lethality. These data suggest that although endogenous IL-10 facilitates the outgrowth and dissemination of bacteria during E. coli peritonitis, it protects mice from lethality by attenuating the development of a systemic inflammatory response syndrome by a mechanism that involves inhibition of TNF release.  相似文献   

7.
Eradication of bacteria in the lower respiratory tract depends on the coordinated expression of proinflammatory cytokines and consequent neutrophilic inflammation. To determine the roles of the NF-kappaB subunit RelA in facilitating these events, we infected RelA-deficient mice (generated on a TNFR1-deficient background) with Streptococcus pneumoniae. RelA deficiency decreased cytokine expression, alveolar neutrophil emigration, and lung bacterial killing. S. pneumoniae killing was also diminished in the lungs of mice expressing a dominant-negative form of IkappaBalpha in airway epithelial cells, implicating this cell type as an important locus of NF-kappaB activation during pneumonia. To study mechanisms of epithelial RelA activation, we stimulated a murine alveolar epithelial cell line (MLE-15) with bronchoalveolar lavage fluid (BALF) harvested from mice infected with S. pneumoniae. Pneumonic BALF, but not S. pneumoniae, induced degradation of IkappaBalpha and IkappaBbeta and rapid nuclear accumulation of RelA. Moreover, BALF-induced RelA activity was completely abolished following combined but not individual neutralization of TNF and IL-1 signaling, suggesting either cytokine is sufficient and necessary for alveolar epithelial RelA activation during pneumonia. Our results demonstrate that RelA is essential for the host defense response to pneumococcus in the lungs and that RelA in airway epithelial cells is primarily activated by TNF and IL-1.  相似文献   

8.
Interferon (IFN-)gamma is thought to play a role in the resistance to various pathogens. To study the role of IFN-gamma in the pathogenesis of Pseudomonas pneumonia, IFN-gamma receptor (R) alpha-subunit-deficient [IFN-gammaR(-/-)] mice and wild type mice were intranasally inoculated with Pseudomonas aeruginosa (10(5) CFU). IFN-gammaR(-/-) mice demonstrated an enhanced clearance of P. aeruginosa from their lungs when compared to normal wild type mice (P < 0.05 at 24 hours after the infection), which was associated with a tendency towards an improved survival. These findings were not accompanied by a more effective activation of several components of the innate immune system known to contribute to host defense against pneumonia, i.e. the lung concentrations of cytokines and chemokines were similar in IFN-gammaR(-/-) and wild type mice, while the influx of neutrophils in bronchoalveolar lavage fluid (BALF) was even higher in wild type mice than in IFN-gammaR(-/-) mice. Remarkably, IFN-gammaR(-/-) mice had higher nitric oxide levels in the BALF at 24 hours after infection (P < 0.05). Endogenous IFN-gamma impairs rather than augments host defense during pneumonia caused by P. aeruginosa.  相似文献   

9.
Pulmonary inflammation is an essential component of the host defense against Streptococcus pneumoniae infection of the lungs. The early response cytokines, TNF-alpha and IL-1, are rapidly induced upon microbial exposure. Mice deficient in all TNF- and IL-1-dependent signaling receptors were used to determine the roles of these cytokines during pneumococcal pneumonia. The deficiency of signaling receptors for TNF and IL-1 decreased bacterial clearance. Neutrophil recruitment to alveolar air spaces was impaired by receptor deficiency, as was pulmonary expression of the neutrophil chemokines KC and MIP-2. Because NF-kappaB mediates the expression of both chemokines, we assessed NF-kappaB activation in the lungs. During pneumococcal pneumonia, NF-kappaB proteins translocate to the nucleus and activate gene expression; these functions were largely abrogated by the deficiency of receptors for TNF-alpha and IL-1. Thus, the combined deficiency of TNF and IL-1 signaling reduces innate immune responses to S. pneumoniae in the lungs, probably due to essential roles for these receptors in activating NF-kappaB.  相似文献   

10.
Although influenza infection alone may lead to pneumonia, secondary bacterial infections are a much more common cause of pneumonia. Streptococcus pneumoniae is the most frequently isolated causative pathogen during postinfluenza pneumonia. Considering that S. pneumoniae utilizes the platelet-activating factor receptor (PAFR) to invade the respiratory epithelium and that the PAFR is upregulated during viral infection, we here used PAFR gene-deficient (PAFR-/-) mice to determine the role of this receptor during postinfluenza pneumococcal pneumonia. Viral clearance was similar in wild-type and PAFR-/- mice, and influenza virus was completely removed from the lungs at the time mice were inoculated with S. pneumoniae (day 14 after influenza infection). PAFR-/- mice displayed a significantly reduced bacterial outgrowth in their lungs, a diminished dissemination of the infection, and a prolonged survival. Pulmonary levels of IL-10 and KC were significantly lower in PAFR-/- mice, whereas IL-6 and TNF-alpha were only trendwise lower. These data indicate that the pneumococcus uses the PAFR leading to severe pneumonia in a host previously exposed to influenza A.  相似文献   

