首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleotide sulfate, namely 3'-phosphoadenosine 5'-phosphosulfate (PAPS), is a universal sulfuryl donor for sulfation. Although a specific PAPS transporter is present in Golgi membrane, no study has reported the corresponding gene. We have identified a novel human gene encoding a PAPS transporter, which we have named PAPST1, and the Drosophila melanogaster ortholog, slalom (sll). The amino acid sequence of PAPST1 (432 amino acids) exhibited 48.1% identity with SLL (465 amino acids), and hydropathy analysis predicted the two to be type III transmembrane proteins. The transient expression of PAPST1 in SW480 cells showed a subcellular localization in Golgi membrane. The expression of PAPST1 and SLL in yeast Saccharomyces cerevisiae significantly increased the transport of PAPS into the Golgi membrane fraction. In human tissues, PAPST1 is highly expressed in the placenta and pancreas and present at lower levels in the colon and heart. An RNA interference fly of sll produced with a GAL4-UAS system revealed that the PAPS transporter is essential for viability. It is well known that mutations of some genes related to PAPS synthesis are responsible for human inherited disorders. Our findings provide insights into the significance of PAPS transport and post-translational sulfation.  相似文献   

2.
Sulfation of macromolecules requires the translocation of a high energy form of nucleotide sulfate, i.e. 3'-phosphoadenosine 5'-phosphosulfate (PAPS), from the cytosol into the Golgi apparatus. In this study, we identified a novel Drosophila PAPS transporter gene dPAPST2 by conducting data base searches and screening the PAPS transport activity among the putative nucleotide sugar transporter genes in Drosophila. The amino acid sequence of dPAPST2 showed 50.5 and 21.5% homology to the human PAPST2 and SLALOM, respectively. The heterologous expression of dPAPST2 in yeast revealed that the dPAPST2 protein is a PAPS transporter with an apparent K(m) value of 2.3 microm. The RNA interference of dPAPST2 in cell line and flies showed that the dPAPST2 gene is essential for the sulfation of cellular proteins and the viability of the fly. In RNA interference flies, an analysis of the genetic interaction between dPAPST2 and genes that contribute to glycosaminoglycan synthesis suggested that dPAPST2 is involved in the glycosaminoglycan synthesis and the subsequent signaling. The dPAPST2 and sll genes showed a similar ubiquitous distribution. These results indicate that dPAPST2 may be involved in Hedgehog and Decapentaplegic signaling by controlling the sulfation of heparan sulfate.  相似文献   

3.
4.
5.
Recently, we have identified two 3′-phosphoadenosine 5′-phosphosulfate (PAPS) transporters (PAPST1 and PAPST2), which contribute to PAPS transport into the Golgi, in both human and Drosophila. Mutation and RNA interference (RNAi) of the Drosophila PAPST have shown the importance of PAPST-dependent sulfation of carbohydrates and proteins during development. However, the functional roles of PAPST in mammals are largely unknown. Here, we investigated whether PAPST-dependent sulfation is involved in regulating signaling pathways required for the maintenance of mouse embryonic stem cells (mESCs), differentiation into the three germ layers, and neurogenesis. By using a yeast expression system, mouse PAPST1 and PAPST2 proteins were shown to have PAPS transport activity with an apparent Km value of 1.54 µM or 1.49 µM, respectively. RNAi-mediated knockdown of each PAPST induced the reduction of chondroitin sulfate (CS) chain sulfation as well as heparan sulfate (HS) chain sulfation, and inhibited mESC self-renewal due to defects in several signaling pathways. However, we suggest that these effects were due to reduced HS, not CS, chain sulfation, because knockdown of mouse N-deacetylase/N-sulfotransferase, which catalyzes the first step of HS sulfation, in mESCs gave similar results to those observed in PAPST-knockdown mESCs, but depletion of CS chains did not. On the other hand, during embryoid body formation, PAPST-knockdown mESCs exhibited abnormal differentiation, in particular neurogenesis was promoted, presumably due to the observed defects in BMP, FGF and Wnt signaling. The latter were reduced as a result of the reduction in both HS and CS chain sulfation. We propose that PAPST-dependent sulfation of HS or CS chains, which is regulated developmentally, regulates the extrinsic signaling required for the maintenance and normal differentiation of mESCs.  相似文献   

