首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herpes simplex virus-induced DNA polymerase purified by published methods was found to be contaminated with many others proteins, including virus structural proteins. Thus, DEAE-cellulose and phosphocellulose chromatography were used in combination with affinity chromatography to purify DNA polymerase from herpes simplex virus type 1- and type 2-infected cells. The purified enzyme retained unique features of the herpesvirus-induced DNA polymerase, including a requirement for high salt concentrations for maximal activity, a sensitivity to low phosphonoacetate concentrations, and the capacity to be neutralized by rabbit antiserum to herpesvirus-infected cells. By polyacrylamide gel electrophoresis, the purified DNA polymerase was associated with a virus-induced polypeptide of about 150,000 molecular weight.  相似文献   

2.
Epstein-Barr virus (EBV) was purified from the extracellular fluid of HR-1 and B95-8 cell lines. The preparations of purified virus consisted of enveloped particles and had EBV-specific antigneic reactivity. Comparison of the amount of labeled protein in preparations of virus purified from cultures incubated in [35S]methionine with the amount of labeled protein in preparations obtained following a mixture of unlabeled virus with [35S]methionine-labeled cellular proteins indicated that less than 2% of the labeled protein in the purified virus preparation could be attributed to contamination with labeled cellular proteins. No extraneous membranous material was seen in thin sections of the purified virus preparations. Analysis of the polypeptides of purified enveloped EBV indicated the following. (i) Eighteen polypeptides could be resolved in Coomassie brilliant blue-stained electropherograms of extracellular virus purified from HR-1 and B95-8 cultures. (ii) Thirty-three polypeptides could be resolved in fluorograms of labeled EBV purified from B95-8 cultures and subjected to electrophoresis in acrylamide gels cross-linked with diallyltartardiamide. The molecular weight of the EBV polypeptides was estimated by co-electrophoresis with the polypeptides of purified herpes simplex virus and purified polypeptides of known molecular weight to range from 28 x 10(3) to approximately 290 x 10(3) (iii) The polypeptides of EBV could be grouped by their relative molar abundancy into three classes: VP6, 7, and 27 present in high abundance; VP1, 12, 20, 23, and 29 present in moderate abundance; and a third class of less abundant polypeptides, VP4, 5, 8, 9, 10, 11, 15, 16, 21, and 22. The remainder of the polypeptides could not be precisely quantitated. (iv) The polypeptides of purified EBV, although similar in number and in range of molecular weight to the polypeptides of purified herpes simplex virus, differ sufficiently from those of herpes simplex virus so as to preclude comparison of individual polypeptide components.  相似文献   

3.
The major herpes simplex virus type 2 DNA-binding infected cell-specific polypeptides 11 and 12 have been purified to homogeneity from extracts of virus-infected cells. Monospecific antiserum to the purified protein has been made and used to examine virus temperature-sensitive mutants for defects in the synthesis of the protein and to probe virus DNA synthesis in isolated chromatin. The purified protein acted directly on a polydeoxyadenylic acid-polydeoxythymidylic acid helix, reducing its melting temperature. The results indicated that the protein functions in virus DNA synthesis.  相似文献   

4.
Purification of Epstein-Barr virus DNA polymerase from P3HR-1 cells.   总被引:17,自引:12,他引:5       下载免费PDF全文
The Epstein-Barr virus DNA polymerase was purified from extracts of P3HR-1 cells treated with n-butyrate for induction of the viral cycle. Sequential chromatography on DNA cellulose, phosphocellulose, and blue Sepharose yielded an enzyme preparation purified more than 1,300-fold. The purified enzyme was distinct from cellular enzymes but resembled the viral DNA polymerase in cells infected with herpes simplex virus type 1 or 2. The active enzyme had an apparent molecular weight of 185,000 as estimated by gel filtration on Sephacryl S-300. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major polypeptide corresponding to a molecular weight of ca. 110,000. This polypeptide correlated with the catalytic function of the purified enzyme, whereas the other, less abundant polypeptides did not. By immunoblotting, the 110,000-molecular-weight polypeptide could be identified as a viral polypeptide. It could not be determined whether the native enzyme was composed of more than one polypeptide.  相似文献   

