共查询到20条相似文献,搜索用时 0 毫秒
1.
Kröning N Willenborg M Tholema N Hänelt I Schmid R Bakker EP 《The Journal of biological chemistry》2007,282(19):14018-14027
Subunit KtrA of the bacterial Na(+)-dependent K(+)-translocating KtrAB systems belongs to the KTN/RCK family of regulatory proteins and protein domains. They are located at the cytoplasmic side of the cell membrane. By binding ligands they regulate the activity of a number of K(+) transporters and K(+) channels. To investigate the function of KtrA from the bacterium Vibrio alginolyticus (VaKtrA), the protein was overproduced in His-tagged form (His(10)-VaKtrA) and isolated by affinity chromatography. VaKtrA contains a G-rich, ADP-moiety binding beta-alpha-beta-fold ("Rossman fold"). Photocross-linking and flow dialysis were used to determine the binding of [(32)P]ATP and [(32)P]NAD(+) to His(10)-VaKtrA. Binding of other nucleotides was estimated from the competition by these compounds of the binding of the (32)P-labeled nucleotides to the protein. [gamma-(32)P]ATP bound with high affinity to His(10)-VaKtrA (K(D) of 9 microm). All other nucleotides tested exhibited K(D) (K(i)) values of 30 microm or higher. Limited proteolysis with trypsin showed that ATP was the only nucleotide that changed the conformation of VaKtrA. ATP specifically promoted complex formation of VaKtrA with the His-tagged form of its K(+)-translocating partner, VaKtrB-His(6), as detected both in an overlay experiment and in an experiment in which VaKtrA was added to VaKtrB-His(6) bound to Ni(2+)-agarose. In intact cells of Escherichia coli both a high of membrane potential and a high cytoplasmic ATP concentration were required for VaKtrAB activity. C-terminal deletions in VaKtrA showed that for in vivo activity at least 169 N-terminal amino acid residues of its total of 220 are required and that its 40 C-terminal residues are dispensable. 相似文献
2.
In a subset of K(+) channels, gating is regulated through the direct binding of ligands by large cytoplasmic RCK domains. To further investigate the role of the RCK domain, we have begun the biochemical characterization of a two-transmembrane segment, RCK domain-containing channel from Methanococcus jannaschii, MjK2, by testing its general functional behavior and identifying purification conditions. Standard detergent solubilization of recombinantly expressed MjK2 required the addition of a high NaCl concentration to the extraction buffer for MjK2 solubilization. The cytoplasmic RCK domain was identified as the region of MjK2 responsible for the dependence of solubilization on high salt concentrations since expression of an MjK2 construct lacking the transmembrane domain, MjK2cd, also required high salt concentrations for extraction from Escherichia coli lipids, a necessary step in the purification of both MjK2 and MjK2cd. MjK2 expression was able to weakly recover growth of K(+) uptake deficient LB2003 cells at 10 mM KCl, suggesting that the channel can conduct K(+) but has a low open probability. Purified MjK2 reconstituted in liposomes generated only limited Rb(+) uptake, blocked by BaCl(2). MjK2cd exhibited direct binding to PC/PS lipid vesicles with a molar partition coefficient (K(1)) of approximately 10(3) M(-)(1), which decreased with both an increase in the salt concentration and a decrease in the anionic lipid ratio. Lipid blot assays revealed that MjK2cd binds most strongly to lipids of increasingly negative charge. These results support the idea that the binding of the MjK2 RCK domain to membranes takes place via an electrostatic interaction with anionic lipid surfaces. 相似文献
3.
