首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Tahara M  Takeda M  Yanagi Y 《Journal of virology》2005,79(24):15218-15225
The Edmonston strain of measles virus (MV) was obtained by sequential passages of the original isolate in various cultured cells. Although attenuated in vivo, it grows efficiently in most primate cell lines. Previous studies have revealed that MV tropism cannot be solely explained by the use of CD150 and/or CD46 as a cellular receptor. In order to evaluate the contributions of individual genes of the Edmonston strain to growth in cultured cells, we generated a series of recombinant viruses in which part of the genome of the clinical isolate IC-B (which uses CD150 as a receptor) was replaced with the corresponding sequences of the Edmonston strain. The recombinant virus possessing the Edmonston hemagglutinin (H) gene (encoding the receptor-binding protein) grew as efficiently in Vero cells as the Edmonston strain. Those viruses having either the matrix (M) or large (L) protein gene from the Edmonston strain could also replicate well in Vero cells, although they entered them at low efficiencies. P64S and E89K substitutions were responsible for the ability of the M protein to make virus grow efficiently in Vero cells, while the first half of the Edmonston L gene was important for better replication. Despite efficient growth in Vero cells, the recombinant viruses with these mutations had growth disadvantage in CD150-positive lymphoid B95a cells. Thus, not only the H gene but also the M and L genes contribute to efficient replication of the Edmonston strain in some cultured cells.  相似文献   

2.
A major difference between vaccine and wild-type strains of measles virus (MV) in vitro is the wider cell specificity of vaccine strains, resulting from the receptor usage of the hemagglutinin (H) protein. Wild-type H proteins recognize the signaling lymphocyte activation molecule (SLAM) (CD150), which is expressed on certain cells of the immune system, whereas vaccine H proteins recognize CD46, which is ubiquitously expressed on all nucleated human and monkey cells, in addition to SLAM. To examine the effect of the H protein on the tropism and attenuation of MV, we generated enhanced green fluorescent protein (EGFP)-expressing recombinant wild-type MV strains bearing the Edmonston vaccine H protein (MV-EdH) and compared them to EGFP-expressing wild-type MV strains. In vitro, MV-EdH replicated in SLAM(+) as well as CD46(+) cells, including primary cell cultures from cynomolgus monkey tissues, whereas the wild-type MV replicated only in SLAM(+) cells. However, in macaques, both wild-type MV and MV-EdH strains infected lymphoid and respiratory organs, and widespread infection of MV-EdH was not observed. Flow cytometric analysis indicated that SLAM(+) lymphocyte cells were infected preferentially with both strains. Interestingly, EGFP expression of MV-EdH in tissues and lymphocytes was significantly weaker than that of the wild-type MV. Taken together, these results indicate that the CD46-binding activity of the vaccine H protein is important for determining the cell specificity of MV in vitro but not the tropism in vivo. They also suggest that the vaccine H protein attenuates MV growth in vivo.  相似文献   

3.
Measles virus (MV) possesses two envelope glycoproteins, namely, the receptor-binding hemagglutinin (H) and fusion proteins. Wild-type MV strains isolated in B-lymphoid cell lines use signaling lymphocyte activation molecule (SLAM), but not CD46, as a cellular receptor, whereas MV vaccine strains of the Edmonston lineage use both SLAM and CD46 as receptors. Studies have shown that the residue at position 481 of the H protein is critical in determining the use of CD46 as a receptor. However, the wild-type IC-B strain with a single N481Y substitution in the H protein utilizes CD46 rather inefficiently. In this study, a number of chimeric and mutant H proteins, and recombinant viruses harboring them, were generated to determine which residues of the Edmonston H protein are responsible for its efficient use of CD46. Our results show that three substitutions (N390I and E492G plus N416D or T446S), in addition to N481Y, are necessary for the IC-B H protein to use CD46 efficiently as a receptor. The N390I, N416D, and T446S substitutions are present in the H proteins of all strains of the Edmonston lineage, whereas the E492G substitution is found only in the H protein of the Edmonston tag strain generated from cDNAs. The T484N substitution, found in some of the Edmonston-lineage strains, resulted in a similar effect on the use of CD46 to that caused by the E492G substitution. Thus, multiple residues in the H protein that have not previously been implicated have important roles in the interaction with CD46.  相似文献   