6.
7.
The Asn-linked oligosaccharides on the glycoprotein hormones lutropin (LH) and thyrotropin terminate with the sequence SO4-4GalNAc beta 1-4GlcNAc beta 1-2 Man alpha-. Using a chemically synthesized trisaccharide GalNAc beta 1-4GlcNAc beta 1-2Man alpha 1-O(CH2)8COOCH3 (GGnM-MCO), we have developed a sensitive assay for the sulfotransferase responsible for the 4-O-sulfation of the terminal beta-D-GalNAc. GGnM-MCO is incubated with a bovine pituitary membrane extract and [35S]3'-phosphoadenosine 5'-phosphosulfate ([35S]PAPS). The sulfated product [35S]SGGnM-MCO is separated from [35S]PAPS, PAPS degradation products and endogenous sulfated products by a two-step procedure utilizing an Ecteola cellulose column and a Sep-Pak (C18) cartridge. Characterization of the [35S]SGGnM-MCO produced in the assay indicates that sulfate is incorporated exclusively on the 4-position of GalNAc. Linear incorporation of sulfate into GGnM-MCO can be maintained for greater than 10 h. GGnM-4-sulfotransferase has a pH optimum of 7.2, requires the presence of a reducing agent, and is stimulated by, but does not require, divalent cations. Initial velocity studies indicate an apparent Km (Henri-Michaelis-Menten equilibrium constant) for PAPS of 4 microM and for GGnM-MCO of 9 microM. Incorporation of sulfate into the trisaccharide is stimulated 3-fold by the presence of basic proteins including deglycosylated LH. The stimulation by deglycosylated LH suggests that the protein component of glycoproteins that bear oligosaccharides terminating with GalNAc-GlcNAc-Man- may modulate GGnM-4-sulfotransferase.  相似文献   

8.
Adenosine 3'-phosphate 5'-phosphosulfate (PAPS), the "active" sulfate donor for sulfated macromolecules, is synthesized in the cytosolic fraction of rat brains. This molecule is then translocated into the lumen of the Golgi apparatus so that it is available to the sulfotransferase enzymes. The protein responsible for the PAPS translocating activity has been solubilized from vesicles enriched in enzyme markers for the Golgi apparatus and reconstituted into liposomes. In reconstituted liposomes translocating activity has a pH optimum of 7.0 and activity was increased 3-fold by divalent cations, although EDTA produced no inhibition. The affinity of the reconstituted translocator for PAPS showed a Km of 1.2 mM with a Vmax of 14 pmol of PAPS translocated/min/mg of protein. Specificity of the translocator activity was tested with a number of nucleotide analogues and only 3',5'-adenosine diphosphate was a competitive inhibitor. Inhibitors of the mitochondrial ADP/ATP transporter and the red cell anion channel blocked transport of PAPS only at very high concentrations.  相似文献   

9.
Fucoxanthin, a natural carotenoid, has been reported to have antitumorigenic activity in mouse colon, skin and duodenum models. The present study was designed to evaluate the molecular mechanisms of fucoxanthin against colon cancer using the human colon adenocarcinoma cell lines. Fucoxanthin reduced the viability of WiDr cells in a dose-dependent manner accompanied by the induction of cell cycle arrest during the G0/G1 phase at 25 microM and apoptosis at 50 microM. Fucoxanthin at 25 microM inhibited the phosphorylation of the retinoblastoma protein (pRb) at Ser780 and Ser807/811 24 h after treatment without changes in the protein levels of the D-types of cyclin and cyclin-dependent kinase (cdk) 4, whose complexes are responsible for the phosphorylation of pRb at these sites. A cdk inhibitory protein, p21WAF1/Cip1 increased 24 h after the treatment with 25 microM of fucoxanthin, but not p27Kip1. In addition, the mRNA of p21WAF1/Cip1 also increased in a dose-dependent manner. According to the experiments using the isogenic human colon adenocarcinoma cell lines, fucoxanthin failed to induce G0/G1 arrest in the p21-deficient HCT116 cells, but not in HCT116 wild-type cells. All of these findings showed that fucoxanthin inhibited proliferation of colon cancer cells. The inhibitory mechanism is due to the cell cycle arrest during the G0/G1 phase mediated through the up-regulation of p21WAF1/Cip1, which may be related to the antitumorigenic activity.  相似文献   

