首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed steady-state kinetic investigation of the hydrolysis of ATP catalyzed by (Na+ + K+)-ATPase is reported. The activity was studied in the presence of (i) Na+ (130 mM), K+ (20 mM) and micromolar ATP concentrations and Na+ (150 mM) the ('Na+-enzyme'). The data obtained lead to the following results: 1. The action of each enzyme may be described by a simple kinetic mechanism with one (Na+-enzyme) or two ((Na+ + K+)-enzyme) dead-end Mg complexes. 2. For both enzymes, both MgATP and free ATP are substrates, with Mg2+, in the latter case, as the second substrate. 3. For each enzyme, the complete set of kinetic constants (seven for the Na+-enzyme, eight for the (Na+ + K+)-enzyme) are determined from the data. 4. For each enzyme it is shown that, in the alternate substrate mechanism obtained, the ratio of net steady-state flux along the 'MgATP pathway' to that of the 'ATP-Mg pathway' increases linearly with the concentration of free Mg2+. The parameters of this function are determined from the data. As a result of this, at high (greater than 3 mM) free Mg2+ concentrations the alternate substrate mechanism degenerates into a 'limiting' kinetic mechanism, with MgATP as the (essentially) sole substrate, and Mg2+ as an uncompetitive (Na+-enzyme) or non-competitive ((Na+ + K+)-enzyme) inhibitor.  相似文献   

2.
The expressions for the kinetic constants corresponding to the steady state model for hydrolysis of ATP catalyzed by (Na+ + K+)-ATPase proposed recently are analyzed with the object of determining the rate constants. The theoretical background for the necessary procedures is described. The results of this analysis are: (1) A small class (four) of rate constants are determined directly by the previously published values of the kinetic constants. (2) For a somewhat larger class of rate constants upper and lower bounds may be established. For several rate constants the upper and lower bounds differ by less than a factor 1.6 (for the "(Na+ + K+)-enzyme", i.e. the enzyme activity with K+ and millimolar substrate concentration) and 1.2 (for the "Na+-enzyme",i.e. the activity at micromolar substrate concentrations). (3) Experiments on inhibition by K+ of the Na+-enzyme at various Mg2+ concentrations are reported and analyzed. With the additional assumption that the rate constants governing the addition to ATP of Mg2+ is independent of whether or not ATP is bound to an enzyme molecule, a set of consistent values for all the 23 rate constants in the mechanism may be obtained. (4) The values of some rate constants lend further support to the contention discussed in a previous paper that the enzyme hydrolyzes ATP along two kinetically distinct pathways, depending on the presence of K+ and on the concentration of substrate, without the necessity of having more than one active substrate site per enzyme unit at any time. (5) The results show that while the two enzyme forms, the "Na+-enzyme" E1 and the "K+-enzyme" E2K, add substrate with (second order) rate constants of the same order of magnitude (differing only by a factor of four in favor of the former), the rate constants for the reverse processes differ by a factor of 100, being largest for the K+-enzyme. This is the main reason for the large difference in the Michaelis constants for the two forms reported previously. (6) Compatibility of the model with the well-known rapid dephosphorylation of the phosphorylated enzyme in the presence of K+ requires the presence, at non-zero steady state concentration, of an enzyme-potassium-phosphate intermediate, which is acid labile and is therefore not detected as a phosphorylated enzyme using conventional methods.  相似文献   

