首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The balance between matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), is pivotal in the remodeling of extracellular matrix. TGF-beta has profound effects on extracellular matrix homeostasis, in part via its ability to alter this balance at the level of gene expression. The intracellular signaling pathways by which TGF-beta mediates its actions include the Smad pathway, specific to the TGF-beta superfamily, but also, for example, mitogen-activated protein kinase pathways; furthermore, cross-talk between the Smads and other signaling pathways modifies the TGF-beta response. The reciprocal effect of TGF-beta on the expression of Timp-1 and MMP-1 supports its role in matrix anabolism, yet the mechanisms by which TGF-beta induces Timp-1 and represses induced MMP-1 have remained opaque. Here, we (i) investigate the mechanism(s) by which TGF-beta1 induces expression of the Timp-1 gene and (ii) compare this with TGF-beta1 repression of phorbol ester-induced MMP-1 expression. We report that the promoter-proximal activator protein 1 (AP1) site is essential for the response of both Timp-1 and MMP-1 to TGF-beta (induction and repression, respectively). c-Fos, JunD, and c-Jun are essential for the induction of Timp-1 gene expression by TGF-beta1, but these AP1 factors transactivate equally well from both Timp-1 and MMP-1 AP1 sites. Smad-containing complexes do not interact with the Timp-1 AP1 site, and overexpression of Smads does not substitute or potentiate the induction of the gene by TGF-beta1; furthermore, Timp-1 is still induced by TGF-beta1 in Smad knockout cell lines, although to varying extents. In contrast, Smads do interact with the MMP-1 AP1 site and mediate repression of induced MMP-1 gene expression by TGF-beta1.  相似文献   

2.
In vitro, BAEC and BASMC migratory phenotypes are known to be reciprocally modulated by both soluble factors and extracellular matrix proteins. In addition, integrin matrix receptors mediate endothelial and smooth muscle cell attachment and migration. To further elucidate these phenomena, we studied the effects of TGF-beta 1 on integrin expression by vascular BASMC and BAEC in tissue culture. TGF-beta 1 upregulated mRNA levels and surface pools of BASMC beta 3 integrin classes without modulating beta 1 integrin mRNA levels or expression of beta 1 integrin organization. In contrast to its effects on BASMC, TGF-beta 1 increased BAEC mRNA levels and surface expression of beta 1 and beta 3 integrins without altering their organization. Conversely, extracellular matrix components (fibronectin, laminin, and fibrinogen) organized cell surface integrins in both BASMC and BAEC without affecting the size of their cell surface pools. These data are consistent with the hypothesis that SMC and EC behavior in neointimal lesions may be modulated, in part, through a coordination of soluble factor and extracellular matrix protein regulation of integrin surface expression and organization.  相似文献   

3.
Cell surface adhesion and extracellular matrix proteins are known to play a key role in the formation of cell condensations during skeletal development, and their formation is crucial for the expression of cartilage-specific genes. However, little is known about the relationship between adhesion molecules (N-cadherin and N-CAM), extracellular matrix proteins (fibronectin and tenascin) and TGF-beta1, TGF-beta2 and TGF-beta3 during in vitro precartilage condensations in mouse chondrogenesis. On these bases, we determined the participation of mammalian TGF-beta1, TGF-beta2 and TFG-beta3 and Xenopus TGF-beta5 on the expression of cell surface adhesion and extracellular matrix proteins during the formation of precartilage condensations. Also, we characterized the effects of TGF-betas on proteoglycan metabolism at different cellular densities in mouse embryonic limb bud mesenchymal cells. In TGF-beta1 and TGF-beta5-treated cultures, proteoglycan biosynthesis was higher than in controls, while there were no differences in proteoglycan catabolism, which caused the accumulation of cartilage extracellular matrix. When mesenchymal cells were seeded at three different cellular densities in the presence of TGF-betas, only high density cultures presented increased stimulation of proteoglycan biosynthesis, compared to low and intermediate densities. To determine whether the effect of TGF-betas on precartilage condensations is mediated through the expression of N-cadherin, N-CAM, fibronectin and tenascin, we evaluated their expression. Results showed that TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta5 differentially enhanced the expression of N-cadherin, N-CAM, fibronectin and tenascin in precartilage condensations, suggesting that TGF-beta isoforms play an important role in the establishment of cell-cell and cell-extracellular matrix interactions during precartilage condensations.  相似文献   