4.
The efficiency with which different measles virus (MV) strains enter cells through the immune cell-specific protein SLAM (CD150) or other receptors, including the ubiquitous protein CD46, may influence their pathogenicity. We compared the cell entry efficiency of recombinant MV differing only in their attachment protein hemagglutinin (H). We constructed these viruses with an additional gene expressing an autofluorescent reporter protein to allow direct detection of every infected cell. A virus with a wild-type H protein entered cells through SLAM two to three times more efficiently than a virus with the H protein of the attenuated strain Edmonston, whereas cell entry efficiency through CD46 was lower. However, these subtle differences were amplified at the cell fusion stage because the wild-type H protein failed to fuse CD46-expressing cells. We also proved formally that a mutation in H protein residue 481 (asparagine to tyrosine) results in improved CD46-specific entry. To define the selective pressure exerted on that codon, we monitored its evolution in different H protein backgrounds and found that several passages in CD46-expressing Vero cells were necessary to shift it in the majority of the MV RNA. To verify the importance of these observations for human infections, we examined MV entry into peripheral blood mononuclear cells and observed that viruses with asparagine 481 H proteins infect these cells more efficiently.  相似文献   

5.
Wild-type, lymphotropic strains of measles virus (MV) and tissue culture-adapted MV vaccine strains possess different cell tropisms. This observation has led to attempts to identify the viral receptors and to characterize the functions of the MV glycoproteins. We have functionally analyzed the interactions of MV hemagglutinin (H) and fusion (F) proteins of vaccine (Edmonston) and wild-type (WTF) strains in different combinations in transfected cells. Cell-cell fusion occurs when both Edmonston F and H proteins are expressed in HeLa or Vero cells. The expression of WTF glycoproteins in HeLa cells did not result in syncytia, yet they fused efficiently with cells of lymphocytic origin. To further investigate the role of the MV glycoproteins in virus cell entry and also the role of other viral proteins in cell tropism, we generated recombinant vaccine MVs containing one or both glycoproteins from WTF. These viruses were viable and grew similarly in lymphocytic cells. Recombinant viruses expressing the WTFH protein showed a restricted spread in HeLa cells but spread efficiently in Vero cells. Parental WTF remained restricted in both cell types. Therefore, not only differential receptor usage but also other cell-specific factors are important in determining MV cell tropism.  相似文献   

6.
This paper provides evidence for a measles virus receptor other than CD46 on transformed marmoset and human B cells. We first showed that most tissues of marmosets are missing the SCR1 domain of CD46, which is essential for the binding of Edmonston measles virus, a laboratory strain that has been propagated in Vero monkey kidney cells. In spite of this deletion, the common marmoset was shown to be susceptible to infections by wild-type isolates of measles virus, although they did not support Edmonston measles virus production. As one would expect from these results, measles virus could not be propagated in owl monkey or marmoset kidney cell lines, but surprisingly, both a wild-type isolate (Montefiore 89) and the Edmonston laboratory strain of measles virus grew efficiently in B95-8 marmoset B cells. In addition, antibodies directed against CD46 had no effect on wild-type infections of marmoset B cells and only partially inhibited the replication of the Edmonston laboratory strain in the same cells. A direct binding assay with insect cells expressing the hemagglutinin (H) proteins of either the Edmonston or Montefiore 89 measles virus strains was used to probe the receptors on these B cells. Insect cells expressing Edmonston H but not the wild-type H bound to rodent cells with CD46 on their surface. On the other hand, both the Montefiore 89 H and Edmonston H proteins adhered to marmoset and human B cells. Most wild-type H proteins have asparagine residues at position 481 and can be converted to a CD46-binding phenotype by replacement of the residue with tyrosine. Similarly, the Edmonston H protein did not bind CD46 when its Tyr481 was converted to asparagine. However, this mutation did not affect the ability of Edmonston H to bind marmoset and human B cells. The preceding results provide evidence, through the use of a direct binding assay, that a second receptor for measles virus is present on primate B cells.  相似文献   

