首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo evolutive aspects of muscular dysgenesis were studied in normal and crooked neck dwarf (cn/cn) 7.5- to 20-day chick embryos. Wing, leg and breast muscles were processed for electron microscopy. It appears that the effects of the gene cn are expressed in the multinucleated cells as fine structural aberrations. Dilatation of the sarcotubular system, partial loss of the contractile elements and malorganization of the myofibrils are the major anomalies observed from day 7.5 to 18 of incubation. These changes do not constitute an abrupt phenomenon. Normal and diseased multinucleated cells always coexist in the same muscle specimen; however the frequency of the pathological cells augments with time. At the end of the incubation period, the poorly organized muscle tissue contains only morbid muscle cells. Phagocytosis or autolysis are absent.  相似文献   

2.
The achondroplastic mouse is a spontaneous mutant characterized by disproportionate dwarfism with short limbs and tail due to disturbed chondrogenesis during endochondral ossification. These abnormal phenotypes are controlled by an autosomal recessive gene (cn). In this study, linkage analysis using 115 affected mice of F2 progeny mapped the cn locus on an approximately 0.8-cM region of chromosome 4, and natriuretic peptide receptor 2 (Npr2) gene was identified as the most potent candidate for the cn mutant in this region. This gene encodes a receptor for C-type natriuretic peptide (CNP) that positively regulates longitudinal bone growth by producing cGMP in response to CNP binding to the extracellular domain. Sequence analyses of the Npr2 gene in cn/cn mice revealed a T to G transversion leading to the amino acid substitution of highly conserved Leu with Arg in the guanylyl cyclase domain. In cultured chondrocytes of cn/cn mice, stimulus with CNP did not significantly increase intracellular cGMP concentration, whereas it increased in +/+ mice. Transfection of the mutant Npr2 gene into COS-7 cells also showed similar results, indicating that the missense mutation of the Npr2 gene in cn/cn mice resulted in disruption of the guanylyl cyclase activity of the receptor. We therefore concluded that the dwarf phenotype of cn/cn mouse is caused by a loss-of-function mutation of the Npr2 gene, and cn/cn mouse will be a useful model to further study the molecular mechanism regulating endochondral ossification by CNP/natriuretic peptide receptor B signal.  相似文献   

3.
Complex study of adaptation and allozyme belonging of alcoholdehydrogenase (ADH) in cn and vg mutants has been carried out in the initial pure lines, in their panmixia populations and in condition of substitution of the mutant genotype by saturating crossings. It was shown that the high level of adaptation of cn mutants and the low level of adaptation of vg mutants was combined with the presence of different ADH allozymes. During the saturating crossings the reliable coadaptation of the genes cn and Adh(S) as well as vg and Adh(F) was detected that confirmes the postulated earlier conception of gene adaptation complexes.  相似文献   

4.
The immunofluorescent distribution of types I and III collagen, fibronectin, and laminin during muscle morphogenesis of the crooked neck dwarf mutant chick embryo differs from that of the normal chick. The drastic difference is related to the inability of the mutant embryo to maintain a harmonious muscle pattern. The first sign of the defect is the disaggregation of type I collagen fibers of the tendons and the disorganization of the intermuscular spaces. The organization of the connective tissue never proceeds beyond the appearance of an epimysial envelope, rich in types I and III collagen, which becomes disorganized shortly after. No perimysial envelopes displaying types I and III collagen fibers and fibronectin, nor endomysial sheaths develop. Only large spaces filled with types I and III collagen fibers subdivide groups of muscle cells irregularly. On the whole, type III collagen is less abundant than type I collagen. Fibronectin disappears from the periphery of the muscle cell. Laminin is more thickly deposited in the basal lamina around irregularly sized muscle cells than around the normal muscle cell. The results are discussed in terms of morphogenetic interactions between connective tissue cells and muscle cells, and in terms of fibrosis, which characterizes some muscle diseases.  相似文献   

5.
Previous analyses of experimental chick embryos of normal lineage demonstrate the inability of brachial muscles to sustain a successful union with foreign nerves derived from a thoracic neural tube segment transplanted to the brachial region at day 2 in ovo (day 2E). The present experiments were performed to determine if mutant chick embryos afflicted with hereditary muscular dystrophy would respond similarly to this experimental manipulation. Using the same criteria applied to our analysis of experimental normal embryos, our results demonstrated that dystrophic brachial muscles were capable of maintaining a compatible union with foreign thoracic nerves throughout the experimental period analysed. Significant muscle growth occurred, intramuscular nerve branches were maintained, motor endplates formed and wing motility was equivalent to that of unoperated dystrophic embryos. Thus, foreign nerves rejected by normal brachial muscles were accepted by brachial muscles of the mutant dystrophic embryo.  相似文献   