MthK is a Ca2+-gated K+ channel from Methanobacterium autotrophicum. The crystal structure of the MthK channel in a Ca2+-bound open state was previously determined at 3.3 A and revealed an octameric gating ring composed of eight intracellular ligand-binding RCK (regulate the conductance of K+) domains. It was suggested that Ca2+ binding regulates the gating ring conformation, which in turn leads to the opening and closing of the channel. However, at 3.3 AA resolution, the molecular details of the structure are not well defined, and many of the conclusions drawn from that structure were hypothetical. Here we have presented high resolution structures of the MthK RCK domain with and without Ca2+ bound from three different crystals. These structures revealed a dimeric architecture of the RCK domain and allowed us to visualize the Ca2+ binding and protein-protein contacts at atomic detail. The dimerization of RCK domains is also conserved in other RCK-regulated K+ channels and transporters, suggesting that the RCK dimer serves as a basic unit in the gating ring assembly. A comparison of these dimer structures confirmed that the dimer interface is indeed flexible as suggested previously. However, the conformational change at the flexible interface is of an extent smaller than the previously hypothesized gating ring movement, and a reconstruction of these dimers into octamers by applying protein-protein contacts at the fixed interface did not generate enclosed gating rings. This indicated that there is a high probability that the previously defined fixed interface may not be fixed during channel gating. In addition to the structural studies, we have also carried out biochemical analyses and have shown that near physiological pH, isolated RCK domains form a stable octamer in solution, supporting the notion that the formation of octameric gating ring is a functionally relevant event in MthK gating. Additionally, our stability studies indicated that Ca2+ binding stabilizes the RCK domains in this octameric state. 相似文献
4.
Andras Szollosi Ricardo S. Vieira-Pires Celso M. Teixeira-Duarte Rita Rocha Jo?o H. Morais-Cabral 《PLoS biology》2016,14(1)
KtrAB belongs to the Trk/Ktr/HKT superfamily of monovalent cation (K+ and Na+) transport proteins that closely resemble K+ channels. These proteins underlie a plethora of cellular functions that are crucial for environmental adaptation in plants, fungi, archaea, and bacteria. The activation mechanism of the Trk/Ktr/HKT proteins remains unknown. It has been shown that ATP stimulates the activity of KtrAB while ADP does not. Here, we present X-ray structural information on the KtrAB complex with bound ADP. A comparison with the KtrAB-ATP structure reveals conformational changes in the ring and in the membrane protein. In combination with a biochemical and functional analysis, we uncover how ligand-dependent changes in the KtrA ring are propagated to the KtrB membrane protein and conclude that, despite their structural similarity, the activation mechanism of KtrAB is markedly different from the activation mechanism of K+ channels. 相似文献
5.
6.
Translin is thought to participate in a variety of cellular activities including chromosomal translocations, translational regulation of mRNA expression, and mRNA transport. It forms an octameric ring structure capable of sequence-specific binding of both DNA and RNA substrates. We have used electron microscopy and single-particle image analysis to generate a three-dimensional reconstruction of the Translin ring. The subunits appear to have two distinct domains that assemble to form an open channel with diameter of approximately 30 A at one end and approximately 50 A at the opposite end. In the presence of either DNA or RNA containing consensus binding sequences, the largest opening into the central cavity is filled with density. Strikingly, although Translin shows significant sequence homology to only one other protein, Translin-associated factor X, the quaternary organization and the dimerization of subunits in the ring are very similar to those observed for hexameric ring helicases. This suggests that many of the structures in DNA and RNA metabolism may have similar quaternary organization. 相似文献
7.
The Arabidopsis (Arabidopsis thaliana) cation calcium exchangers (CCXs) were recently identified as a subfamily of cation transporters; however, no plant CCXs have been functionally characterized. Here, we show that Arabidopsis AtCCX3 (At3g14070) and AtCCX4 (At1g54115) can suppress yeast mutants defective in Na+, K+, and Mn2+ transport. We also report high-capacity uptake of 86Rb+ in tonoplast-enriched vesicles from yeast expressing AtCCX3. Cation competition studies showed inhibition of 86Rb+ uptake in AtCCX3 cells by excess Na+, K+, and Mn2+. Functional epitope-tagged AtCCX3 fusion proteins were localized to endomembranes in plants and yeast. In Arabidopsis, AtCCX3 is primarily expressed in flowers, while AtCCX4 is expressed throughout the plant. Quantitative polymerase chain reaction showed that expression of AtCCX3 increased in plants treated with NaCl, KCl, and MnCl2. Insertional mutant lines of AtCCX3 and AtCCX4 displayed no apparent growth defects; however, overexpression of AtCCX3 caused increased Na+ accumulation and increased 86Rb+ transport. Uptake of 86Rb+ increased in tonoplast-enriched membranes isolated from Arabidopsis lines expressing CCX3 driven by the cauliflower mosaic virus 35S promoter. Overexpression of AtCCX3 in tobacco (Nicotiana tabacum) produced lesions in the leaves, stunted growth, and resulted in the accumulation of higher levels of numerous cations. In summary, these findings suggest that AtCCX3 is an endomembrane-localized H+-dependent K+ transporter with apparent Na+ and Mn2+ transport properties distinct from those of previously characterized plant transporters. 相似文献
8.