7.
Measles vaccines are highly effective and safe; however, the mechanism(s) underlying their attenuation has not been well understood. In this study, type I IFNs (IFN‐α and IFN‐β) induction in macaques infected with measles virus (MV) strains was examined. Type I IFNs were not induced in macaques infected with wild‐type MV. However, IFN‐α was sharply induced in most macaques infected with recombinant wild‐type MV bearing the hemagglutinin (H) protein of the Edmonston vaccine strain. These results indicate that the H protein of MV vaccine strains may have a role in MV attenuation.  相似文献   

8.
A Hirano 《Journal of virology》1992,66(4):1891-1898
Interaction between the Edmonston or Nagahata strain of acute measles virus (MV) and the defective Biken strain of MV isolated from a patient with subacute sclerosing panencephalitis (SSPE) was examined by a cell fusion protocol. Biken-CV-1 cells nonproductively infected with Biken strain SSPE virus were fused with neomycin-resistant CV-1 cells. All the fused cells selected with the neomycin analog G418 expressed Biken viral proteins, as determined by an immunofluorescence assay. This procedure enabled the transfer of Biken viral genomes into cells previously infected with MV. In the fused cells coinfected by Biken strain SSPE virus and Edmonston or Nagahata strain MV, early MV gene expression was suppressed, as determined by immunoprecipitation with strain-specific antibodies. Maturation of Edmonston strain MV was also suppressed. When the coinfected fused cells were selected with G418, Biken viral proteins remained at a constant level for up to 7 weeks. Wild-type MV proteins gradually decreased to a barely detectable level after 4 weeks and became undetectable after 7 weeks. Immunofluorescence studies showed a steady decline in cells expressing wild-type MV proteins in the coinfected cultures. These results suggest that Biken strain SSPE virus dominantly interferes with the replication of wild-type MV. The possible mechanisms of dominant interference and the implication for evolution of a persistent MV infection are discussed.  相似文献   

9.
Wild-type measles virus (MV) strains use human signaling lymphocyte activation molecule (SLAM) as a cellular receptor, while vaccine strains such as the Edmonston strain can use both SLAM and CD46 as receptors. Although the expression of SLAM is restricted to cells of the immune system (lymphocytes, dendritic cells, and monocytes), histopathological studies with humans and experimentally infected monkeys have shown that MV also infects SLAM-negative cells, including epithelial, endothelial, and neuronal cells. In an attempt to explain these findings, we produced the enhanced green fluorescent protein (EGFP)-expressing recombinant MV (IC323-EGFP) based on the wild-type IC-B strain. IC323-EGFP showed almost the same growth kinetics as the parental recombinant MV and produced large syncytia exhibiting green autofluorescence in SLAM-positive cells. Interestingly, all SLAM-negative cell lines examined also showed green autofluorescence after infection with IC323-EGFP, although the virus hardly spread from the originally infected individual cells and thus did not induce syncytia. When the number of EGFP-expressing cells after infection was taken as an indicator, the infectivities of IC323-EGFP for SLAM-negative cells were 2 to 3 logs lower than those for SLAM-positive cells. Anti-MV hemagglutinin antibody or fusion block peptide, but not anti-CD46 antibody, blocked IC323-EGFP infection of SLAM-negative cells. This infection occurred under conditions in which entry via endocytosis was inhibited. These results indicate that MV can infect a variety of cells, albeit with a low efficiency, by using an as yet unidentified receptor(s) other than SLAM or CD46, in part explaining the observed MV infection of SLAM-negative cells in vivo.  相似文献   

10.
Takeda M 《Uirusu》2007,57(1):83-90
In 1990 Kobune et al. succeeded in isolating pathogenic wild-type strains of measles virus (MV) using a marmoset B-lymphoblastoid cell line B95a. Their data indicated that MV strains that have been used in laboratories are attenuated strains through the adaptation to grow in a variety of cultured cells. We have established a very efficient reverse genetics system that allows us to engineer the genome of a wild-type MV strain at will by site-directed mutagenesis or recombination. Using the system it was shown that (1) the H protein determines tropism of MV, (2) the M protein regulates mode of MV spread, (3) the C protein inhibits host innate immune responses, and (4) the long untranslated regions in the M and F genes function to moderate cytopathogenicity by MV. These data advanced our understanding of molecular bases for MV pathogenicity and mechanisms of MV adaptation to grow in cultured cells.  相似文献   