6.
A method has been developed for the isolation of temperature-dependent paralytic mutants of the nematode Caenorhabditis elegans, based on a screening procedure using short-time exposure to 30 degrees C. Of ten mutants isolated, eight lose their motilities between 30 degrees C and 33 degrees C without prominent changes in body forms. The other two strains that are mainly described in this report are accompanied by alterations in body forms. One mutation, cn101, is recessive and an allele of cha-1. The cn101 mutant shows reversible paralysis at 30 degrees, accompanied by a hypercontracted and coiled body form. At the restrictive temperature, the strain is resistant to all tested inhibitors of acetylcholinesterase (AChE). Another mutation, designated mah-2 (cn110), is a sex-linked semidominant that is mapped as 0.6 map units left of dpy-6. The cn110 mutant is rapidly paralyzed at the restrictive temperature and has a straight and rigid body form; the mutant rapidly recovers when the temperature is lowered. No disorganization of the muscle structure was detected by polarized light and electron microscopic inspection.  相似文献   

7.
Quantitative analyses of next-generation sequencing (NGS) data, such as the detection of copy number variations (CNVs), remain challenging. Current methods detect CNVs as changes in the depth of coverage along chromosomes. Technological or genomic variations in the depth of coverage thus lead to a high false discovery rate (FDR), even upon correction for GC content. In the context of association studies between CNVs and disease, a high FDR means many false CNVs, thereby decreasing the discovery power of the study after correction for multiple testing. We propose 'Copy Number estimation by a Mixture Of PoissonS' (cn.MOPS), a data processing pipeline for CNV detection in NGS data. In contrast to previous approaches, cn.MOPS incorporates modeling of depths of coverage across samples at each genomic position. Therefore, cn.MOPS is not affected by read count variations along chromosomes. Using a Bayesian approach, cn.MOPS decomposes variations in the depth of coverage across samples into integer copy numbers and noise by means of its mixture components and Poisson distributions, respectively. The noise estimate allows for reducing the FDR by filtering out detections having high noise that are likely to be false detections. We compared cn.MOPS with the five most popular methods for CNV detection in NGS data using four benchmark datasets: (i) simulated data, (ii) NGS data from a male HapMap individual with implanted CNVs from the X chromosome, (iii) data from HapMap individuals with known CNVs, (iv) high coverage data from the 1000 Genomes Project. cn.MOPS outperformed its five competitors in terms of precision (1-FDR) and recall for both gains and losses in all benchmark data sets. The software cn.MOPS is publicly available as an R package at http://www.bioinf.jku.at/software/cnmops/ and at Bioconductor.  相似文献   

8.
果蝇心脏位于身体背部,是一个体节性重复的线性管状结构。在hedgehog(hh)基因的信号诱导下,seven-up(svp)基因调控果蝇的心脏发育,在每个体节的两个心肌细胞和两个副心肌细胞中表达。结果表明,在svp纯合突变体中,报告基因lacZ在心肌细胞中的表达图式正常,但在副心肌细胞中的表达图型明显异常,而且部分EPC细胞生长尺寸增加。某些体节的DA1肌肉祖细胞缺失,晚期突变体胚胎体壁肌肉细胞也呈现异常,表明基因svp的活性对果蝇副心肌细胞、DA1肌肉祖细胞和体壁肌肉细胞的分化是必须的,并且可能与EPC副心肌细胞的尺寸生长有关。  相似文献   

9.
The adrenergic innervation in the smooth muscle of the cauda epididymidis of the mouse was investigated by a fluorescence technique using glyoxylic acid and by electron microscopy. As in other species, this innervation is well developed in the terminal segment of the epididymis. It varies according to muscular type: the small myocytes of the proximal zone of the tail have a visceral contractile innervation, while for the typical muscle of the distal region, the pattern is a multiple-unit one. In the mouse, the nexus are more numerous than in man and in the monkey, and constitute a facilitating factor.  相似文献   