3.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

4.
In order to study whether Pb2+ and imidazole increase the ATP phosphorylation level of (Na+ + K+)-ATPase by the same mechanism, the effects of both compounds on phosphorylation and dephosphorylation reactions of the enzyme have been studied. Imidazole in the presence of Mg2+ increases steady-state phosphorylation of (Na+ + K+)-ATPase by decreasing, in a competitive way, the K+-sensitivity of the formed phospho-enzyme (E-P . Mg). If Pb2+ is present during phosphorylation, the rate of phosphorylation increases and a K+- and ADP-insensitive phosphointermediate (E-P . Pb) is formed. Pb2+ has no effect on the K+-sensitivity of E-P . Mg and EDTA is unable to affect the K+-insensitivity of E-P . Pb. These effects indicate that Pb2+ acts before or during phosphorylation with the enzyme. Binding of Na+ to E-P . Pb does not restore K+-sensitivity either. However, increasing Na+ during phosphorylation in the presence of Pb2+ leads to formation of the K+-sensitive intermediate (E-P . Mg), indicating that E-P . Pb is formed via a side path of the Albers-Post scheme. ATP and ADP decrease the dephosphorylation rate of both E-P . Mg and E-P . Pb. Above optimal concentration, Pb2+ also decreases the steady-state phosphorylation level both in the absence and in the presence of Na+. This inhibitory effect of Pb2+ is antagonized by Mg2+.  相似文献   

5.
The influence of Na+ and K+ on the steady-state kinetics at 37 degrees C of (Na+ + K+)-ATPase was investigated. From an analysis of the dependence of slopes and intercepts (from double-reciprocal plots or from Hanes plots) of the primary data on Na+ and K+ concentrations a detailed model for the interaction of the cations with the individual steps in the mechanism may be inferred and a set of intrinsic (i.e. cation independent) rate constants and cation dissociation constants are obtained. A comparison of the rate constants with those obtained from an analogous analysis of Na+-ATPase kinetics (preceding paper) provides evidence that the ATP hydrolysis proceeds through a series of intermediates, all of which are kinetically different from those responsible for the Na+-ATPase activity. The complete model for the enzyme thus involves two distinct, but doubly connected, hydrolysis cycles. The model derived for (Na+ + K+)-ATPase has the following properties: The empty, substrate free, enzyme form is the K+-bound form E2K. Na+ (Kd = 9 mM) and MgATP (Kd = 0.48 mM), in that order, must be bound to it in order to effect K+ release. Thus Na+ and K+ are simultaneously present on the enzyme in part of the reaction cycle. Each enzyme unit has three equivalent and independent Na+ sites. K+ binding to high-affinity sites (Kd = 1.4 mM) on the presumed phosphorylated intermediate is preceded by release of Na+ from low-affinity sites (Kd = 430 mM). The stoichiometry is variable, and may be Na:K:ATP = 3:2:1. To the extent that the transport properties of the enzyme are reflected in the kinetic ATPase model, these properties are in accord with one of the models shown by Sachs ((1980) J. Physiol. 302, 219-240) to give a quantitative fit of transport data for red blood cells.  相似文献   

6.
Effects of commonly used purification procedures on the yield and specific activity of (Na+ + K+)-ATPase (Mg2+-dependent, Na+ + K+-activated ATP phosphohydrolase, EC 3.6.1.3), the turnover number of the enzyme, and the kinetic parameters for the ATP-dependent ouabain-enzyme interaction were compared in canine brain, heart and kidney. Kinetic parameters were estimated using a graphical analysis of non-steady state kinetics. The protein recovery and the degree of increase in specific activity of (Na+ + K+)-ATPase and the ratio between (Na+ + K+)-ATPase and Mg2+-ATPase activities during the successive treatments with deoxycholate, sodium iodide and glycerol were dependent on the source of the enzyme. A method which yields highly active (Na+ + K+)-ATPase preparations from the cardiac tissue was not suitable for obtaining highly active enzyme preparations from other tissues. Apparent turnover numbers of the brain (Na+ + K+)-ATPase preparations were not significantly affected by the sodium iodide treatment, but markedly decreased by deoxycholate or glycerol treatments. Similar glycerol treatment, however, failed to affect the apparent turnover number of cardiac enzymes preparations. Cerebral and cardiac enzyme preparations obtained by deoxycholate, sodium iodide and glycerol treatments had lower affinity for ouabain than renal enzyme preparations, primarily due to higher dissociation rate constants for the ouabain.enzyme complex. This tissue-dependent difference in ouabain sensitivity seems to be an artifact of the purification procedure, since less purified cerebral or cardiac preparations had lower dissociation rate constants. Changes in apparent association rate constants were minimal during the purfication procedure. These results indicate that the presentyl used purification procedures may alter the properties of membrane (Na+ + K+)-ATPase and affect the interaction between cardiac glycosides and the enzyme. The effect of a given treatment depends on the source of the enzyme. For the in vitro studies involving purified (Na+ + K+)-ATPase preparations, the influence of the methods used to obtain the enzyme preparation should be carefully evaluated.  相似文献   