Taleh Yusifov Anoosh D. Javaherian Antonios Pantazis Chris S. Gandhi Riccardo Olcese 《The Journal of general physiology》2010,136(2):189-202
Large-conductance voltage- and Ca2+-activated K+ (BKCa) channels play a fundamental role in cellular function by integrating information from their voltage and Ca2+ sensors to control membrane potential and Ca2+ homeostasis. The molecular mechanism of Ca2+-dependent regulation of BKCa channels is unknown, but likely relies on the operation of two cytosolic domains, regulator of K+ conductance (RCK)1 and RCK2. Using solution-based investigations, we demonstrate that the purified BKCa RCK1 domain adopts an α/β fold, binds Ca2+, and assembles into an octameric superstructure similar to prokaryotic RCK domains. Results from steady-state and time-resolved spectroscopy reveal Ca2+-induced conformational changes in physiologically relevant [Ca2+]. The neutralization of residues known to be involved in high-affinity Ca2+ sensing (D362 and D367) prevented Ca2+-induced structural transitions in RCK1 but did not abolish Ca2+ binding. We provide evidence that the RCK1 domain is a high-affinity Ca2+ sensor that transduces Ca2+ binding into structural rearrangements, likely representing elementary steps in the Ca2+-dependent activation of human BKCa channels. 相似文献
9.
The intracellular C-terminal domain structure of a six-transmembrane K+ channel from Escherichia coli has been solved by X-ray crystallography at 2.4 A resolution. The structure is representative of a broad class of domains/proteins that regulate the conductance of K+ (here referred to as RCK domains) in prokaryotic K+ transporters and K+ channels. The RCK domain has a Rossmann-fold topology with unique positions, not commonly conserved among Rossmann-fold proteins, composing a well-conserved salt bridge and a hydrophobic dimer interface. Structure-based amino acid sequence alignments and mutational analysis are used to demonstrate that an RCK domain is also present and is an important component of the gating machinery in eukaryotic large-conductance Ca2+ activated K+ channels. 相似文献
10.
11.
Electrophysiological characterization of a new member of the RCK family of rat brain K+ channels 总被引:4,自引:0,他引:4
A novel member of the RCK family of rat brain K+ channels, called RCK2, has been sequenced and expressed in Xenopus oocytes. The K+ currents were voltage-dependent, activated within 20 ms (at 0 mV), did not inactivate in 5 s, and had a single channel conductance in frog Ringers of 8.2 pS. Compared to other members of the RCK family the pharmacological profile of RCK2 was unique in that the channel was resistant to block (IC50 = 3.3 microM) by charybdotoxin [(1988) Proc. Natl. Acad. Sci. USA 85, 3329-3333] but relatively sensitive to 4-aminopyridine (0.3 mM), tetraethylammonium (1.7 mM), alpha-dendrotoxin (25 nM), noxiustoxin (200 nM), and mast cell degranulating peptide (200 nM). Thus, RCK2 is a non-inactivating delayed rectifier K+ channel with interesting pharmacological properties. 相似文献
12.
13.
14.
TWIK-2, an inactivating 2P domain K+ channel 总被引:3,自引:0,他引:3
Patel AJ Maingret F Magnone V Fosset M Lazdunski M Honoré E 《The Journal of biological chemistry》2000,275(37):28722-28730
We cloned human and rat TWIK-2 and expressed this novel 2P domain K(+) channel in transiently transfected COS cells. TWIK-2 is highly expressed in the gastrointestinal tract, the vasculature, and the immune system. Rat TWIK-2 currents are about 15 times larger than human TWIK-2 currents, but both exhibit outward rectification in a physiological K(+) gradient and mild inward rectification in symmetrical K(+) conditions. TWIK-2 currents are inactivating at depolarized potentials, and the kinetic of inactivation is highly temperature-sensitive. TWIK-2 shows an extremely low conductance, which prevents the visualization of discrete single channel events. The inactivation and rectification are intrinsic properties of TWIK-2 channels. In a physiological K(+) gradient, TWIK-2 is half inhibited by 0.1 mm Ba(2+), quinine, and quinidine. Finally, cysteine 53 in the M1P1 external loop is required for functional expression of TWIK-2 but is not critical for subunit self-assembly. TWIK-2 is the first reported 2P domain K(+) channel that inactivates. The base-line, transient, and delayed activities of TWIK-2 suggest that this novel 2P domain K(+) channel may play an important functional role in cell electrogenesis. 相似文献
15.