5.
6.
An RNA-dependent DNA polymerase was isolated from purified virions of endogenous oncornaviruses released by the MOPC-315 murine myeloma cell line. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified enzyme was found to consist of two major polypeptides with molecular weights of about 28,000 and 26,500. The active enzyme had a molecular weight of approximately 56,000, as calculated from its sedimentation on glycerol density gradients, indicating that it is probably a dimer of the two subunit polypeptides. The isolated MOPC-315 virus polymerase exhibited all three activities known to be found in the DNA polymerase from oncornaviruses, namely, an RNA-dependent DNA polymerase, a DNA-dependent DNA polymerase, and an RNase H. The RNA-dependent polymerase activity showed a prounced preference for Mn2+ over Mg2+, whereas the DNA-dependent and RNase H reactions were catalyzed by these two cations to an almost equal extent. The purified polymerase was found to be immunologically related to the polymerase of Rauscher murine leukemia virus.  相似文献   

7.
Cytomegalovirus virions and dense bodies were purified by sucrose velocity and equilibrium centrifugation from the medium of fibroblasts infected with the strain AD169. The final virus preparations were purified more than 228-fold with respect to cellular proteins as determined by double-isotopic labeling and at least 1,600-fold on the basis of changes in the ratio of total protein to virus particles. The protein content of purified particles approximated that found for purified preparations of other herpesviruses. Twenty polypeptides ranging from 22,000 to greater than 230,000 molecular weight were detected in purified virus preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Polypeptides of virions and dense bodies were allocated on the basis of analyses of preparations containing differing percentages of virions and dense bodies. Six polypeptides were represented predominantly or exclusively in virions, and four polypeptides were represented predominantly or exclusively in dense bodies, whereas the remainder appeared to be shared by both types of particles. Four polypeptides were glycosylated, and at least three of these appeared to be shared by both particles. Four polypeptides were glycosylated, and at least three of these appeared to be shared by both particle types. The protein composition of cytomegalovirus differs profoundly from that of herpes simplex virus.  相似文献   

8.
The herpes simplex virus 1 (HSV-1) UL42 protein, one of seven herpes-encoded polypeptides that are required for the replication of the HSV-1 genome, is found in a 1:1 complex with the HSV-1 DNA polymerase (Crute, J. J., and Lehman, I. R. (1989) J. Biol. Chem. 264, 19266-19270). To obtain herpes DNA polymerase free of UL42 protein, we have cloned and overexpressed the Pol gene in a recombinant baculovirus vector and purified the recombinant DNA polymerase to near homogeneity. Replication of singly primed M13mp18 single-stranded DNA by the recombinant enzyme in the presence of the herpes encoded single-stranded DNA-binding protein ICP8 yields in addition to some full-length product a distribution of intermediate length products by a quasi-processive mode of deoxynucleotide polymerization. Addition of the purified UL42 protein results in completely processive polymerization and the generation of full-length products. Similar processivity is observed with the HSV-1 DNA polymerase purified from herpes-infected Vero cells. Processive DNA replication by the DNA polymerase isolated from HSV-1-infected Vero cells or the recombinant DNA polymerase-UL42 protein complex requires that the single-stranded DNA be coated with saturating levels of ICP8. ICP8 which binds single-stranded DNA in a highly cooperative manner is presumably required to melt out regions of secondary structure in the single-stranded DNA template, thereby potentiating the processivity enhancing action of the UL42 protein.  相似文献   