11.
The inhibition of the biological activity of IL-1 by recombinant human IL-1 receptor antagonist (IL-1ra) has been investigated in several, controlled clinical trials. Encouraging results have been reported, in particular in patients with rheumatoid arthritis. In the present study, we investigated the influence of treatment of wild type mice with IL-1ra, which resulted in an incomplete and transient inhibition of IL-1 activity. Treatment with recombinant human IL-1ra resulted in an enhanced bacterial outgrowth in the lungs of BALB/c and C57BL/6 mice early after induction of pneumococcal pneumonia, without influencing survival or the pulmonary inflammatory response. The effect of IL-1ra on the host response to S. pneumoniae pneumonia is modest and transient. The present data, together with the findings in IL-1R*/* mice in earlier work, suggest that IL-1 occupies a role in the pulmonary immune response to S. pneumoniae that is substantially less prominent than that of TNF-alpha.  相似文献   

12.
Bacterial flagellin is critical to mediate NLRC4 inflammasome-dependent caspase-1 activation. However, Shigella flexneri, a nonflagellated bacterium, and a flagellin (fliC) knockout strain of Pseudomonas aeruginosa are known to activate NLRC4 in bone marrow-derived macrophages. Furthermore, the flagellin-deficient fliC strain of P. aeruginosa was used in a mouse model of peritonitis to show the requirement of NLRC4. In a model of pulmonary P. aeruginosa infection, flagellin was shown to be essential for the induction of NLRC4-dependent caspase-1 activation. Moreover, in all P. aeruginosa studies, IL-1β production was attenuated in NLRC4(-/-) mice; however, the role of IL-1β in NLRC4-mediated innate immunity in the lungs against a nonflagellated bacterium was not explored. In this article, we report that NLRC4 is important for host survival and bacterial clearance, as well as neutrophil-mediated inflammation in the lungs following Klebsiella pneumoniae infection. NLRC4 is essential for K. pneumoniae-induced production of IL-1β, IL-17A, and neutrophil chemoattractants (keratinocyte cell-derived chemokines, MIP-2, and LPS-induced CXC chemokines) in the lungs. NLRC4 signaling in hematopoietic cells contributes to K. pneumoniae-induced lung inflammation. Furthermore, exogenous IL-1β, but not IL-18 or IL-17A, partially rescued survival, neutrophil accumulation, and cytokine/chemokine expression in the lungs of NLRC4(-/-) mice following infectious challenge. Furthermore, IL-1R1(-/-) mice displayed a decrease in neutrophilic inflammation in the lungs postinfection. Taken together, these findings provide novel insights into the role of NLRC4 in host defense against K. pneumoniae infection.  相似文献   

13.
Interleukin (IL)-12 is a critical cytokine in the T helper (Th)1 response and host defense against intracellular microorganisms, while its role in host resistance to extracellular bacteria remains elusive. In the present study, we elucidated the role of IL-12 in the early-phase host defense against acute pulmonary infection with Streptococcus pneumoniae, a typical extracellular bacterium, using IL-12p40 gene-disrupted (IL-12p40KO) mice. IL-12p40KO mice were highly susceptible to S. pneumoniae infection, as indicated by the shortened survival time, which was completely restored by the replacement therapy with recombinant (r) IL-12, and increased bacterial counts in the lung. In these mice, recruitment of neutrophils in the lung was significantly attenuated when compared to that in wild-type (WT) mice, which correlated well with the reduced production of macrophage inflammatory protein (MIP-2) and tumor necrosis factor (TNF)-alpha in the infected tissues at the early phase of infection. In vitro synthesis of both cytokines by S. pneumoniae-stimulated lung leukocytes was significantly lower in IL-12p40KO mice than in WT mice, and addition of rIL-12 or interferon (IFN)-gamma restored the reduced production of MIP-2 and TNF-alpha in IL-12p40KO mice. Neutralizing anti-IFN-gamma monoclonal antibody (mAb) significantly decreased the effect of rIL-12. Anti-IFN-gamma mAb shortened the survival time of infected mice and reduced the recruitment of neutrophils and production of MIP-2 and TNF-alpha in the lungs. Our results indicated that IL-12p40 plays a critical role in the early-phase host defense against S. pneumoniae infection by promoting the recruitment of neutrophils to the infected tissues.  相似文献   