7.
To delineate better the reaction sequence of the (Na+ + K+)-ATPase and illuminate properties of the active site, kinetic data were fitted to specific quantitative models. For the (Na+ + K+)-ATPase reaction, double-reciprocal plots of velocity against ATP (in the millimolar range), with a series of fixed KCl concentrations, are nearly parallel, in accord with the ping pong kinetics of ATP binding at the low-affinity sites only after Pi release. However, contrary to requirements of usual formulations, Pi is not a competitor toward ATP. A new steady-state kinetic model accommodates these data quantitatively, requiring that under usual assay conditions most of the enzyme activity follows a sequence in which ATP adds after Pi release, but also requiring a minor alternative pathway with ATP adding after K+ binds but before Pi release. The fit to the data also reveals that Pi binds nearly as rapidly to E2 X K X ATP as to E2 X K, whereas ATP binds quite slowly to E2 X P X K: the site resembles a cul-de-sac with distal ATP and proximal Pi sites. For the K+-nitrophenyl phosphatase reaction also catalyzed by this enzyme, the apparent affinities for both substrate and Pi (as inhibitor) decrease with higher KCl concentrations, and both Pi and TNP-ATP appear to be competitive inhibitors toward substrate with 10 mM KCl but noncompetitive inhibitors with 1 mM KCl. These data are accommodated quantitatively by a steady-state model allowing cyclic hydrolytic activity without obligatory release of K+, and with exclusive binding of substrate vs. either Pi or TNP-ATP. The greater sensitivity of the phosphatase reaction to both Pi and arsenate is attributable to the weaker binding by the occluded-K+ enzyme form occurring in the (Na+ + K+)-ATPase reaction sequence. The steady-state models are consistent with cyclical interconversion of high- and low-affinity substrate sites accompanying E1/E2 transitions, with distortion to low-affinity sites altering not only affinity and route of access but also separating the adenine- and phosphate-binding regions, the latter serving in the E2 conformation as the active site for the phosphatase reaction.  相似文献   

8.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 microM ATP and 50 microM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 microM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+ -ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 microM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

9.
1. Incubation of purified (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) from rabbit kidney outer medulla with butanedione in borate buffer leads to reversible inactivation of the (Na+ + K+)-ATPase activity. 2. The reaction shows second-outer kinetics, suggesting that modification of a single amino acid residue is involved in the inactivation of the enzyme. 3. The pH dependence of the reaction and the effect of borate ions strongly suggest that modification of an arginine residue is involved. 4. Replacement of Na+ by K+ in the butanedione medium decreases inactivation. 5. ATP, ADP and adenylyl imido diphosphate, particularly in the presence of trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid to complex Mg2+, protect the enzyme very efficiently against inactivation by butanedione. 6. The (Na+ + Mg2+)-dependent phosphorylation capacity of the enzyme is inhibited in the same degree as the (Na+ + K+)-ATPase activity by butanedione. 7. The K+-stimulated p-nitrophenylphosphatase activity is much less inhibited than the (Na+ + K+)ATPase activity. 8. The ATP stimulation of the K+-stimulated p-nitrophenylphosphatase activity is inhibited by butanedione to the same extent as the (Na+ + K+)-ATPase activity. 9. Modification of sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoic acid) protects partially against the inactivating effect of butanedione. 10. The results suggest that an arginine residue is present in the nucleotide binding centre of the enzyme.  相似文献   