4.
BACKGROUND/AIMS: Transforming growth factor-beta1 (TGF-beta1) plays a pivotal role in the extracellular matrix accumulation observed in fibrotic diseases. Endoglin is an important component of the TGF-beta receptor complex highly expressed in tissues undergoing fibrotic processes. Endoglin expression regulates the effect of TGF-beta on extracellular matrix synthesis. The purpose of our study has been to understand the molecular mechanism by which endoglin exerts its effects on fibrosis and the possible role of MAP kinases in these effects. METHODS: We have assessed in mock and in endoglin-transfected L6E9 myoblasts the effect of TGF-beta1 on collagen mRNA by Northern blot and effect of TGF-beta1 on collagen content in the cultured medium by [(3)H]-Proline incorporation into collagen proteins. Total and activated MAPK and their role on collagen synthesis were assessed by Western blot. RESULTS: TGF-beta1 induced an increase on alpha(2) (I) collagen mRNA expression and collagen accumulation in mock-transfected myoblasts, whereas the response was much lower in endoglintransfected cells. TGF-beta1 activated the ERK1/2 and p38 MAPK pathways but not the JNK pathway in L6E9 myoblasts. TGF-beta1-induced alpha(2) (I) collagen mRNA expression and collagen accumulation were completely inhibited by SB203580, in either mock or endoglintransfected myoblasts. PD98059 increased TGF-beta1 induced-collagen synthesis and accumulation in endoglin-transfected myoblasts but not in mock cells. CONCLUSION: Our studies demonstrate that TGF-beta1- induced collagen synthesis is mediated by p38 MAPK activation in L6E9 myoblasts. Furthermore, endoglin expression reduces basal and TGF-beta1 induced collagen synthesis when ERK1/2 pathway is operating.  相似文献   

5.
6.
TGF-beta1 is a profibrogenic cytokine participating in deposition of extracellular matrix in fibrotic disorders. In liver, its anti-proliferative/apoptotic effect on hepatocytes promotes fibrosis. The tetracycline-controlled double-transgenic TA(LAP-2)/p(tet)TGF-beta1 mouse provides a model for reversible liver fibrosis. In livers of TGF-beta1-expressing mice, hepatocytes showed synchronous apoptosis detected by DNA laddering and active caspase-3 staining that disappeared when expression of transgenic TGF-beta1 was switched off. In these 'off' mice, perisinusoidal liver fibrosis resolved within 21 days accompanied by elevated proliferation of hepatocytes. Here, we have specified the intermediary stages (2-3 days off and 6 days off) in terms of (i) proliferation (by immunohistochemical staining of proliferating cell nuclear antigen and expression of cyclin D1 mRNA) and (ii) extracellular matrix remodelling processes (by measuring mRNA expression of matrix metalloproteinases-2 and -13 (mmp-2 and mmp-13) and tissue inhibitor of matrix metalloproteinases 1 (timp-1) and quantitative morphometric analysis. In summary, we show a rapidly declining timp-1 mRNA level together with lastingly high mmp-2 and mmp-13 mRNA levels after 2-3 days, suggesting that high matrix-degrading potential represents a prerequisite for the markedly enhanced proliferation of hepatocytes in the early stages after switching off transgenic TGF-beta1.  相似文献   