16.
Large conductance, voltage- and Ca2+-activated K+ (BK(Ca)) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca2+. Similar to an archeon Ca2+-activated K+ channel, MthK, each of four alpha subunits of BK(Ca) may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of the MthK channel suggests that the RCK domains reorient with one another upon Ca2+ binding to change the gating ring conformation and open the activation gate. Here we report that the conformational changes of the NH2 terminus of RCK1 (AC region) modulate BK(Ca) gating. Such modulation depends on Ca2+ occupancy and activation states, but is not directly related to the Ca2+ binding sites. These results demonstrate that AC region is important in the allosteric coupling between Ca2+ binding and channel opening. Thus, the conformational changes of the AC region within each RCK domain is likely to be an important step in addition to the reorientation of RCK domains leading to the opening of the BK(Ca) activation gate. Our observations are consistent with a mechanism for Ca2+-dependent activation of BK(Ca) channels such that the AC region inhibits channel activation when the channel is at the closed state in the absence of Ca2+; Ca2+ binding and depolarization relieve this inhibition. 相似文献
17.
Mechanism of the Na+, K+ pump. Protein structure and conformations of the pure (Na+ +K+)-ATPase 总被引:35,自引:0,他引:35
P L J?rgensen 《Biochimica et biophysica acta》1982,694(1):27-68
18.
A 3D-QSAR/CoMFA was performed for a series of 42 piperidine-based dopamine transporter (DAT) blockers. The overall process consisted of three major steps: (1) a pharmacophore model was built using the Genetic Algorithm Similarity Program (GASP); (2) the Flexible Superposition (FlexS) technique was applied to generate multiple conformations for each of the ligands based on the pharmacophore; (3) the Genetic Algorithm was employed to optimize the selection of the ligand conformations for the CoMFA modeling. The CoMFA models were found to be more detailed in the putative binding site by exploring multiple conformations of each ligand. The comparison of the contour maps shows that, in general, these models are comparable and the differences between them result from the ability of the flexible 3-substituents of the ligands to adopt multiple conformations satisfying the same pharmacophore model. These findings provide guidance for the design and improvement of compounds with DAT activity, which is important for the development of a treatment of cocaine addiction and certain neurological disorders. 相似文献
19.
Plant roots contain both high- and low-affinity transport systems for uptake of K+ from the soil. In this study, we characterize a K+ transporter that functions in both high- and low-affinity uptake. Using yeast complementation analysis, we isolated a cDNA for a functional K+ transporter from Arabidopsis (referred to as AtKUP1 for Arabidopsis thaliana K+ uptake). When expressed in a yeast mutant, AtKUP1 dramatically increased K+ uptake capacity at both a low and high [K+] range. Kinetic analyses showed that AtKUP1-mediated K+ uptake displays a "biphasic" pattern similar to that observed in plant roots. The transition from the high-affinity phase (K(m) of 44 microM) to the low-affinity phase (K(m) of 11 mM) occurred at 100 to 200 microM external K+. Both low- and high-affinity K+ uptake via AtKUP1 were inhibited by 5 mM or higher concentrations of NaCl. In addition, AtKUP1-mediated K+ uptake was inhibited by K+ channel blockers, including tetraethylammonium, Cs+, and Ba2+. Consistent with a possible function in K+ uptake from the soil, the AtKUP1 gene is primarily expressed in roots. We conclude that the AtKUP1 gene product may function as a K+ transporter in Arabidopsis roots over a broad range of [K+] in the soil. 相似文献
20.