10.
Regulation of rat brain (Na+ +K+)-ATPase activity by cyclic AMP   总被引:3,自引:0,他引:3  
The interaction between the (Na+ +K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5'-AMP, cyclic GMP or 5'-GMP, could inhibit the (Na+ +K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ +K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854-3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ +K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ +K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ +K+)-ATPase, resulted in a decrease in overall (Na+ +K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ +K+)-ATPase has no effect on (Na+ +K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ +K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ +K+)-ATPase was unaffected.  相似文献   

11.
Beta-adrenoceptor blocking agents may have, in addition to their primary action, also ancillary effects on the cell membrane. In the present paper the non-specific interaction of exaprolol with the ATPase systems in isolated rat heart sarcolemmal membranes was investigated. When preincubated with sarcolemmal membranes in vitro, exaprolol in concentrations below 10(-4) mol.l-1 had no significant effect on sarcolemmal Mg2+-, Ca2+- and (Na+ + K+)-ATPase activities. At exaprolol concentration of 10(-4) mol.l-1 the Mg2+- and Ca2+-ATPase activities became inhibited whereas the (Na+ + K+)-ATPase activity was markedly stimulated. A kinetic analysis of these interactions revealed a non-competitive inhibition of Mg2+- and Ca2+-ATPase. In the case of (Na+ + K+)-ATPase a synergistic type of stimulation characterized by an exaprolol-induced conversion of an essential sulfhydryl group in the active site of the enzyme to the more reactive [S-] form has been observed thus increasing the affinity of the enzyme to ATP. Exaprolol concentrations exceeding 5 X 10(-4) mol.l-1 induced an overall depression of the investigated enzyme activities.  相似文献   

12.
An analysis of the influence of Na+ and K+ on the kinetics of Na+-ATPase in broken membrane preparations from bovine brain is presented with particular emphasis on the effect of the cations on the binding and splitting of the substrate MgATP and on the derivation of a detailed kinetic model for that interaction. It was found that the enzyme in the absence of Na+ and K+, but in the presence of 7 mM free Mg2+, at pH 7.4 (37 degrees C) exhibits an ouabain-sensitive ATPase activity. The simplest model quantitatively compatible with all the data involves two different, interconvertible (conformational) forms of the enzyme, E1 and E'1, with the following properties: The E1 form does not bind K+ but has three independent and equivalent high-affinity sites (Kd = 5.6 mM) for Na+. It binds and hydrolyzes substrate only when two or three sodium ions are bound to it. The E'1 form binds and hydrolyzes the substrate only in the absence of monovalent cations. It is competitively inhibited by K+ (Kd = 0.23 mM), and this inhibition is further enhanced by binding of Na+ to the K+-bound form at two equivalent, independent sites (Kd = 12 mM). It is suggested that the E'1 form is the Mg2+-induced conformational state of the enzyme observed by others, which differs from the usually encountered E1 and E2 forms. The model allows the calculation of ATP-binding and ADP-releasing rate constants for the E1-form for later comparison with corresponding rate constants for the (na+ + K+)-ATPase (following paper).  相似文献   

13.
(1) A (K+ + H+)-ATPase containing membrane fraction, isolated from pig gastric mucosa, has been further purified by means of zonal electrophoresis, leading to a 20% increase in specific activity and an increase in ratio of (K+ + H+)-ATPase to basal Mg2+-ATPase activity from 9 to 20. (2) The target size of (Na+ + K+)-ATPase, determined by radiation inactivation analysis, is 332 kDa, in excellent agreement with the earlier value of 327 kDa obtained from the subunit composition and subunit molecular weights. This shows that the Kepner-Macey factor of 6.4 X 10(11) is valid for membrane-bound ATPases. (3) The target size of (K+ + H+)-ATPase is 444 kDa, which, in connection with a subunit molecular weight of 110000, suggests a tetrameric assembly of the native enzyme. The ouabain-insensitive K+-stimulated p-nitrophenylphosphatase activity has a target size of 295 kDa. (4) In the presence of added Mg2+ the target sizes of the (K+ + H+)-ATPase and its phosphatase activity are decreased by about 15%, while that for the (Na+ + K+)-ATPase is not significantly changed. This observation is discussed in terms of a Mg2+-induced tightening of the subunits composing the (K+ + H+)-ATPase molecule.  相似文献   