14.
The pleiotropic cytokine IL-6 has favorable and harmful effects on survival from bacterial infections. Although many innate immune cells produce IL-6, little is known about relevant sources in vivo and the nature of its contributions to host responses to severe bacterial infections. To examine these roles, we subjected mast cell-specific IL-6-deficient mice to the cecal ligation and puncture model of septic peritonitis, finding that survival in these mice is markedly worse than in controls. Following intranasal or i.p. inoculation with Klebsiella pneumoniae, IL-6 (-/-) mice are less likely to survive than wild-type controls and at the time of death have higher numbers of bacteria but not inflammatory cells in lungs and peritoneum. Similarly, mast cell-specific IL-6-deficient mice have diminished survival and higher numbers of K. pneumoniae following i.p. infection. Neutrophils lacking IL-6 have greater numbers of live intracellular K. pneumonia, suggesting impaired intracellular killing contributes to reduced clearance in IL-6(-/-) mice. These results establish that mast cell IL-6 is a critical mediator of survival following K. pneumoniae infection and sepsis and suggest that IL-6 protects from death by augmenting neutrophil killing of bacteria.  相似文献   

15.
In the present study, we comparatively assessed the pathophysiological mechanisms developed during lung infection of BALB/C female mice infected by an original wild type Klebsiella pneumoniae subsp. ozaenae strain (CH137) or by a referent subspecies K. pneumoniae. subsp. pneumoniae strain (ATCC10031). The mice infected with 2.10? CFU K. p. subsp. pneumoniae (n = 10) showed transient signs of infection and all of them recovered. All of those infected with 1.10? CFU K. p. subsp. ozaenae (n = 10) developed pneumonia within 24 h and died between 48 and 72 h. Few macrophages, numerous polymorphonuclear cells and lymphocytes were observed in their lungs in opposite to K. p. subsp. pneumoniae. In bronchoalveolar lavage, a significant increase in MIP-2, IL-6, KC and MCP-1 levels was only observed in K. p. subsp. ozaenae infected mice whereas high levels of TNF-α were evidenced with the two subspecies. Our findings indicated a lethal effect of a wild type K. p. subsp. ozaenae strain by acute pneumonia reflecting an insufficient alveolar macrophage response. This model might be of a major interest to comparatively explore the pathogenicity of K. p. subsp ozaenae strains and to further explore the physiopathological mechanisms of gram-negative bacteria induced human pneumonia.  相似文献   

16.
Innate immunity plays an important role in pulmonary host defense against Pneumocystis carinii, an important pathogen in individuals with impaired cell-mediated immunity. We investigated the role of GM-CSF in host defense in a model of P. carinii pneumonia induced by intratracheal inoculation of CD4-depleted mice. Lung GM-CSF levels increased progressively during the infection and were significantly greater than those in uninfected controls 3, 4, and 5 wk after inoculation. When GM-CSF gene-targeted mice (GM-/-) depleted of CD4+ cells were inoculated with P. carinii, the intensities of infection and inflammation were increased significantly compared with those in CD4-depleted wild-type mice. In contrast, transgenic expression of GM-CSF directed solely in the lungs of GM-/- mice (using the surfactant protein C promoter) dramatically decreased the intensity of infection and inflammation 4 wk after inoculation. The concentrations of surfactant proteins A and D were greater in both uninfected and infected GM-/- mice compared with those in wild-type controls, suggesting that this component of the innate response was preserved in the GM-/- mice. However, alveolar macrophages (AM) from GM-/- mice demonstrated impaired phagocytosis of purified murine P. carinii organisms in vitro compared with AM from wild-type mice. Similarly, AM production of TNF-alpha in response to P. carinii in vitro was totally absent in AM from GM-/- mice, while GM-CSF-replete mice produced abundant TNF in this setting. Thus, GM-CSF plays a critical role in the inflammatory response to P. carinii in the setting of impaired cell-mediated immunity through effects on AM activation.  相似文献   

17.
IL-1 is a proinflammatory cytokine that plays pleiotropic roles in host defense mechanisms. We investigated the role of IL-1 in the humoral immune response using gene-targeted mice. Ab production against SRBC was significantly reduced in IL-1alpha/beta-deficient (IL-1(-/-)) mice and enhanced in IL-1R antagonist(-/-) mice. The intrinsic functions of T, B, and APCs were normal in IL-1(-/-) mice. However, we showed that IL-1(-/-) APCs did not fully activate DO11.10 T cells, while IL-1R antagonist (-/-) APCs enhanced the reaction, indicating that IL-1 promotes T cell priming through T-APC interaction. The function of IL-1 was CD28-CD80/CD86 independent. We found that CD40 ligand and OX40 expression on T cells was affected by the mutation, and the reduced Ag-specific B cell response in IL-1(-/-) mice was recovered by the treatment with agonistic anti-CD40 mAb both in vitro and in vivo. These observations indicate that IL-1 enhances T cell-dependent Ab production by augmenting CD40 ligand and OX40 expression on T cells.  相似文献   

