首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treacher Collins syndrome (TCOF1) is an autosomal dominant disorder of craniofacial development the features of which include conductive hearing loss and cleft palate. Previous studies have localized the TCOF1 locus between D5S519 (proximal) and SPARC (distal), a region of 22 centirays as estimated by radiation hybrid mapping. In the current investigation we have created a contig across the TCOF1 critical region, using YAC clones. Isolation of a novel short tandem repeat polymorphism corresponding to the end of one of the YACs has allowed us to reduce the size of the critical region to approximately 840 kb, which has been covered with three nonchimeric YACs. Restriction mapping has revealed that the region contains a high density of clustered rare-cutter restriction sites, suggesting that it may contain a number of different genes. The results of the present investigation have further allowed us to confirm that the RPS14 locus lies proximal to the critical region and can thereby be excluded from a role in the pathogenesis of TCOF1, while ANX6 lies within the TCOF1 critical region and remains a potential candidate for the mutated gene.  相似文献   

2.
Treacher Collins syndrome (TCOF1) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCOF1 locus has been localized to chromosome 5q32-33.2. In the present study we have used the combined techniques of genetic linkage analysis and fluorescence in situ hybridization (FISH) to more accurately define the TCOF1 critical region. Cosmids IG90 and SPARC, which map to distal 5q, encompass two and one hypervariable microsatellite markers, respectively. The heterozygosity values of these three markers range from .72 to .81. Twenty-two unrelated TCOF1 families have been analyzed for linkage to these markers. There is strong evidence demonstrating linkage to all three markers, the strongest support for positive linkage being provided by haplotyping those markers at the locus encompassed by the cosmid IG90 (Zmax = 19.65; theta = .010). FISH to metaphase chromosomes and interphase nuclei established that IG90 lies centromeric to SPARC. This information combined with the data generated by genetic linkage analysis demonstrated that the TCOF1 locus is closely flanked proximally by IG90 and distally by SPARC.  相似文献   

3.
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. We have studied 12 unrelated TCS families with multiple affected individuals for linkage to five chromosome 5 markers. There is strong evidence demonstrating linkage to three of these markers. Multipoint linkage analysis places the mutation causing TCS in the interval between the gene for the glucocorticoid receptor and the anonymous marker D5S22, with a maximum multipoint lod score of 9.1.  相似文献   

4.
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development.  相似文献   

5.
6.
Type V collagen is a fibrillar collagen that is widely distributed in tissues as a minor component of extracellular matrix and is usually composed of one pro alpha 2 (V) and two pro alpha 1 (V) chains. In this report, recently isolated cDNA and genomic clones, which encode the pro alpha 1 (V) chain, are used as probes for hybridization to filter-bound DNA from a panel of human-mouse hybrid cell lines and for in situ hybridization to metaphase chromosomes. These studies establish the chromosomal location of the COL5A1 gene, which encodes the pro alpha 1 (V) chain, within segment 9q34.2----q34.3. These findings add to the previously characterized dispersion of collagen genes in the human genome, as this is the first example of a collagen locus on chromosome 9. In addition, these studies place COL5A1 near the locus for the genetic disorder, nail-patella syndrome (hereditary osteo-onychodysplasia), which also maps to 9q34.  相似文献   

7.
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development. The major features of the disease include midface hypoplasia, micrognathia, microtia, conductive hearing loss and cleft palate. Current procedures of surgical treatment of TCS are discussed and novel findings concerning the genetic background of TCS are described. The TCS locus has been mapped to chromosome 5q31.3-32. The TCOF1 gene contains 26 exons and encodes a 1411 amino acid protein named treacle. In the TCOF1 gene 51 mutations have been identified. Most of these mutations are insertions or deletions, which result in an introduction of a premature termination codon into the reading frame. Mutational spectra support the hypothesis that TCS results from haploinsufficiency of treacle.  相似文献   