9.
The metabolism and mode of action of the anti-herpes compound buciclovir [R)-9-(3,4-dihydroxybutyl)-guanine, BCV) has been studied in herpes simplex virus-infected and uninfected Vero cells. In uninfected cells, a low and constant concentration of intracellular BCV was found, while in herpes simplex virus-infected cells, an increasing concentration of BCV phosphates was found due to metabolic trapping. The major phosphorylation product was BCV triphosphate (BCVTP) which was 92% of the total amount of BCV phosphates. BCV phosphates were accumulated to the same extent in cells infected with either a herpes simplex virus type 1 or a herpes simplex virus type 2 strain while thymidine kinase-deficient mutants of herpes simplex virus type 1 were 10 times less efficient in accumulating BCV phosphates. In uninfected Vero cells, the concentration of the phosphorylated forms of BCV was less than 1% of that found in herpes simplex virus-infected cells. The BCVTP formed in herpes simplex virus-infected cells was highly stable, as 80% of the amount of BCVTP was still present even 17 h after removal of extracellular BCV. BCV was a good substrate for herpes simplex virus type 1- and type 2-induced thymidine kinases but not for the cellular cytosol or mitochondrial thymidine kinases. BCV monophosphate could be phosphorylated by cellular guanylate kinase to BCV diphosphate. BCVTP was a selective and competitive inhibitor to deoxyguanosine triphosphate of the purified herpes simplex virus type 1- and type 2-induced DNA polymerases. BCVTP could neither act as an alternative substrate in the herpes simplex virus type 2 or cellular DNA polymerase reactions, nor could [3H]BCV monophosphate be detected in DNA formed by herpes simplex virus type 2 DNA polymerase, or be detected in nucleic acids extracted from herpes simplex virus type 1-infected cells. These data indicate that BCVTP may inhibit the herpes simplex virus-induced DNA polymerase without being incorporated into DNA.  相似文献   

10.
11.
Herpes simplex virus virion protein 19C (VP19C) is a constituent of both unenveloped (nuclear) and enveloped (cytoplasmic) capsids. In this paper we report that 32P-labeled DNA, either supercoiled or linear double stranded, efficiently bound to VP19C electrically transferred from denaturing polyacrylamide gels containing electrophoretically separated proteins from purified capsids. Analyses of the polypeptides specified by herpes simplex virus type 1 X herpes simplex type 2 recombinants with respect to electrophoretic mobility and binding of 32P-labeled DNA indicate that VP19C maps at the same location as infected cell polypeptide 32 and is derived from it.  相似文献   

12.
Genetic experiments have shown that the products of the herpes simplex virus type 1 (HSV-1) DNA polymerase (UL30) and UL42 genes are both required for viral DNA replication, and a number of studies have suggested that these two proteins specifically interact. We have confirmed and extended these findings. The viral DNA polymerase from HSV-1-infected cells has been purified as a complex containing equimolar quantities of the UL30 (Pol, the catalytic subunit) and UL42 polypeptides. Sedimentation and gel filtration analyses of this complex are consistent with the idea that the complex consists of a heterodimer of Pol and UL42. A complex with identical physical and functional properties was also purified from insect cells coinfected with recombinant baculoviruses expressing the two polypeptides. Therefore, the formation of the Pol-UL42 complex does not require the participation of any other HSV-encoded protein. We have compared the catalytic properties of the Pol-UL42 complex with those of the isolated subunits of the enzyme purified from recombinant baculovirus-infected insect cells. The specific activity of the catalytic subunit alone was nearly identical to that of the complex when assayed on activated DNA. When assayed on a defined template such as singly primed M13 DNA, however, the combination of Pol and UL42 utilized fewer primers and formed larger products than Pol alone. Template challenge experiments demonstrated that the Pol-UL42 complex was more highly processive than Pol alone. Our data are consistent with the idea that the UL42 polypeptide is an accessory subunit of the DNA polymerase that acts to increase the processivity of polymerization.  相似文献   