11.
To redirect the tropism of the vaccine strain of measles virus (MV), Edmonston B, to a targeted cell population, we displayed on the viral hemagglutinin (H) a single-chain antibody (scAb) specific for the tumor-associated carcinoembryonic antigen (CEA). We generated H fusion proteins with three forms of the scAb appended, differing in the lengths of the linkers separating the VH and VL domains and thus in the oligomerization states of the scAbs. All proteins were stable, appeared properly folded, and were transported to the cell surface, but only H displaying the long-linker form of scAb was functional in supporting cell-cell fusion. This protein induced extensive syncytia in cells expressing the normal virus receptor CD46 and also in CD46-negative cells expressing the targeted receptor, human CEA. Replication-competent MV with H replaced by H displaying the long-linker form of scAb was recovered and replicated efficiently in both CD46-positive and CD46-negative, CEA-positive cells. Thus, MV not only tolerates the addition of a scAb on its H protein but also infects cells via a novel interaction between the scAb and its targeted receptor.  相似文献   

12.
Measles virus (MV) has a tropism restricted to humans and primates and uses the human CD46 molecule as a cellular receptor. MV has been adapted to grow in chicken embryonic fibroblasts (CEF) and gave rise to an attenuated live vaccine. Hallé and Schwarz MV strains were compared in their ability to infect both simian Vero cells and CEF. Whereas both strains infected Vero cells, only the CEF-adapted Schwarz strain was able to efficiently infect CEF. Since the expression of the human MV receptor CD46 rendered the chicken embryonic cell line TCF more permissive to the infection by the Hallé MV strain, the MV entry into CEF appeared to be a limiting step in the absence of prior MV adaptation. CEF lacked reactivity with anti-CD46 antibodies but were found to express another protein allowing MV binding as an alternative receptor to CD46.  相似文献   

13.
Marburg virus (MARV) has been associated with sporadic episodes of hemorrhagic fever, including a recent highly publicized outbreak in Angola that produced severe disease and significant mortality in infected patients. MARV is also considered to have potential as a biological weapon. Recently, we reported the development of a promising attenuated, replication-competent vaccine against MARV based on recombinant vesicular stomatitis virus (VSV) expressing the glycoprotein of the Musoke strain of MARV (VSVDeltaG/MARVGP-Musoke). We used this vaccine to demonstrate complete protection of cynomolgus monkeys against a homologous MARV challenge. While these results are highly encouraging, an effective vaccine would need to confer protection against all relevant strains of MARV. Here, we evaluated the protective efficacy of the VSVDeltaG/MARVGP-Musoke vaccine against two heterologous MARV strains, the seemingly more pathogenic Angola strain and the more distantly related Ravn strain. In this study, seven cynomolgus monkeys were vaccinated with the VSVDeltaG/MARVGP-Musoke vector. Three of these animals were challenged with the Angola strain, three with the Ravn strain, and a single animal with the Musoke strain of MARV. Two animals served as controls and were each injected with a nonspecific VSV vector; these controls were challenged with the Angola and Ravn strains, respectively. Both controls succumbed to challenge by day 8. However, none of the specifically vaccinated animals showed any evidence of illness either from the vaccination or from the MARV challenges and all of these animals survived. These data suggest that the VSVDeltaG/MARVGP-Musoke vaccine should be sufficient to protect against all known MARV strains.  相似文献   

14.
Live attenuated vaccines against measles have been developed through adaptation of clinical isolates of measles virus (MV) in various cultured cells. Analyses using recombinant MVs with chimeric genomes between wild-type and Edmonston vaccine strains indicated that viruses possessing the polymerase protein genes of the Edmonston strain exhibited attenuated viral gene expression and growth in cultured cells as well as in mice expressing an MV receptor, signaling lymphocyte activation molecule, regardless of whether the virus genome had the wild-type or vaccine-type promoter sequence. These data demonstrate that the polymerase protein genes of the Edmonston strain contribute to its attenuated phenotype.  相似文献   