8.
Treacher Collins syndrome (TCS) is associated with an abnormal differentiation of the first and second pharyngeal arches during fetal development. This causes mostly craniofacial deformities, which require numerous corrective surgeries. TCS is an autosomal dominant disorder and it occurs in the general population at a frequency of 1 in 50,000 live births. The syndrome is caused by mutations in the TCOF1 gene, which encodes the serine/alanine-rich protein named Treacle. Over 120 mutations of the TCOF1 gene responsible for TCS have been described. About 70% of recognized mutations are deletions, which lead to a frame shift, formation of a termination codon, and shortening of the protein product of the gene. Herewith, a new heterozygotic insertion, c.484_668ins185bp, was described in two monozygotic twin sisters suffering from TCS. This mutation was absent in their father, brother, and uncle, indicating a de novo origin. The insertion causes a shift in the reading frame and premature termination of translation at 167 aa. The novel insertion is the longest ever found in the TCOF1 gene and the only one found among monozygotic twin sisters.  相似文献   

9.
We have previously assigned the Friedreich ataxia locus (FRDA) to chromosome 9; the current maximal lod score between FRDA and MCT112 (D9S15) is greater than 50 at a recombination fraction of theta = 0. The physical assignment of the locus defined by MCT112, and hence FRDA, has not been determined, although linkage analysis of MCT112 with other chromosome 9 markers inferred a location close to the centromere. We have used in situ hybridisation with MCT112, a corresponding cosmid MJ1, and DR47 (D9S5), coupled with mapping studies on hybrid cell panels, to define more precisely the location of the disease locus. The in situ location of all three probes is 9q13----q21.1, distal to the variable heterochromatin region. Physical assignment of FRDA will allow us to identify hybrid cell lines containing the mutated gene.  相似文献   

10.
Treacher Collins syndrome (TCS) is a rare congenital birth disorder characterized by severe craniofacial defects. The syndrome is associated with mutations in the TCOF1 gene which encodes a putative nucleolar phosphoprotein known as treacle. An animal model of the severe form of TCS, generated through mutation of the mouse homologue Tcof1 has recently revealed significant insights into the etiology and pathogenesis of TCS (Dixon and Dixon, 2004; Dixon et al., 2006; Jones et al 2008). During early embryogenesis in a TCS individual, an excessive degree of neuroepithelial apoptosis diminishes the generation of neural crest cells. Neural crest cells are a migratory stem and progenitor cell population that generates most of the tissues of the head including much of the bone, cartilage and connective tissue. It has been hypothesized that mutations in Tcof1 disrupt ribosome biogenesis to a degree that is insufficient to meet the proliferative needs of the neuroepithelium and neural crest cells. This causes nucleolar stress activation of the p53-dependent apoptotic pathway which induces neuroepithelial cell death. Interestingly however, chemical and genetic inhibition of p53 activity can block the wave of apoptosis and prevent craniofacial anomalies in Tcof1 mutant mice [Jones NC, Lynn ML, Gaudenz K, Sakai D, Aoto K, Rey JP, et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med 2008;14:125–33]. These findings shed new light on potential therapeutic avenues for the prevention of not only TCS but also other congenital craniofacial disorders which share a similar etiology and pathogenesis.  相似文献   

11.
12.
Advances in surgical techniques for correction of craniofacial anomalies have necessitated the development of objective pre- and postoperative quantitative assessments. Standard anthropometric techniques, supplemented by additional methods oriented to specific clinical problems, have proved useful in defining surface dysmorphology in craniofacial patients. A series of 77 surface measurements of the head and face and 41 proportions were determined in 20 preoperative patients with Treacher Collins syndrome, a rare congenital defect of the first and second branchial arches. To permit comparison with age- and sex-specific data for healthy North American children, the patient data were converted to standard (Z) scores. To test the hypothesis Z = 0, Student's t-test was performed on all variables. The anthropometric findings verified many of the clinical findings in this syndrome. In addition, a number of previously unreported defects were found. The cranium was low and short with a low, narrow forehead and a narrow cranial base. The face was narrow and shallow, the mandible long and narrow, and the lower face receding. The eye fissures were short with an antimongoloid inclination, but the orbits were hyperteloric. The nasal root was high and wide, the nasofrontal angle open, and the bridge inclination low. The labial fissure was narrow, and the ears were microtic. Except in the nasal root the defects were hypoplastic. Most of these defects were either horizontal or anteroposterior. Recognition of the defective areas and their contribution to disproportions of the head and face is important in the development of surgical strategies.  相似文献   