7.
Matrix metalloproteinases (MMP) have been identified in vulnerable areas of atherosclerotic plaques and may contribute to plaque instability through extracellular matrix degradation. Human metalloelastase (MMP-12) is a macrophage-specific MMP with broad substrate specificity and is capable of degrading proteins found in the extracellular matrix of atheromas. Despite its potential importance, little is known about the regulation of MMP-12 expression in the context of atherosclerosis. In this study, we report that in human peripheral blood-derived macrophages, MMP-12 mRNA was markedly up-regulated by several pro-atherosclerotic cytokines and growth factors including interleukin-1beta, tumor necrosis factor-alpha, macrophage colony-stimulating factor, vascular endothelial growth factor, and platelet-derived growth factor-BB. In contrast, the pleiotropic anti-inflammatory growth factor transforming growth factor-beta1 (TGF-beta1) inhibited cytokine-mediated induction of MMP-12 mRNA, protein, and enzymatic activity. Analyses of MMP-12 promoter through transient transfections and electrophoretic mobility shift assays indicated that both its induction by cytokines and its inhibition by TGF-beta1 depended on signaling through an AP-1 site at -81 base pairs. Moreover, the inhibitory effect of TGF-beta1 on MMP-12 was dependent on Smad3. Taken together, MMP-12 is induced by several factors implicated in atherosclerosis. The inhibition of MMP-12 expression by TGF-beta1 suggests that TGF-beta1, acting via Smad3, may promote plaque stability.  相似文献   

8.
Transforming growth factor-beta (TGF-beta) plays a pivotal role in the extracellular matrix accumulation observed in chronic progressive tissue fibrosis, but the intracellular signaling mechanism by which TGF-beta stimulates this process remains poorly understood. We examined whether mitogen-activated protein kinase (MAPK) routes were involved in TGF-beta1-induced collagen expression in L(6)E(9) myoblasts. TGF-beta1 induced p38 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation whereas no effect on Jun N-terminal kinase phosphorylation was observed. Biochemical blockade of p38 but not of the ERK MAPK pathway abolished TGF-beta1-induced alpha(2)(I) collagen mRNA expression and accumulation. These data indicate that TGF-beta1-induced p38 activation is involved in TGF-beta1-stimulated collagen synthesis.  相似文献   

9.
Transforming growth factor beta (TGF-beta) has been shown to induce chondrogenesis by embryonic rat mesenchymal cells (Seyedin et al., J. Biol. Chem., 261: 5693, 1986). Here we report the effects of bovine TGF-beta on the phenotypic expression of differentiated primary rat osteoblastic and chondroblastic cells. Culture of rat calvarial osteoblasts with TGF-beta resulted in a dose and time-dependent decrease in alkaline phosphatase activity. Levels of alkaline phosphatase were reduced to less than 10% of control values by 0.4 nM TGF-beta. The decrease became apparent after 24 hours and reached a maximum by 72 hours. Similarly, treatment of chondroblasts with 0.4 nM TGF-beta resulted in decreased production of cartilage-specific macromolecules: type II collagen and cartilage proteoglycan. Both cell types exhibited dramatic changes in cell shape after treatment with TGF-beta. Modulation of these differentiated markers by TGF-beta could be mimicked, in part, by addition of fibronectin. Addition of dihydrocytochalasin B blocked the inhibition of phenotypic expression by TGF-beta. These results indicate that TGF-beta inhibits phenotypic expression by osteoblasts and chondroblasts in vitro and suggest that this activity of TGF-beta may be mediated through interactions between the extracellular matrix and cytoskeletal elements.  相似文献   