14.
Na+-ATPase activity is extremely sensitive to inhibition by vanadate at low Na+ concentrations where Na+ occupies only high-affinity activation sites. Na+ occupies low-affinity activation sites to reverse inhibition of Na+-ATPase and (Na+, K+)-ATPase activities by vanadate. This effect of Na+ is competitive with respect to both vanadate and Mg2+. The apparent affinity of the enzyme for vanadate is markedly increased by K+. The principal effect of K+ may be to displace Na+ from the low-affinity sites at which it activates Na+-ATPase activity.  相似文献   

15.
(Na+ + K+)-ATPase activity is demonstrated in plasma membranes from pig mesenteric lymph nodes. After dodecyl sulfate treatment plasma membranes have an 18-fold higher (Na+ + K+)-ATPase activity, while their ouabain-insensitive Mg2+-ATPase is markedly lowered. A solubilized (Na+ +K+)-ATPase fraction, obtained by Lubrol WX treatment of the membranes, has very high specific activity (21 mumol Pi/h per mg protein). Concanavalin A has no effect on these partially purified (Na+ + K+)-ATPase, while inhibits (40%) this activity in less purified fractions which still contain Mg2+-ATPase activity.  相似文献   

16.
1. The specific activity of brain (Na+ + K+)-ATPase and Mg2+ -ATPase of the ground squirrel (Spermophilus richardsonii) is significantly increased after long-term hibernation. 2. The markedly non-linear thermal dependence of (Na+ + K+)-ATPase is unchanged during hibernation whereas the near linear thermal dependence of Mg2+-ATPase undergoes minor alteration after prolonged hibernation. 3. The sensitivity of (Na+ + K+)-ATPase to inhibition by ouabain is significantly decreased after 100 days of hibernation as is both the rate and amount of [3H]-ouabain binding. 4. These changes may be related to alteration in the phospholipid matrix of the membrane rather than alteration in the protein structure of the enzyme.  相似文献   

17.
1. The 3'-ribosyl ester of ATP with 2-nitro-4-azidophenyl propionic acid has been prepared and its ability to act as a photoaffinity label of (Na+ + K+)-ATPase has been tested. 2. In the dark 3'-O-[3-(2-nitro-4-azidophenyl)-propionyl]adenosine triphosphate (N3-ATP) is a substrate of (Na+ + K+)-ATPase and a competitive inhibitor of ATP hydrolysis. 3. Upon irradiation by ultraviolet light, N3-ATP photolabels the high-affinity ATP-binding site and is covalently attached to the alpha-subunit and an approximately 12000-Mr component. 4. Photolabeling of the alpha-subunit by N3-ATP irreversibly inactivates (Na+ + K+)-ATPase. 5. Photoinactivation is strictly Mg2+-dependent. Na+ enhances the inactivation. ATP or ADP and K+ protect the enzyme against inactivation. 6. Mg2+, in concentrations required for photoinactivation, protects (Na+ + K+)-ATPase against inactivation by tryptic digestion under controlled conditions. 7. It is assumed that a conformational change of the ATP-binding site of (Na+ + K+)-ATPase occurs upon binding of Mg2+ to a low-affinity site.  相似文献   