15.
Clinical isolates of measles virus (MV) use signaling lymphocyte activation molecule (SLAM) as a cellular receptor, whereas vaccine and laboratory strains may utilize the ubiquitously expressed CD46 as an additional receptor. MVs also infect, albeit inefficiently, SLAM(-) cells, via a SLAM- and CD46-independent pathway. Our previous study with recombinant chimeric viruses revealed that not only the receptor-binding hemagglutinin (H) but also the matrix (M) protein of the Edmonston vaccine strain can confer on an MV clinical isolate the ability to grow well in SLAM(-) Vero cells. Two substitutions (P64S and E89K) in the M protein which are present in many vaccine strains were found to be responsible for the efficient growth of recombinant virus in Vero cells. Here we show that the P64S and E89K substitutions allow a strong interaction of the M protein with the cytoplasmic tail of the H protein, thereby enhancing the assembly of infectious particles in Vero cells. These substitutions, however, are not necessarily advantageous for MVs, as they inhibit SLAM-dependent cell-cell fusion, thus reducing virus growth in SLAM(+) B-lymphoblastoid B95a cells. When the cytoplasmic tail of the H protein is deleted, a virus with an M protein possessing the P64S and E89K substitutions no longer grows well in Vero cells yet causes cell-cell fusion and replicates efficiently in B95a cells. These results reveal a novel mechanism of adaptation and attenuation of MV in which the altered interaction of the M protein with the cytoplasmic tail of the H protein modulates MV growth in different cell types.  相似文献   

16.
It has been difficult to propagate and titrate hepatitis B virus (HBV) in tissue culture. We examined whether vesicular stomatitis virus (VSV) pseudotypes bearing HBV surface (HBs) proteins infectious for human cell lines could be prepared. For this, expression plasmids for three surface proteins, L, M, and S, of HBV were made. 293T cells were then transfected with these plasmids either individually or in different combinations. 293T cells expressing HBs proteins were infected with VSVdeltaG*-G, a recombinant VSV expressing green fluorescent protein (GFP), to make VSV pseudotypes. Culture supernatants together with cells were harvested and sonicated for a short time. The infectivities of freshly harvested supernatants were determined by quantifying the number of cells expressing GFP after neutralization with anti-VSV serum and mouse monoclonal antibodies (MAbs) against HBs protein. Among 14 cell lines tested for susceptibility to HBV pseudotype samples, HepG2, JHH-7, and 293T cells were judged to be the most susceptible. Namely, the infectious units (IU) of the culture supernatant samples neutralized with anti-VSV in the absence and presence of anti-HBs S MAbs and titrated on HepG2 cells ranged from 1,000 to 4,000 IU/ml and 200 to 400 IU/ml, respectively, suggesting the presence of VSVdeltaG*(HBV) pseudotypes. This infectivity was inhibited by treatment with lactoferrin or dextran sulfate. Pretreatment of the cells with trypsin or tunicamycin inhibited plating of the pseudotype samples. The HBV pseudotypes can be used to analyze early steps of HBV infection, including the entry mechanism of HBV.  相似文献   

17.
An alternative model to nonhuman primates to study measles virus (MV) pathogenesis, to evaluate potential MV vaccines, or to screen for potential antivirals effective against this virus is highly desirable. The laboratory-adapted Edmonston strain of MV has been reported to replicate in the lungs of hispid cotton rats following intranasal inoculation, immunosuppress infected animals, and disseminate widely from the lungs, making these animals a candidate model. However, clinical MV strains have generally not been found to grow in these animals, limiting the utility and acceptance of this model. In the present studies we demonstrate reproducible replication of several clinical MV strains in hispid cotton rats. As with the Edmonston strain, leukocytes appear to be the primary target cells of these viruses following intranasal inoculation, and extrapulmonary dissemination is common. It is also demonstrated that prior MV infection or immunization of test animals with MV vaccine prevents pulmonary tract infection. These findings should make the MV-cotton rat model more acceptable.  相似文献   

