首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Proteinase K (E.C. 3.4.21.64), a serine proteinase from fungus Tritirachium album, has been used as a model system to investigate the conformational changes induced by monohydric alcohols at low pH. Proteinase K belongs to α/β class of proteins and maintains structural integrity in the range of pH 7.0–3.0. Enzyme acquires partially unfolded conformation (UP) at pH 2.5 with lower activity, partial loss of tertiary structure and exposure of some hydrophobic patches. Proteinase K in stressed state at pH 2.5 is chosen and the conformational changes induced by alkyl alcohols (methanol/ethanol/isopropanol) are studied. At critical concentration of alcohol, conformational switch occurs in the protein structure from α/β to β-sheet driving the protein into O-state. Complete loss of tertiary contacts and proteolytic activity in O-sate emphasize the involvement of alpha regions in maintaining the active site of the enzyme. Moreover, isopropanol induced unfolding of proteinase K in UP state occurred in two steps with the formation of β state at low alcohol concentration followed by stabilization of β state at high alcohol concentration. GuHCl and temperature induced unfolding of proteinase K in O-state (in 50% isopropanol) is non-cooperative as the transition curves are biphasic. This suggests that the structure of proteinase K in O-state has melted alpha regions and stabilized beta regions and that these differentially stabilized regions unfold sequentially. Further, the O-state of proteinase K can be attained from complete unfolded protein by the addition of 50% isopropanol. Hence the alcohol-induced O-state is different from native state or completely unfolded state and shows characteristics of the molten globule-like state. Thus, this state may be functioning as an intermediary in the folding pathway of proteinase K.  相似文献   

2.
3.
The primary structure of water buffalo s1-casein and of -casein A and B variants has been determined using a combination of mass spectrometry and Edman degradation procedures. The phosphorylated residues were localized on the tryptic phosphopeptides after performing a -elimination/thiol derivatization. Water buffalo s1-casein, resolved in three discrete bands by isoelectric focusing, was found to consist of a single protein containing eight, seven, or six phosphate groups. Compared to bovine s1-casein C variant, the water buffalo s1-casein presented ten amino acid substitutions, seven of which involved charged amino acid residues. With respect to bovine A2-casein variant, the two water buffalo -casein variants A and B presented four and five amino acid substitutions, respectively. In addition to the phosphoserines, a phosphothreonine residue was identified in variant A. From the phylogenetic point of view, both water buffalo -casein variants seem to be homologous to bovine A2-casein.  相似文献   

4.
Cell-penetrating peptides (CPPs) provide a promising approach for enhancing intracellular delivery of therapeutic biomacromolecules by increasing transport through membrane barriers. Here, proteolytically stable cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone were studied to evaluate the effect of α-chirality in the β-peptoid residues and the presence of guanidinium groups in the α-amino acid residues on membrane interaction. The molecular properties of the peptidomimetics in solution (surface and intramolecular hydrogen bonding, aqueous diffusion rate and molecular size) were studied along with their adsorption to lipid bilayers, cellular uptake, and toxicity. The surface hydrogen bonding ability of the peptidomimetics reflected their adsorbed amounts onto lipid bilayers as well as with their cellular uptake, indicating the importance of hydrogen bonding for their membrane interaction and cellular uptake. Ellipsometry studies further demonstrated that the presence of chiral centers in the β-peptoid residues promotes a higher adsorption to anionic lipid bilayers, whereas circular dichroism results showed that α-chirality influences their overall mean residue ellipticity. The presence of guanidinium groups and α-chiral β-peptoid residues was also found to have a significant positive effect on uptake in living cells. Together, the findings provide an improved understanding on the behavior of cell-penetrating peptidomimetics in the presence of lipid bilayers and live cells.  相似文献   