13.
Three-dimensional osseous surface re-formation imaging from CT scans was used to examine the facial skeletons of 14 living patients with mandibulofacial dysostosis. Partial to complete aplasia of the zygomatic process of the temporal bone, mild hypoplasia to aplasia of the frontal process of the zygoma, antimongoloid slant of the transverse orbital axis, and hypoplasia of the medial pterygoid plates and muscles are common to all patients examined. Deformities of the zygoma, zygomatic process of the frontal bone, mandible, and lateral pterygoid plates and muscles vary from minimal to severe, including aplasia. The body of the zygoma is the least affected part of the bone. Right-left asymmetry characterizes these deformities in all patients. The most consistent skeletal aplasia (cleft) in mandibulofacial dysostosis involves the zygomatic process of the temporal bone rather than the zygoma itself.  相似文献   

14.
Treacher Collins syndrome (TCS) is an autosomal dominant defect of craniofacial development which has not been chromosomally localized. We have identified a mother and two children who have TCS and also a balanced translocation t(6;16)(p21.31;p13.11), which suggested the possibility that the TCS locus might be located at one of the translocation breakpoints. These were defined by in-situ hybridization as 6p21.31 (by using loci in the HLA complex defined by the probes p45.1DP beta 003/HLA-DPB2 and pRS5.10/HLA class I chain) and 16p13.11 (by using probes pACHF1.3.2/D16S8 and VK45/D16S131). Pairwise and multipoint linkage analysis using localized chromosome 6 probes and chromosome 16 probes in 12 unrelated TCS families with multiple affected siblings excluded the TCS locus from proximity to both translocation breakpoints. These data were confirmed when a third affected child, who did not exhibit the translocation, was born to the mother.  相似文献   

15.
Treacher Collins syndrome (TCS) is a congenital disorder of craniofacial development arising from mutations in TCOF1, which encodes the nucleolar phosphoprotein Treacle. Haploinsufficiency of Tcof1 perturbs mature ribosome biogenesis, resulting in stabilization of p53 and the cyclin G1-mediated cell-cycle arrest that underpins the specificity of neuroepithelial apoptosis and neural crest cell hypoplasia characteristic of TCS. Here we show that inhibition of p53 prevents cyclin G1-driven apoptotic elimination of neural crest cells while rescuing the craniofacial abnormalities associated with mutations in Tcof1 and extending life span. These improvements, however, occur independently of the effects on ribosome biogenesis; thus suggesting that it is p53-dependent neuroepithelial apoptosis that is the primary mechanism underlying the pathogenesis of TCS. Our work further implies that neuroepithelial and neural crest cells are particularly sensitive to cellular stress during embryogenesis and that suppression of p53 function provides an attractive avenue for possible clinical prevention of TCS craniofacial birth defects and possibly those of other neurocristopathies.  相似文献   

16.
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development caused by mutations in the gene TCOF1. Its gene product, treacle, consists mainly of a central repeat domain, which shows it to be structurally related to the nucleolar phosphoprotein Nopp140. Treacle remains mostly uncharacterized to date. Herein we show that it, like Nopp140, is a highly phosphorylated nucleolar protein. However, treacle fails to colocalize with Nopp140 to Cajal (coiled) bodies. As in the case of Nopp140, casein kinase 2 appears to be responsible for the unusually high degree of phosphorylation as evidenced by its coimmunoprecipitation with treacle. Based on these and other observations, treacle and Nopp140 exhibit distinct but overlapping functions. The majority of TCOF1 mutations in TCS lead to premature termination codons that could affect the cellular levels of the full-length treacle. We demonstrate however, that the cellular amount of treacle varies less than twofold among a collection of primary fibroblasts and lymphoblasts and regardless of whether the cells were derived from TCS patients or healthy individuals. Therefore, cells of TCS patients possess a mechanism to maintain wild-type levels of full-length treacle from a single allele.  相似文献   

17.
18.
19.
Cells from a dihydrofolate reductase-deficient Chinese hamster ovary cell line were hybridized to human fetal skin fibroblast cells. Nineteen dihydrofolate reductase-positive hybrid clones were isolated and characterized. Cytogenetic and biochemical analyses of these clones have shown that the human dihydrofolate reductase (DHFR) gene is located on chromosome 5. Three of these hybrid cell lines contained different terminal deletions of chromosome 5. An analysis of the breakpoints of these deletions has demonstrated that the DHFR gene resides in the q11----q22 region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号