18.
Canine distemper virus (CDV) and measles virus (MV) cause severe illnesses in their respective hosts. The viruses display a characteristic cytopathic effect by forming syncytia in susceptible cells. For CDV, the proficiency of syncytium formation varies among different strains and correlates with the degree of viral attenuation. In this study, we examined the determinants for the differential fusogenicity of the wild-type CDV isolate 5804Han89 (CDV(5804)), the small- and large-plaque-forming variants of the CDV vaccine strain Onderstepoort (CDV(OS) and CDV(OL), respectively), and the MV vaccine strain Edmonston B (MV(Edm)). The cotransfection of different combinations of fusion (F) and hemagglutinin (H) genes in Vero cells indicated that the H protein is the main determinant of fusion efficiency. To verify the significance of this observation in the viral context, a reverse genetic system to generate recombinant CDVs was established. This system is based on a plasmid containing the full-length antigenomic sequence of CDV(OS). The coding regions of the H proteins of all CDV strains and MV(Edm) were introduced into the CDV and MV genetic backgrounds, and recombinant viruses rCDV-H(5804), rCDV-H(OL), rCDV-H(Edm), rMV-H(5804), rMV-H(OL), and rMV-H(OS) were recovered. Thus, the H proteins of the two morbilliviruses are interchangeable and fully functional in a heterologous complex. This is in contrast with the glycoproteins of other members of the family Paramyxoviridae, which do not function efficiently with heterologous partners. The fusogenicity, growth characteristics, and tropism of the recombinant viruses were examined and compared with those of the parental strains. All these characteristics were found to be predominantly mediated by the H protein regardless of the viral backbone used.  相似文献   

19.
Wild-type measles virus (MV) isolated from B95a cells has a restricted host cell specificity and hardly replicates in Vero cells, whereas the laboratory strain Edmonston (Ed) replicates in a variety of cell types including Vero cells. To investigate the role of H protein in the differential MV host cell specificity and cell fusion activity, H proteins of wild-type MV (IC-B) and Ed were coexpressed with the F protein in Vero cells. Cell-cell fusion occurred in Vero cells when Ed H protein, but not IC-B H protein, was expressed. To analyze the role of H protein in the context of viral infection, a recombinant IC-B virus bearing Ed H protein (IC/Ed-H) and a recombinant Ed virus bearing IC-B H protein (Ed/IC-H) were generated from cloned cDNAs. IC/Ed-H replicated efficiently in Vero cells and induced small syncytia in Vero cells, indicating that Ed H protein conferred replication ability in Vero cells on IC/Ed-H. On the other hand, Ed/IC-H also replicated well in Vero cells and induced small syncytia, although parental Ed induced large syncytia in Vero cells. These results indicated that an MV protein(s) other than H protein was likely involved in determining cell fusion and host cell specificity of MV in the case of our recombinants. SLAM (CDw150), a recently identified cellular receptor for wild-type MV, was not expressed in Vero cells, and a monoclonal antibody against CD46, a cellular receptor for Ed, did not block replication or syncytium formation of Ed/IC-H in Vero cells. It is therefore suggested that Ed/IC-H entered Vero cells through another cellular receptor.  相似文献   

20.
Measles virus (MV) immunosuppression is due to infection of SLAM-positive immune cells, whereas respiratory shedding and virus transmission are due to infection of nectin4-positive airway epithelial cells. The vaccine lineage MV strain Edmonston (MV-Edm) acquired an additional tropism for CD46 which is the basis of its oncolytic specificity. VSVFH is a vesicular stomatitis virus (VSV) encoding the MV-Edm F and H entry proteins in place of G. The virus spreads faster than MV-Edm and is highly fusogenic and a potent oncolytic. To determine whether ablating nectin4 tropism from VSVFH might prevent shedding, increasing its safety profile as an oncolytic, or might have any effect on CD46 binding, we generated VSVFH viruses with H mutations that disrupt attachment to SLAM and/or nectin4. Disruption of nectin4 binding reduced release of VSVFH from the basolateral side of differentiated airway epithelia composed of Calu-3 cells. However, because nectin4 and CD46 have substantially overlapping receptor binding surfaces on H, disruption of nectin4 binding compromised CD46 binding and greatly diminished the oncolytic potency of these viruses on human cancer cells. Thus, our results support continued preclinical development of VSVFH without ablation of nectin4 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号