13.
Mutants of herpes simplex virus type 1 resistant to the antiviral drug 9-beta-D-arabinofuranosyladenine (araA) have been isolated and characterized. AraA-resistant mutants can be isolated readily and appear at an appreciable frequency in low-passage stocks of wild-type virus. Of 13 newly isolated mutants, at least 11 were also resistant to phosphonoacetic acid (PAA). Of four previously described PAA-resistant mutants, two exhibited substantial araA resistance. The araA resistance phenotype of one of these mutants, PAAr5, has been mapped to the HpaI-B fragment of herpes simplex virus DNA by marker transfer, and araA resistance behaved in marker transfer experiments as if it were closely linked to PAA resistance, a recognized marker for the viral DNA polymerase locus. PAAr5 induced viral DNA polymerase activity which was much less susceptible to inhibition by the triphosphate derivative of araA than was wild-type DNA polymerase. These genetic and biochemical data indicate that the herpes simplex virus DNA polymerase gene is a locus which, when mutated, can confer resistance to araA and thus that the herpes simplex virus DNA polymerase is a target for this antiviral drug.  相似文献   

14.
The protein kinase associated with purified herpes simplex virus 1 and 2 virions partitioned with the capsid-tegument structures and was not solubilized by non-ionic detergents and low, non-inhibitory concentrations of urea. The enzyme required Mg2+ or Mn2+ and utilized ATP or GTP. The activity was enhanced by non-ionic detergents and by Na+ even in the presence of high concentrations of of Mg2+, but not by cyclic nucleotides. The enzyme associated with capsid-tegument structures phosphorylated virion polypeptides only; exogenously added substrates (acidic and basic histones, casein, phosphovitin, protamine, and bovine serum albumin) were not phosphorylated. The major phosphorylated species were virion polypeptides (VP) 1-2, 4, 11-12, 13-14, 18.7, 18.8 and 23. VP 18.7 and VP 18.8 have not been previously detected, but may be phosphorylated forms of polypeptides co-migrating with VP 19. Of the remainder, only VP 23 has been previously identified as a capsid protein; the others are constituents of the tegument or of the under surface of the virion envelope. The distribution of the phosphate bound to viral polypeptides varied depending on the Mg2+ concentration and pH. In the absence of dithiothreitol, in vitro phosphate exchange was demonstrable in VP 23 and to a lesser extent in two other polypeptides on sequential phosphorylation frist with saturating amounts off unlabeled ATP and then with [gamma-32P]ATP. Analysis of the virion polypeptides specified by herpes simplex virus 1 X herpes simplex virus 2 recombinants indicates that the genes specifying the polypeptides which serve as a substrate for the protein kinase map in the unique sequences near the left and right reinterated DNA sequences of the L component.  相似文献   

15.
G J Hart  R E Boehme 《FEBS letters》1992,305(2):97-100
The effect that the UL42 protein of herpes simplex virus type 1 has on the DNA polymerase activity of the DNA polymerase catalytic subunit (Pol) of the same virus has been investigated. The observed effects are critically dependent on the salt used and its concentration, such that the UL42 protein may inhibit, have little or no effect on, or activate the Pol activity, depending on the condition used. The observed effects are due to the values for Km(app) for activated DNA and Vmaxapp for Pol and the Pol-UL42 protein complex differently varying with salt concentration.  相似文献   

16.
The genome structures of herpes simplex virus type 1 (HSV-1)/HSV-2 intertypic recombinants have been previously determined by restriction endonuclease analysis, and these recombinants and their parental strains have been employed to demonstrate that mutations within the HSV DNA polymerase locus induce an altered HSV DNA polymerase activity, exhibiting resistance to three inhibitors of DNA polymerase. The viral DNA polymerases induced by two recombinants and their parental strains were purified and shown to possess similar molecular weights (142,000 to 144,000) and similar sensitivity to compounds which distinguish viral and cellular DNA polymerases. The HSV DNA polymerases induced by the resistant recombinant and the resistant parental strain were resistant to inhibition by phosphonoacetic acid, acycloguanosine triphosphate, and the 2',3'-dideoxynucleoside triphosphates. The resistant recombinant (R6-34) induced as much acycloguanosine triphosphate as did the sensitive recombinant (R6-26), but viral DNA synthesis in infected cells and the viral DNA polymerase activity were not inhibited. The 2',3'-dideoxynucleoside-triphosphates were effective competitive inhibitors for the HSV DNA polymerase, and the Ki values for the four 2',3'-dideoxynucleoside triphosphates were determined for the four viral DNA polymerases. The polymerases of the resistant recombinant and the resistant parent possessed a much higher Ki for the 2',3'-dideoxynucleoside triphosphates and for phosphonoacetic acid than did the sensitive strains. A 1.3-kilobase-pair region of HSV-1 DNA within the HSV DNA polymerase locus contained mutations which conferred resistance to three DNA polymerase inhibitors. This region of DNA sequences encoded for an amino acid sequence of 42,000 molecular weight and defined an active center of the HSV DNA polymerase enzyme.  相似文献   