10.
Bleomycin is used in combination with other antineoplastic agents to effectively treat lymphomas, testicular carcinomas, and squamous cell carcinomas of the cervix, head, and neck. However, resistance to bleomycin remains a persistent limitation in exploiting the full therapeutic benefit of the drug with other types of cancers. Previously, we documented that the Saccharomyces cerevisiae l-carnitine transporter Agp2 is responsible for the high affinity uptake of polyamines and of the polyamine analogue bleomycin-A5. Herein, we document that the human l-carnitine transporter hCT2 encoded by the SLC22A16 gene is involved in bleomycin-A5 uptake, as well as polyamines. We show that NT2/D1 human testicular cancer cells, which highly express hCT2, are extremely sensitive to bleomycin-A5, whereas HCT116 human colon carcinoma cells devoid of detectable hCT2 expression or MCF-7 human breast cancer cells that only weakly express the permease showed striking resistance to the drug. NT2/D1 cells accumulated fluorescein-labeled bleomycin-A5 to substantially higher levels than HCT116 cells. Moreover, l-carnitine protected NT2/D1 cells from the lethal effects of bleomycin-A5 by preventing its influx, and siRNA targeted to hCT2 induced resistance to bleomycin-A5-dependent genotoxicity. Furthermore, hCT2 overexpression induced by transient transfection of a functional hCT2-GFP fusion protein sensitized HCT116 cells to bleomycin-A5. Collectively, our data strongly suggest that hCT2 can mediate bleomycin-A5 and polyamine uptake, and that the rate of bleomycin-A5 accumulation may account for the differential response to the drug in patients.  相似文献   

11.
An enzyme which catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to gastrin (G17) was identified in rat gastric mucosal cells. The enzyme activity was detected in the 105,000xg supernatant fraction. Formation of gastrin sulfate was shown by using 125I-gastrin and non-radioactive PAPS. The product was sensitive to acid hydrolysis, arylsulfatase treatment and removed by gastrin antibody, but not changed by treatments with chondro-4-sulfatase and chondro-6-sulfatase. The product had a molecular weight of 2050 daltons, close to the molecular weight of G17 sulfate, and, therefore, indicating the sulfated product is not APS derived from the degradation of PAPS. The enzyme activity showed a Km value of 5 microM for PAPS and a pH optimum of 6.0. The activity was not detected in the liver preparation.  相似文献   

12.
13.
In this report, we demonstrate that a 50% ethanol extract of the plant-derived product, Chios mastic gum (CMG), contains compounds which inhibit proliferation and induce death of HCT116 human colon cancer cells in vitro. CMG-treatment induces cell arrest at G(1), detachment of the cells from the substrate, activation of pro-caspases-8, -9 and -3, and causes several morphological changes typical of apoptosis in cell organelles. These events, furthermore, are time- and dose-dependent, but p53- and p21-independent. Apoptosis induction by CMG is not inhibited in HCT116 cell clones expressing high levels of the anti-apoptotic protein, Bcl-2, or dominant-negative FADD, thereby indicating that CMG induces cell death via a yet-to-be identified pathway, unrelated to the death receptor- and mitochondrion-dependent pathways. The findings presented here suggest that CMG (a) induces an anoikis form of cell death in HCT116 colon cancer cells that includes events associated with caspase-dependent pathways; and (b) might be developed into a chemotherapeutic agent for the treatment of human colon and other cancers.  相似文献   