18.
Chlamydia pneumoniae is the causative agent of respiratory tract infections and a number of chronic diseases. Here we investigated the involvement of the common TLR adaptor molecule MyD88 in host responses to C. pneumoniae-induced pneumonia in mice. MyD88-deficient mice were severely impaired in their ability to mount an acute early inflammatory response toward C. pneumoniae. Although the bacterial burden in the lungs was comparable 5 days after infection, MyD88-deficient mice exhibited only minor signs of pneumonia and reduced expression of inflammatory mediators. MyD88-deficient mice were unable to up-regulate proinflammatory cytokines and chemokines, demonstrated delayed recruitment of CD8+ and CD4+ T cells to the lungs, and were unable to clear the pathogen from their lungs at day 14. At day 14 the MyD88-deficent mice developed a severe, chronic lung inflammation with elevated IL-1beta and IFN-gamma leading to increased mortality, whereas wild-type mice as well as TLR2- or TLR4-deficient mice recovered from acute pneumonia and did not show delayed bacterial clearance. Thus, MyD88 is essential to recognize C. pneumoniae infection and initiate a prompt and effective immune host response against this organism leading to clearance of bacteria from infected lungs.  相似文献   

19.
The aim of this study was to examine the contribution of IL-18 in host defense against infection caused by Cryptococcus neoformans in mice with defective IL-12 production. Experiments were conducted in mice with a targeted disruption of the gene for IL-12p40 subunit (IL-12p40-/- mice). In these mice, host resistance was impaired, as shown by increased number of organisms in both lungs and brains, compared with control mice. Serum IFN-gamma was still detected in these mice at a considerable level (20-30% of that in control mice). The host resistance was moderately impaired in IL-12p40-/- mice compared with IFN-gamma-/- mice. Neutralizing anti-IFN-gamma mAb further increased the lung burdens of organisms. In addition, treatment with neutralizing anti-IL-18 Ab almost completely abrogated the production of IFN-gamma and also impaired the host resistance. Host resistance in IL-12p40-/- IL-18-/- mice was more profoundly impaired than in IL-12p40-/- mice. Administration of IL-12 as well as IL-18 increased the serum levels of IFN-gamma and significantly restored the reduced host resistance. Spleen cells obtained from infected IL-12p40-/- mice did not produce any IFN-gamma upon restimulation with the same organisms, while those from infected and IL-12-treated mice produced IFN-gamma. In contrast, IL-18 did not show such effect. Finally, depletion of NK cells by anti-asialo GM1 Ab mostly abrogated the residual production of IFN-gamma in IL-12p40-/- mice. Our results indicate that IL-18 contributes to host resistance to cryptococcal infection through the induction of IFN-gamma production by NK cells, but not through the development of Th1 cells, under the condition in which IL-12 synthesis is deficient.  相似文献   

20.
Sepsis syndrome is frequently complicated by the development of nosocomial infections, particularly Gram-negative pneumonia. Although TNF-alpha (TNF) has been shown to mediate many of the pathophysiologic events in sepsis, this cytokine is a critical component of innate immune response within the lung. Therefore, we hypothesized that the transient transgenic expression of TNF within the lung during the postseptic period could augment host immunity against nosocomial pathogens. To test this, mice underwent 26-gauge cecal ligation and puncture (CLP) as a model of abdominal sepsis, followed 24 h later by intratracheal (i.t.) administration of PSEUDOMONAS: aeruginosa. In animals undergoing sham surgery followed by bacterial challenge, PSEUDOMONAS: were nearly completely cleared from the lungs by 24 h. In contrast, mice undergoing CLP were unable to clear P. aeruginosa and rapidly developed bacteremia. Alveolar macrophages (AM) recovered from mice 24 h after CLP produced significantly less TNF ex vivo, as compared with AM from sham animals. Furthermore, the adenoviral mediated transgenic expression of TNF within the lung increased survival in CLP animals challenged with PSEUDOMONAS: from 25% in animals receiving control vector to 91% in animals administered recombinant murine TNF adenoviral vector. Improved survival in recombinant murine TNF adenoviral vector-treated mice was associated with enhanced lung bacterial clearance and proinflammatory cytokine expression, as well as enhanced AM phagocytic activity and cytokine expression when cultured ex vivo. These observations suggest that intrapulmonary immunostimulation with TNF can reverse sepsis-induced impairment in antibacterial host defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号