10.
The epithelium influences the mesenchyme during dynamic processes such as embryogenesis, wound healing, fibrosis, and carcinogenesis. Since transforming growth factor-beta (TGF-beta) modulates these processes, we hypothesized that epithelial-derived TGF-beta also plays a critical role in maintaining the extracellular matrix at basal conditions. We utilized an in vitro model of the epithelial-mesenchymal trophic unit in the human airways to determine the role of epithelial-derived TGF-beta in modulating the extracellular matrix under basal and wound-healing conditions. When differentiated at an air-liquid interface, the human bronchial epithelium produces active TGF-beta2 at a concentration of 50-70 pg/ml, whereas TGF-beta1 is undetectable. TGF-beta2 increases two- to threefold following scrape injury in a dose-dependent fashion and significantly enhances both alpha-smooth muscle actin expression in the underlying collagen-embedded fibroblasts and secretion of tenascin-C into the matrix. Multiphoton microscopy demonstrates substantially enhanced second harmonic generation from fibrillar collagen in the matrix. Pretreatment of the matrix with either sirolimus (2.5 nM) or paclitaxel (10 nM) abolishes the increases in both TGF-beta2 and second harmonic generation in response to epithelial injury. In the absence of the epithelium, exogenous active TGF-beta2 (0-400 pg/ml) produces a biphasic response in the second harmonic signal with a minimum occurring at the epithelial-derived basal level. We conclude that epithelial-derived TGF-beta2 is secreted in response to injury, significantly alters the bulk optical properties of the extracellular matrix, and its tight regulation may be required for normal collagen homeostasis.  相似文献   

11.
Proteoglycans (PGs) comprise a group of extracellular matrix macromolecules which play an important role in matrix biology. In this study, normal human skin and gingival fibroblast cultures were incubated with transforming growth factor-beta 1 (TGF-beta 1), and the expression of three PGs, viz. biglycan (PGI), decorin (PGII), and versican (a large fibroblast proteoglycan) was examined. The results indicate that TGF-beta 1 (5 ng/ml) markedly increased the expression of biglycan (up to 24-fold) and versican (up to 6-fold) mRNAs and the enhancement of biglycan expression was coordinate with elevated type I procollagen gene expression in the same cultures. In contrast, the expression of decorin mRNA was markedly (up to approximately 70%) inhibited by TGF-beta 1. The response to TGF-beta 1 was similar in both skin and gingival fibroblasts, although the gingival cells were clearly more responsive to stimulation by TGF-beta 1 with respect to biglycan gene expression. Analysis of 35S-labeled proteoglycans in the culture media of skin and gingival fibroblasts also revealed stimulation of biglycan and versican production, and reduction in decorin production. Quantitation of both [35S]sulfate and [3H]leucine-labeled decorin in cell culture media by immunoprecipitation revealed a 50% reduction in decorin production in cell cultures treated with TGF-beta 1. This TGF-beta 1-elicited reduction was accompanied by an apparent increase in the size of the decorin molecules, although the size of the core protein was not altered, as judged by Western immunoblotting following chondroitinase ABC digestion. Analysis of the proteoglycans in the matrix and membrane fractions also revealed increased amounts of versican in cultures treated with TGF-beta 1. These results indicate differential regulation of PG gene expression in fibroblasts by TGF-beta 1, and these observations emphasize the role of PGs in the extracellular matrix biology and pathology.  相似文献   

12.
The role of latent transforming growth factor-beta (TGF-beta) binding protein (LTBP) in the association of TGF-beta 1 to the extracellular matrix of cultured fibroblasts and HT-1080 fibrosarcoma cells was studied by immunochemical methods. The matrices were isolated from the cells, and the levels of LTBP and TGF-beta 1 were estimated by immunoblotting and immunoprecipitation. LTBP, TGF-beta 1, and its propeptide (latency-associated peptide, LAP) were found to associate to the extracellular matrix. Immunoblotting analysis indicated that treatment of the cells with plasmin resulted in a concomitant time and dose dependent release of both LTBP and TGF-beta 1 from the extracellular matrix to the supernatant. Comparison of molecular weights suggested that plasmin treatment resulted in the cleavage of LTBP from the high molecular weight fibroblast form to a form resembling the low molecular weight LTBP found in platelets. Pulse- chase and immunoprecipitation analysis indicated that both the free form of LTBP and LTBP complexed to latent TGF-beta were efficiently incorporated in the extracellular matrix, from where both complexes were slowly released to the culture medium. Addition of plasmin to the chase solution resulted, however, in a rapid release of LTBP from the matrix. Fibroblast derived LTBP was found to associate to the matrix of HT-1080 cells in a plasmin sensitive manner as shown by immunoprecipitation analysis. These results suggest that the latent form of TGF-beta 1 associates with the extracellular matrix via LTBP, and that the release of latent TGF-beta 1 from the matrix is a consequence of proteolytic cleavage(s) of LTBP.  相似文献   