14.
In this study, a novel sodium-dependent organic anion transporter (Soat) was identified. Soat is expressed in rat brain, heart, kidney, lung, muscle, spleen, testis, adrenal gland, small intestine, and colon. The Soat protein consists of 370 amino acids and shows 42% and 31% overall amino acid sequence identity to the ileal sodium-dependent bile acid transporter (Isbt) and the Na(+)/taurocholate cotransporting polypeptide (Ntcp), respectively. Soat is predicted to have nine transmembrane domains, with an N-terminus outside the cell and an intracellular C-terminus. The Soat gene is localized on chromosome 14 and is coded by six exons mapped in region 14p22. When expressed in Xenopus laevis oocytes, Soat shows transport function for estrone-3-sulfate (Km = 31 microM, Vmax = 5557 fmol/oocyte/30 min) and dehydroepiandrosterone sulfate (Km = 30 microM, Vmax = 5682 fmol/oocyte/30 min). Soat does not transport taurocholate, estradiol-17beta-glucuronide, nor ouabain.  相似文献   

15.
We identified a novel mouse gene, mRTVP-1, as a p53 target gene using differential display PCR and extensive promoter analysis. The mRTVP-1 protein has 255 amino acids and differs from the human RTVP-1 (hRTVP-1) protein by two short in-frame deletions of two and nine amino acids. RTVP-1 mRNA was induced in multiple cancer cell lines by adenovirus-mediated delivery of p53 and by gamma irradiation or doxorubicin both in the presence and in the absence of endogenous p53. Analysis of RTVP-1 expression in nontransformed and transformed cells further supported p53-independent gene regulation. Using luciferase reporter and electrophoretic mobility shift assays we identified a p53 binding site within intron 1 of the mRTVP-1 gene. Overexpression of mRTVP-1 or hRTVP-1 induced apoptosis in multiple cancer cell lines including prostate cancer cell lines 148-1PA, 178-2BMA, PC-3, TSU-Pr1, and LNCaP, a human lung cancer cell line, H1299, and two isogenic human colon cancer cell lines, HCT116 p53(+/+) and HCT116 p53(-/-), as demonstrated by annexin V positivity, phase-contrast microscopy, and in selected cases 4',6'-diamidino-2-phenylindole staining and DNA fragmentation. Deletion of the signal peptide from the N terminus of RTVP-1 reduced its apoptotic activities, suggesting that a secreted and soluble form of RTVP-1 may mediate, in part, its proapoptotic activities.  相似文献   

16.
Circumsporozoite (CS) proteins, which densely coat malaria (Plasmodia) sporozoites, contain an amino acid sequence that is homologous to segments in other proteins which bind specifically to sulfated glycoconjugates. The presence of this homology suggests that sporozoites and CS proteins may also bind sulfated glycoconjugates. To test this hypothesis, recombinant P. yoelii CS protein was examined for binding to sulfated glycoconjugate-Sepharoses. CS protein bound avidly to heparin-, fucoidan-, and dextran sulfate-Sepharose, but bound comparatively poorly to chondroitin sulfate A- or C-Sepharose. CS protein also bound with significantly lower affinity to a heparan sulfate biosynthesis-deficient mutant cell line compared with the wild-type line, consistent with the possibility that the protein also binds to sulfated glycoconjugates on the surfaces of cells. This possibility is consistent with the observation that CS protein binding to hepatocytes, cells invaded by sporozoites during the primary stage of malaria infection, was inhibited by fucoidan, pentosan polysulfate, and heparin. The effects of sulfated glycoconjugates on sporozoite infectivity were also determined. P. berghei sporozoites bound specifically to sulfatide (galactosyl[3-sulfate]beta 1-1ceramide), but not to comparable levels of cholesterol-3-sulfate, or several examples of neutral glycosphingolipids, gangliosides, or phospholipids. Sporozoite invasion into hepatocytes was inhibited by fucoidan, heparin, and dextran sulfate, paralleling the observed binding of CS protein to the corresponding Sepharose derivatives. These sulfated glycoconjugates blocked invasion by inhibiting an event occurring within 3 h of combining sporozoites and hepatocytes. Sporozoite infectivity in mice was significantly inhibited by dextran sulfate 500,000 and fucoidan. Taken together, these data indicate that CS proteins bind selectively to certain sulfated glycoconjugates, that sporozoite infectivity can be inhibited by such compounds, and that invasion of host hepatocytes by sporozoites may involve interactions with these types of compounds.  相似文献   