Michael Sandmann Kamil Sk?odowski Pawel Gajdanowicz Erwan Michard Marcio Rocha Judith L Gomez-Porras Wendy González Luiz Gustavo Guedes Corraa Santiago J Ramírez-Aguilar Tracey Ann Cuin Joost T van Dongen Jean-Baptiste Thibaud Ingo Dreyer 《Plant signaling & behavior》2011,6(4):558-562
Potassium (K+) is an important nutrient for plants. It serves as a cofactor of various enzymes and as the major inorganic solute maintaining plant cell turgor. In a recent study, an as yet unknown role of K+ in plant homeostasis was shown. It was demonstrated that K+ gradients in vascular tissues can serve as an energy source for phloem (re)loading processes and that the voltage-gated K+ channels of the AKT2-type play a unique role in this process. The AKT2 channel can be converted by phosphorylation of specific serine residues (S210 and S329) into a non-rectifying channel that allows a rapid efflux of K+ from the sieve element/companion cells (SE/CC) complex. The energy of this flux is used by other transporters for phloem (re)loading processes. Nonetheless, the results do indicate that post-translational modifications at S210 and S329 alone cannot explain AKT2 regulation. Here, we discuss the existence of multiple post-translational modification steps that work in concert to convert AKT2 from an inward-rectifying into a non-rectifying K+ channel.Key words: potassium, channel, potassium channel, AKT2, phloem (re)loading, post-translational modifications, potassium batteryPotassium (K+) is the most abundant mineral element in plants, and together with nitrogen and phosphorous, is limiting for plant production in many natural and agricultural habitats. Voltage-gated K+ channels are key players in the acquisition of K+ ions from the soil and in its redistribution within the plant.1 Structurally, these channels result from the assembly of four so-called α-subunits. The subunits are encoded by nine genes in Arabidopsis and both homo- and hetero-tetramers are expressed.2,3 The K+ channel α-subunits can be categorized into four different subfamilies, based on the voltage-gating characteristics of the exogenous K+ conductance when expressed in an appropriate heterologous expression system. Kin α-subunits form hyperpolarization-activated channels that mediate K+ uptake.4–7 Kout α-subunits form depolarization-activated channels that mediate K+ release from cells.8–10 Ksilent subunits appear unable to yield functional homomeric channels, but can combine with Kin subunits and fine-tune the K+-uptake properties of the resulting heteromeric channels.11–14 Finally, Kweak α-subunits form channels with complex voltage-gating; they allow both K+ uptake and release.15–19 In Arabidopsis, a single member is found in this subfamily, AKT2, and this channel can assemble in heteromeric channels with the Kin subunit KAT2.20To date, only scarce and speculative information has been obtained for the function of Kweak channels. When expressed in heterologous expression systems, two different subpopulations of AKT2 channels differing in their sensitivity to voltage were found.21 Channels of the first type showed gating properties and currents analogous to that of Kin channels, while the other sort enabled a non-rectified (leak-like) current; they were open over the entire physiological voltage range.A given channel can be converted from one type to the other by post-translational modifications.21 A voltage-dependent phosphorylation was found to be an essential step for this switch,22,23 although the kinase responsible for this conversion still needs to be uncovered.24 In biophysical studies, mutant versions of the Arabidopsis Kweak channel subunit AKT2 have been created that showed impaired gating mode settings.22,23 Recently, Gajdanowicz et al. generated transgenic Arabidopsis thaliana plants that express these mutant AKT2 channels in the background of the akt2-1 null-allele plant.25 The major conclusion from analyses of these mutants is that the status switching of AKT2 from an inward-rectifying to a non-rectifying channel is crucial for plants to overcome energy-limiting conditions. This function of AKT2 could be correlated to its expression in phloem tissues. Selective expression of AKT2 under the control of the phloem companion cell-specific AtSUC2 promoter rescued the akt2-1 line, but conversely, selective expression of AKT2 under the control of the guard cell-specific GC1 promoter,26 resulted in further impairment of plant growth (Fig. 1). By combining diverse experimental approaches with mathematical simulation methods, an existing model for