13.
Excessive transforming growth factor-beta (TGF-beta) activity in hyperglycemia contributes to the development of diabetic nephropathy. Glucose stimulation of TGF-beta activity and matrix synthesis are dependent on autocrine thrombospondin 1 (TSP1) to convert latent TGF-beta to its biologically active form. The mechanisms by which glucose regulates TSP1 are not known. High glucose inhibits nitric oxide (NO) bioavailability and decreased NO increases TGF-beta activity and extracellular matrix accumulation. Yet, the impact of NO signaling on TSP1 activation of TGF-beta is unknown. We tested the role of NO signaling in the regulation of TSP1 expression and TSP1-dependent TGF-beta activity in rat mesangial cells exposed to high glucose. On exposure to 30 mm glucose, NO accumulation in the conditioned media and intracellular cGMP levels were significantly decreased. The addition of an NO donor prevented the glucose-dependent increase in TSP1 mRNA, protein, and TGF-beta bioactivity. The effects of the NO donor were blocked by ODQ (a soluble guanylate cyclase inhibitor) or Rp-8-pCPT-cGMPS (an inhibitor of cGMP-dependent protein kinase). These effects of high glucose were also reversed by the nitric-oxide synthase cofactor tetrahyrobiopterin (BH(4)). These results show that high glucose mediates increases in TSP1 expression and TSP1-dependent TGF-beta bioactivity through down-modulation of NO-cGMP-dependent protein kinase signaling.  相似文献   

14.
After cessation of lactation, the mammary gland undergoes involution, which is characterized by a massive epithelial cell death and proteolytic degradation of the extracellular matrix. Whereas the expression patterns and also the function of TGF-beta isoforms during mammary gland branching morphogenesis and lactation are well understood, their expression during postlactational involution and therefore a possible role in this process is poorly known. In this study we show that TGF-beta3 expression is dramatically induced (>fivefold) during mouse mammary gland involution when compared to that of virgin mouse, reaching a maximal expression level at day 4 after weaning. In contrast, other TGF-beta isoforms do not display significant increase in expression during involution (TGF-beta1, 1.3-fold and TGF-beta2, <1.5-fold) when compared to that of virgin or lactating mice. During mammary gland involution, TGF-beta3 is expressed in the epithelial layer and particularly in myoepithelial cells. A comparison of the kinetics of TGF-beta3 expression to that of programmed cell death and degradation of the basement membrane suggests that TGF-beta3 functions in the remodeling events of the extracellular matrix during the second stage of involution.  相似文献   

15.
16.
The migratory behaviour of malignant gliomas relies on the interaction of integrins with extracellular matrix (ECM) components. Transforming growth factor-beta(1) (TGF-beta(1)) potently stimulates glioma cell motility whereas TGF-beta(2) is known for its immunosuppressive properties. Here, we show that both TGF-beta(1) and TGF-beta(2) promote migration of glioma cells. In parallel, TGF-beta(1) and TGF-beta(2) induce alpha(V) and beta(3) intergrin mRNA expression and enhance cell surface expression of alpha(V)beta(3) integrin. TGF-beta-mediated promotion of migration is abrogated by echistatin, a Arg-Gly-Asp (RGD) peptide antagonist of alpha(V)beta(3) integrin, and by a neutralizing anti-alpha(V)beta(3) integrin antibody. Taken together, we report a novel mechanism by which TGF-beta modulates cell ECM interactions and promotes glioma cell motility.  相似文献   