5.
Human chorionic gonadotropin (hCG) is a heterodimeric glycoprotein hormone essential for the establishment and maintenance of pregnancy. The α- and β-subunits of hCG are highly cross-linked internally by disulfide bonds that seem to stabilize the tertiary structures required for the noncovalent association of the subunits to generate hormonal activity. This paper describes the results of our studies on the role of the disulfide bonds of hCG-β in heterodimer formation with the α-subunit. Six disulfide peptides incorporating each of the six disulfide bonds of hCG-β were screened, along with their linear counterparts, for their ability to competitively inhibit the recombination of α- and β-subunits. The disulfide peptides Cys (9–57), Cys (34–88) and Cys (38–90) were found to inhibit the α/β recombination whereas the remaining three disulfide peptides viz. Cys (23–72), Cys (26–110) and Cys (93–100) did not exhibit any inhibition activity. Interestingly, none of the linear peptides could inhibit the α/β recombination. Results clearly demonstrate that the disulfide bonds Cys9–Cys57, Cys34–Cys88 and Cys38–Cys90 of the β-subunit of hCG are crucial for heterodimer formation with the α-subunit thus providing experimental confirmation of the conclusions from the crystal structure of the hormone.  相似文献   

6.
A recent article published by Diedrich (2011a, Hist Biol. iFirst online, 1–19, doi: 10.1080/08912963.2011.575938) aspired to provide a complete revision of the known material of the placodont genus Cyamodus Meyer, 1863 from the Germanic Basin of central Europe. It is the latest in a series of similar articles by the same author (see Diedrich 2010, Palaeogeogr Palaeoclimatol Palaeoecol. 285(3–4):287–306; 2011b, Nat Sci. 3(1):9–27 for overview) focussing on the European members of the Placodontia (Reptilia: Sauropterygia), a diverse group of enigmatic marine reptiles known from Triassic shallow marine deposits. In a similar fashion to some previous works by Diedrich (see Tintori 2011, Palaeogeogr Palaeoclimatol Palaeoecol. 300(1–4):205–207 for similar points of criticism), this newest article demonstrates a narrow scope of presenting and discussing data, including omitted articles relevant to the topic, and over-interpretation of results, all with the aim of embedding the idea of placodonts being herbivorous Triassic ‘sea cows’ feeding on macroalgae (Diedrich 2010, 2011b). The present contribution is intended to clarify mistakes and misinterpretations made by Diedrich (2011a), to incorporate vital citations previously omitted which allow alternative interpretations, and to put the paper into perspective by including a more general evolutionary and paleoecological overview of the remaining placodonts.  相似文献   

7.
Sialyltransferases are a family of enzymes catalyzing the transfer of sialic acid residues to terminal non-reducing positions of oligosaccharide chains of glycoproteins and glycolipids. Although expression of sialic acid is well documented in animals of the deuterostomian lineage, sialyltransferases have been predominantly described for relatively recent vertebrate lineages such as birds and mammals. This study outlines the characterization of the only sialyltransferase gene found in the tunicate Ciona intestinalis, the first such report of a non-vertebrate deuterostomian sialyltransferase, which has been discussed as a possible orthologue of the common ancestor of galactose α2,3-sialyltransferases. We also report for the first time the characterization of a ST3Gal II gene from the bony fish Takifugu rubripes. We demonstrate that both genes encode functional α2,3-sialyltransferases that are structurally and functionally related to the ST3Gal family of mammalian sialyltransferases. However, characterization of the recombinant, purified forms of both enzymes reveal novel acceptor substrate specificities, with sialylation of the disaccharide Galβ1-3GalNAc and asialofetuin, but not GM1 or GD1b observed. This is in contrast to the mammalian ST3Gal II that predominantly sialylates gangliosides. Taken together the ceramide binding/recognition site previously proposed for the mouse ST3Gal II might represent a unique feature of mammalian ST3Gal II that is missing in the evolutionary more distant fish and tunicate species reported here. This suggests that during the evolution of the ST3Gal II, probably following the separation of the teleosts, a significant shift in substrate specificity enabling the sialylation of gangliosides took place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号