17.
The ABC transporter, Mrp4, transports the sulfated steroid DHEA-s, and sulfated bile acids interact with Mrp4 with high affinity. Hepatic Mrp4 levels are low, but increase under cholestatic conditions. We therefore inferred that up-regulation of Mrp4 during cholestasis is a compensatory mechanism to protect the liver from accumulation of hydrophobic bile acids. We determined that the nuclear receptor CAR is required to coordinately up-regulate hepatic expression of Mrp4 and an enzyme known to sulfate hydroxy-bile acids and steroids, Sult2a1. CAR activators increased Mrp4 and Sult2a1 expression in primary human hepatocytes and HepG2, a human liver cell line. Sult2a1 was down-regulated in Mrp4-null mice, further indicating an inter-relation between Mrp4 and Sult2a1 gene expression. Based on the hydrophilic nature of sulfated bile acids and the Mrp4 capability to transport sulfated steroids, our findings suggest that Mrp4 and Sult2a1 participate in an integrated pathway mediating elimination of sulfated steroid and bile acid metabolites from the liver.  相似文献   

18.
This study aims to investigate the mechanisms associated with the antiproliferation effect of guanosine on human colon carcinoma HCT 116 cells. In this study, guanosine induced more drastic cell cycle arrest effect than cell death effect on HCT 116 cells. The cell cycle arrest effect of guanosine on HCT 116 cells appeared to be associated with the increased activation of mitogen-activated protein kinases (MAPK) such as ERK1/2, p38 and JNK. The decrease of AMP-activated protein kinase (AMPK) activation and cyclin D1 expression was also involved. Thus, the antiproliferation of colon cancer cells of guanosine could be mediated by the disruption of MAPK and AMPK pathways.  相似文献   

19.
Deregulated miRNAs participate in colorectal carcinogenesis. In this study, miR-218 was found to be downregulated in human colorectal cancer (CRC) by miRNA profile assay. miR-218 was silenced or downregulated in all five colon cancer cells (Caco2, HT29, SW620, HCT116 and LoVo) relative to normal colon tissues. miR-218 expression was significantly lower in 46 CRC tumor tissues compared with their adjacent normal tissues (P < 0.001). Potential target genes of miR-218 were predicted and BMI1 polycomb ring finger oncogene (BMI-1), a polycomb ring finger oncogene, was identified as one of the potential targets. Upregulation of BMI-1 was detected in CRC tumors compared with adjacent normal tissues (P < 0.001) and in all five colon cancer cell lines. Transfection of miR-218 in colon cancer cell lines (HCT116, HT29) significantly reduced luciferase activity of the wild-type construct of BMI-1 3′ untranslated region (3′UTR) (P < 0.001), whereas this effect was not seen in the construct with mutant BMI-1 3′UTR, indicating a direct and specific interaction of miR-218 with BMI-1. Ectopic expression of miR-218 in HCT116 and HT29 cells suppressed BMI-1 mRNA and protein expression. In addition, miR-218 suppressed protein expression of BMI-1 downstream targets of cyclin-dependent kinase 4, a cell cycle regulator, while upregulating protein expression of p53. We further revealed that miR-218 induced apoptosis (P < 0.01), inhibited cell proliferation (P < 0.05) and promoted cell cycle arrest in the G2 phase (P < 0.01). In conclusion, miR-218 plays a pivotal role in CRC development through inhibiting cell proliferation and cycle progression and promoting apoptosis by downregulating BMI-1.  相似文献   

20.
The effects of a novel polypeptide, pancreatic spasmolytic polypeptide (PSP) on a colon carcinoma cell line (HCT 116) were examined. PSP stimulated the incorporation of [3H]thymidine into HCT 116 cells as well as cell proliferation in a dose-dependent manner. Maximal increase in [3H]thymidine incorporation of 50-60% occurred at 3-300 microM PSP. The VIP-mediated-increase in cAMP levels was reduced by PSP at greater than 1 microM concentrations. PSP is highly homologous to the estrogen-induced pS2 protein in MCF-7 breast cancer cells. We find that PSP also enhanced [3H]thymidine incorporation in MCF-7 cells. These findings indicate for the first time that PSP has growth stimulatory properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号