17.
Transforming growth factor beta type 1 (TGF-beta 1) was reacted with NHS-biotin to yield a derivative of TGF-beta 1 which was biotinylated on lysine residues. The biotinylated form of TGF-beta 1 was separated from the unreacted material by reverse phase chromatography. In three separate bioassays, the derivatized peptide was as active as the starting material. The use of FITC-avidin in conjunction with flow cytometry demonstrated that the binding of biotinylated TGF-beta 1 to its receptor is saturable, competable, and specific. A 100-fold molar excess of underivatized TGF-beta 1 gave 85% inhibition of binding of the biotinylated peptide to the mink lung cell line CCL-64, while TGF-beta 2 showed no inhibition of binding, nor did insulin, calcitonin, or TGF-alpha. Both CCL-64 cells and human umbilical vein endothelial cells showed a density-dependent down-regulation of receptor expression in culture. Several factors were examined that might mediate this effect. The down-regulation was shown not to be due to the secretion of an active form of TGF-beta 1. The extracellular matrix from high-density cells did not decrease expression of the receptor. Fibronectin, collagen, and gelatin were also unable to signal changes in receptor expression, even though in other systems such matrix components can regulate the responsiveness of cells to TGF-beta 1. Lastly, staining simultaneously for DNA content and TGF-beta 1 receptor expression showed that there was no correlation between cell cycle and receptor levels.  相似文献   

18.
In mouse embryonic fibroblasts (MEF) lacking dioxin receptor (AhR), high levels of latent transforming growth factor-beta (TGF-beta)-binding protein-1 (LTBP-1) correlated with increased TGF-beta1 activity, an observation suggesting that LTBP-1 could contribute to maintain TGF-beta1 levels. Here, using small interfering RNAs (siRNA), we have first analyzed if LTBP-1 expression affected TGF-beta1 activity in MEF cells. We have then determined how LTBP-1 levels could alter the activity of extracellular proteases known to activate TGF-beta1, and finally, whether protease inhibition could reduce TGF-beta1 activation. LTBP-1 inhibition by siRNA in AhR-/- MEF decreased the amount of active TGF-beta1 and reduced plasminogen activators (PA)/plasmin and elastase activities and thrombospondin-1 (TSP-1) expression, without significantly affecting their mRNA levels. On the contrary, LTBP-1 siRNA restored matrix metalloproteinase-2 (MMP-2) activity in AhR-/- MEF. Interestingly, whereas a TGF-beta1 neutralizing antibody mimicked many of the LTBP-1 siRNA effects on extracellular proteases, addition of recombinant TGF-beta1 protein increased proteases activity over basal levels in AhR-/- MEF. These proteases contributed to TGF-beta activation since their specific inhibitors reduced active TGF-beta levels in these cells. These results suggest that LTBP-1 contributes to TGF-beta1 activation in MEF, possibly by influencing the activities of PA/plasmin, elastase, TSP-1, and MMP-2. TGF-beta1, on the other hand, could be also involved in maintaining the activity of these extracellular proteases. Thus, LTBP-1 appears to play a role in TGF-beta1 activation through a process involving extracellular protease activities, which, in turn, could be affected by TGF-beta1 levels.  相似文献   

19.
20.
Transforming growth factor-betas (TGF-betas) have been shown to enhance the expression of extracellular matrix genes, including several collagens. In this study, the effects of TGF-beta 1 and TGF-beta 2 on the expression of the gene for type VII collagen, the major component of anchoring fibrils, in human epidermal cell cultures were examined. Incubation of human epidermal keratinocytes or oral epidermoid carcinoma KB cells with TGF-beta 1 or TGF-beta 2 markedly (up to 6.3-fold) elevated the alpha 1(VII) collagen mRNA levels. This elevation was accompanied by enhanced synthesis of type VII collagen, as demonstrated by indirect immunofluorescence with a monoclonal antibody. The results indicate that TGF-beta 1 and TGF-beta 2 have similar biological activities with respect to enhanced type VII collagen gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号