18.
1. The specific activity of renal cortical (Na+ + K+)-ATPase of the Richardson ground squirrel is markedly reduced during hibernation, in contrast to the specific activity of the accompanying Mg2+-ATPase which is markedly increased. 2. The sensitivity of (Na+ + K+)-ATPase to inhibition by ouabain is unchanged by hibernation. 3. Both the non-linear thermal dependence of (Na+ + K+)-ATPase and the linear thermal dependence of Mg2+-ATPase are also unchanged by hibernation. 4. The energy of activation of both enzymes is unchanged during hibernation, or by comparison with that determined in awake controls. 5. There is no evidence for inherent "cold resistance" in these enzyme preparations compared to similar preparations from the non-hibernating rabbit. This parameter does not change during hibernation. 6. Both the rate and amount of specific [3H]-ouabain binding to the renal cortical preparations of (Na+ + K+)-ATPase decrease during hibernation. This decrease matches the fall in enzyme activity so that the ratio of pumping sites/unit of enzyme activity shows no seasonal variations. 7. These findings suggest that the amount of renal cortical (Na+ + K+)-ATPase enzyme falls during hibernation, but that the enzyme which remains functions with the same thermodynamic efficiency and identical biochemical characteristics of that found in the awake summer controls.  相似文献   

19.
We have previously demonstrated that Na+,K(+)-ATPase can be phosphorylated by 100 microM ATP and 5 mM Mg2+ and in the absence of Na+, provided that 40% dimethylsulfoxide (Me2SO) is present. Phosphorylation was stimulated by K+ up to a steady-state level of about 50% of Etot (Barrabin et al. (1990) Biochim. Biophys. Acta 1023, 266-273). Here we describe the time-course of phosphointermediate (EP) formation and of dephosphorylation of EP at concentrations of Mg2+ from 0.1 to 5000 microM and of K+ from 0.01 to 100 mM. The results were simulated by a simplified version of the commonly accepted Albers-Post model, i.e. a 3-step reaction scheme with a phosphorylation, a dephosphorylation and an isomerization/deocclusion step. Furthermore it was necessary to include an a priori, Mg(2+)- and K(+)-independent, equilibration between two enzyme forms, only one of which (constituting 14% of Etot) reacted directly with ATP. The role of Mg(2+) was two-fold: At low Mg2+, phosphorylation was stimulated by Mg2+ due to formation of the substrate MgATP, whereas at higher concentrations it acted as an inhibitor at all three steps. The affinity for the inhibitory Mg(2+)-binding was increased several-fold, relative to that in aqueous media, by dimethylsulfoxide. K+ stimulated dephosphorylation at all Mg(2+)-concentrations, but at high, inhibitory [Mg2+], K+ also stimulated the phosphorylation reaction, increasing both the rate coefficient and the steady-state level of EP. Generally, the presence of Me2SO seems to inhibit the dephosphorylation step, the isomerization/deocclusion step, and to a lesser extent (if at all) the phosphorylation reaction, and we discuss whether this reflects that Me2SO stabilizes occluded conformations of the enzyme even in the absence of monovalent cations. The results confirm and elucidate the stimulating effect of K+ on EP formation from ATP in the absence of Na+, but they leave open the question of the molecular mechanism by which Me2SO, inhibitory Mg2+ and stimulating K+ interact with the Na+,K(+)-ATPase.  相似文献   

20.
A dog kidney (Na+ + K+)-ATPase preparation also catalyzes K+-independent and K+-activated phosphatase reactions with p-nitrophenyl phosphate as substrate. K+-independent activity increases with declining pH over the range 7.5 to 5.8, whereas the other two activities decrease. The increased K+-independent activity is similar with imidazole, histidine, and several Good buffers, and is thus attributable to free H+, probably by affecting enzyme conformations rather than by changing affinity for Mg2+ or substrate or by H+ occupying specific K+-sites. The decrease in K+-phosphatase and (Na+ + K+)-ATPase activities with pH also occurs similarly with those buffers, and is not due to changes in apparent affinity for substrate or for cation activators. However, the Good buffers Pipes and ADA inhibit the K+-independent phosphatase reaction strongly, the K+-activated reaction moderately, and the (Na+ + K+)-ATPase reaction little; both contain two acidic groups, unlike the other buffers tested. Inhibition of the phosphatase reaction by Pipes is associated with a decreased apparent affinity for K+ and an increased sensitivity to inhibition by Na+ and ADP, consistent with Pipes hindering conformational transitions to the E2 enzyme forms required for phosphatase hydrolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号