phloem (re)loading18,27 was fundamentally improved. This allowed the uncovering of a novel and interesting role of K+ in phloem physiology: K+ gradients present between the sieve element/companion cell (SE/CC) complex and the apoplast can serve as an energy source in phloem (re)loading processes. This “potassium battery” can be tapped by means of AKT2 regulation. This clarifies the observation of Deeken et al.28 that in AKT2 loss-of-function mutant plants, assimilates leaking away from the sieve tube were not efficiently reloaded into the main phloem stream.Open in a separate windowFigure 1AKT2 expressed only in guard cells delays plant development. (A–C) Representative wild-type, akt2-1 and akt2-1+pGC1:AKT2 complementation plants grown for 7 weeks (A), 9 weeks (B) and 12 weeks (C) under 12-h day/12-h night conditions at normal light intensity (150 µmol m−2 s−1). (D) akt2-1+pGC1:AKT2 developed a similar number of leaves as the akt2-1 knock out plants, but bolting-time was delayed. (B and E) After 9 weeks, wild-type plants were at an advanced bolting stage, akt2-1 plants had started bolting, but only initial signs of bolting were visible in akt2-1+pGC1:AKT2 plants. (C and F) At 12 weeks, akt2-1 plants had caught up with the wild-type and akt2-1+pGC1:AKT2 was just starting to bolt, although rosette-leaves were showing clear signs of senescence. For the generation of akt2-1+pGC1:AKT2, the AKT2 cDNA was fused to the guard cell-specific GC1 promoter26 kindly provided by J.I. Schroeder, San Diego. The pGC1:AKT2 construct was cloned into pGreen0229-35S by replacing the 35S promoter and then transformed into the akt2-1 knockout plant. All seeds were cold-treated for 24 h at 4°C. Plants were grown on artificial substrate (type GS-90, Einheitserde). After 2 weeks, seedlings were transferred to single pots. Plants were grown in 60% relative humidity at 21°C during the day and 18°C at night. Phenotypical analyses were done in the middle of the day. Data are shown as means ± SD of n ≥ 9 plants. Statistical analyses using Student''s t test: (D, WT/akt2-1: p < 2e-08; D, WT/pGC-AKT2: p < 2e-08; D, akt2-1/pGC-AKT2: p < 5e-03; E, WT/akt2-1: p < 4e-06; E, WT/pGC-AKT2: p < 1e-10; E, akt2-1/pGC-AKT2: p < 5e-04; F, WT/akt2-1: p = 0.51; F, WT/pGC-AKT2: p < 1e-10; F, akt2-1/pGC-AKT2: p < 1e-10).AKT2 expression is especially abundant in phloem tissues and the root stele, both of which are characterized by a poor availability of oxygen.29,30 This local internal hypoxia impairs respiratory activity of the vascular tissue and concomitantly, respiratory ATP production is reduced.31 As a consequence, phloem transport is very susceptible to decreasing oxygen supply to the plant.29,32 It is therefore comprehensible that the above mentioned support by the K+ driving force for sucrose retrieval is especially relevant in the phloem. Indeed Gajdanowicz et al.25 showed that transgenic plants lacking the AKT2 K+ channel were severely impaired in growth when exposed to mild hypoxia (10% v:v), whereas growth of wild-type plants was unaffected by this treatment. These observations illustrate the importance of biochemical flexibility in plant cells to cope with the energetic consequences of the steep oxygen concentration gradients that generally occur in plant stems and roots.In fact, the role of K+ gradients in driving sugar, amino acid and organic acid transport across plant cell membranes was first suggested several decades ago.33,34 Experimental evidence for this concept was provided by various tests in which pieces of plant tissue were incubated in solutions with different K+ concentrations and pH levels.33,34 Unfortunately, at that time the lack of genetic information to support this hypothesis (e.g., identifying transporter proteins that could provide a molecular mechanism to explain the working mechanism of substrate transport driven by a K+-motive force) resulted in this idea falling into oblivion. Indeed, the unequivocal experimental observation of this new role of K+ gradients in phloem reloading is extremely challenging. Under normal experimental conditions, K+ fluxes and sucrose fluxes are coupled during phloem loading in source tissues and unloading in sink tissues. Nonetheless, computational simulations predict that under certain conditions, a local K+/Suc antiport is also thermodynamically possible. In this antiport system, the energy from the K+ gradient is used to transport Suc into the phloem. This process is only transient; flooding the apoplast with K+ will decrease the K+ gradient. However, the gradient can be maintained