17.
A polypeptide (p40) of approximately 40,000 molecular weight was isolated from herpes simplex virus type 1 and 2 nucleocapsids by gel filtration and ion exchange chromatography. This protein appears to be the same as protein 22a described previously (Gibson and Roizman, J. Virol. 10:1044--1052, 1972). Competition immunoassays were developed by using purified p40 and antisera prepared in guinea pigs. The assays indicated that the p40's from herpes simplex virus types 1 and 2 possess both type-specific and cross-reactive antigenic determinants. Antibodies to the p40 cross-reactive determinant reacted with antigens in simian herpes virus SA8-infected cells, but not with antigens induced by pseudorabies virus. Preliminary results indicated that a radioimmunoprecipitation test can be used to detect type-specific herpes simplex virus p40 antibodies in human sera.  相似文献   

18.
Herpes simplex virus type 1 ribonucleotide reductase is associated with two polypeptides of apparent molecular weights 136,000 and 38,000. The two polypeptides form a tight complex and, therefore, are often coprecipitated by monoclonal antibodies. We report here that immunoglobulins G purified from polyclonal rabbit antisera (P9) raised against a nonapeptide corresponding to the carboxy terminus of the 38,000-dalton polypeptide specifically neutralize the herpes simplex virus ribonucleotide reductase activity. We suggest that the P9 immunoglobulin G neutralizes the reductase activity by impairing the association of the two subunits (H1 and H2) of the enzyme.  相似文献   

19.
A DNA helicase induced by herpes simplex virus type 1.   总被引:18,自引:6,他引:12       下载免费PDF全文
We have identified and partially purified a DNA-dependent ATPase that is present specifically in herpes simplex virus type 1-infected Vero cells. The enzyme which has a molecular weight of approximately 440,000 differs from the comparable host enzyme in its elution from phosphocellulose columns and in its nucleoside triphosphate specificity. The partially purified DNA-dependent ATPase is also a DNA helicase that couples ATP or GTP hydrolysis to the displacement of an oligonucleotide annealed to M13 single-stranded DNA. The enzyme requires a 3' single-stranded tail on the duplex substrate, suggesting that the polarity of unwinding is 5'----3' relative to the M13 DNA. The herpes specific DNA helicase may therefore translocate on the lagging strand in the semidiscontinuous replication of the herpes virus 1 genome.  相似文献   

20.
Cloned BglII fragment N (map units 0.58 to 0.625) of herpes simplex virus type 2 DNA has been shown to transform rodent cells to an oncogenic phenotype (Galloway and McDougall, J. Virol. 38: 749-760, 1981). RNA homologous to this fragment directs the synthesis of five polypeptides in a cell-free translation system. The approximate molecular weights of these proteins are 140,000, 61,000, 56,000, 35,000, and 23,500. The 35,000-dalton protein is the major species late in infection and is the only species detected before the onset of viral DNA replication. The arrangement of the sequences encoding these proteins along the herpes simplex virus type 2 genome was determined by hybridization of the RNA to cloned PstI fragment of BglII-N and to single-stranded DNA segments cloned into M13mp7. Both the hybridization experiments and immunoprecipitation with monoclonal antibodies suggested that the 140,000- and 35,000-dalton proteins are at least partially colinear and share antigenic determinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号