for longer if surrounding cells take up the apoplastic K+ for their own use. A K+/Suc antiport will not occur in obvious sink or source tissues since the energy balances in such cells are fundamentally different. Consequently, in these tissues only the coupled symport of K+ and Suc can be observed. However, the computational predictions allowed the identification of the experimental conditions under which the effect of the K+/Suc antiport system is empirically observable at the whole plant level.An essential role in the regulation of AKT2 is played by (de)phosphorylation events of serine residues at positions S210 and S329. The replacement of both serines by asparagine (AKT2-S210N-S329N) resulted in a K+-selective leak that is locked in a continuously open mode when the channels are expressed in Xenopus oocytes. Under certain conditions, plants expressing the AKT2-S210N-S329N mutation showed growth benefits over wild-type plants; akt2-1+AKT2-S210N-S329N plants reach the generative state faster, possess an increased number of leaves and increased fresh weight (Fig. 2). Intuitively, one would expect a continuously open channel to cause severe problems for the plant, not a benefit as was observed here. We therefore have to postulate that phosphorylation at residues AKT2-S210 and AKT2-S329 is insufficient for converting AKT2 from an inward-rectifying into a non-rectifying channel; other, as yet unknown mechanisms, must contribute to the switch in the AKT2 gating mode. Such a concept would correspond to results that would otherwise be hard to explain. For instance, when both serine residues were replaced by glutamate, the mutant AKT2-S210E-S329E still showed wild-type characteristics.22 The S to E substitution is expected to mimic the phosphorylated state better than the S to N replacement. Furthermore, position AKT2-K197 has a fundamental influence on the AKT2 gating mode.23 AKT2 mutants with that particular lysine substituted with a serine are far less sensitive towards (de)phosphorylation; they display the characteristics of a pure inward-rectifying K+ channel,23 and transgenic Arabidopsis plants expressing AKT2 channels with this substitution showed the characteristics of akt2-1 knock-out plants.25 Initially, it was proposed that the positive charge is important for sensitizing AKT2 to phosphorylation. However, the charge-conserving mutant AKT2-K197R is similar to the charge inverting mutant AKT2-K197D,23 a purely inward-rectifying channel (Fig. 3). We therefore need to take into account that in plants, K197 may also be a target of post-translational modification.35 At present, we can explain the beneficial effect of the AKT2-S210N-S329N mutant on plant growth only by a multiple step regulation of AKT2 (Fig. 4). The double-N mutation would then bypass the phosphorylation step, but AKT2-S210N-S329N could still be deregulated into an inward-rectifying channel. Thus, AKT2 can be considered as a highly specialized Kin channel that can be converted into a leak-like channel by a cascade of post-translational modification steps.Open in a separate windowFigure 2Plants expressing the AKT2-S210N-S329N mutant reach the generative state faster than wild-type plants. The mutant channel AKT2-S210N-S329N was expressed under the control of the native AKT2 promoter in the akt2-1 knock-out background. (A) Photos of representative Arabidopsis thaliana plants grown 7 weeks under short day conditions (12-h day/12-h night, light intensity = 150 µE m−2s−1). Seven weeks after sowing, plants expressing only AKT2-S210N-S329N mutant channels (n = 22) differed significantly (Student''s t test, p < 4e-05) from wild-type plants (n = 20) in the height of the main inflorescent stalk (B) and fresh weight (C). At later time points, these differences decrease.25Open in a separate windowFigure 3The mutant AKT2-K197R channel is inward-rectifying. Steady-state current-voltage characteristics measured at the end of activation voltage steps. Currents were normalized to the current values measured at −145 mV in 10 mM K+ and are shown as means ± SD (n = 6).Open in a separate windowFigure 4Minimal model for AKT2 gating-mode regulation. To switch AKT2 from an inward-rectifying into a non-rectifying channel, at least two post-translational steps are postulated. (1) Phosphorylation at residues AKT2-S210 and AKT2-S329 (transitions [1]→[2] and [3]→[4]) and (2) a yet unknown modification that most likely involves the residue AKT2-K197 (transitions [1]→[3] and [2]→[4]). Only after both modifications will AKT2 allow the efflux of K+ (state [4]). 相似文献