10.
11.
Congenital muscular dystrophy (CMD) is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A) is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2). Laminin-α2 is an extracellular matrix protein that interacts with the dystrophin-dystroglycan (DGC) complex in membranes providing stability to muscle fibers. In an N-ethyl-N-nitrosourea mutagenesis screen to develop zebrafish models of neuromuscular diseases, we identified a mutant fish that exhibits severe muscular dystrophy early in development. Genetic mapping identified a splice site mutation in the lama2 gene. This splice site is highly conserved in humans and this mutation results in mis-splicing of RNA and a loss of protein function. Homozygous lama2 mutant zebrafish, designated lama2(cl501/cl501), exhibited reduced motor function and progressive degeneration of skeletal muscles and died at 8-15 days post fertilization. The skeletal muscles exhibited damaged myosepta and detachment of myofibers in the affected fish. Laminin-α2 deficiency also resulted in growth defects in the brain and eye of the mutant fish. This laminin-α2 deficient mutant fish represents a novel disease model to develop therapies for modulating splicing defects in congenital muscular dystrophies and to restore the muscle function in human patients with CMD.  相似文献   

12.
Cost-effective oligonucleotide genotyping arrays like the Affymetrix SNP 6.0 are still the predominant technique to measure DNA copy number variations (CNVs). However, CNV detection methods for microarrays overestimate both the number and the size of CNV regions and, consequently, suffer from a high false discovery rate (FDR). A high FDR means that many CNVs are wrongly detected and therefore not associated with a disease in a clinical study, though correction for multiple testing takes them into account and thereby decreases the study's discovery power. For controlling the FDR, we propose a probabilistic latent variable model, 'cn.FARMS', which is optimized by a Bayesian maximum a posteriori approach. cn.FARMS controls the FDR through the information gain of the posterior over the prior. The prior represents the null hypothesis of copy number 2 for all samples from which the posterior can only deviate by strong and consistent signals in the data. On HapMap data, cn.FARMS clearly outperformed the two most prevalent methods with respect to sensitivity and FDR. The software cn.FARMS is publicly available as a R package at http://www.bioinf.jku.at/software/cnfarms/cnfarms.html.  相似文献   

13.
Skeletal muscle is maintained and repaired by resident stem cells called muscle satellite cells, but there is a gradual failure of this process during the progressive skeletal muscle weakness and wasting that characterises muscular dystrophies. The pathogenic mutation causes muscle wasting, but in conditions including Duchenne muscular dystrophy, the mutant gene is not expressed in satellite cells, and so muscle maintenance/repair is not directly affected. The chronic muscle wasting, however, produces an increasingly hostile micro-environment in dystrophic muscle. This probably combines with excessive satellite cell use to eventually culminate in an indirect failure of satellite cell-mediated myofibre repair. By contrast, in disorders such as Emery-Dreifuss muscular dystrophy, the pathogenic mutation not only instigates muscle wasting, but could also directly compromise satellite cell function, leading to less effective muscle homeostasis. This may again combine with excessive use and a hostile environment to further compromise satellite cell performance. Whichever the mechanism, the ultimate consequence of perturbed satellite cell activity is a chronic failure of myofibre maintenance in dystrophic muscle. Here, we review whether the pathogenic mutation can directly contribute to satellite cell dysfunction in a number of muscular dystrophies.  相似文献   

14.
The skeletal muscle-specific dihydropyridine-sensitive calcium channel is a critical component of excitation-contraction coupling in skeletal muscle. A recessive mutation in mice, muscular dysgenesis (mdg), has previously been described as resulting in defective excitation-contraction coupling. Although the channel-forming subunit (alpha 1) of the skeletal calcium channel is not detectable immunologically, specific mRNA of normal size is present in dysgenic muscle. cDNA for this calcium channel alpha 1 subunit has now been cloned from dysgenic muscle and sequenced in its entirety. A single nucleotide deletion occurs at nucleotide 4010 of the cDNA, resulting in a shift of the translational reading frame. The mutation has been confirmed by direct sequencing of PCR products from homozygous mutant and normal muscle. The mutant polypeptide is predicted to contain the first three repeating domains, five of the normal six transmembrane helices of the last repeating domain, and an altered and truncated C terminus. The mature mRNA encoding the dysgenic alpha 1 subunit appears to be labile. It is possible that premature termination of translation renders the mutant mRNA subject to degradation by nucleases. This work resolves a long-standing controversy on the nature of the primary genetic defect in muscular dysgenesis.  相似文献   

15.
Summary Muscular dysgenesis in trunk and limb regions of the crooked neck dwarf (cn/cn) fowl is characterized by a complete disorganization of the muscles, starting at 7.5 days of incubation and resulting, at the end of the incubation period, in a profound muscular atrophy. It has previously been attributed to progressively extending defects of the myotubes. In this paper, embryonic cn/cn head and neck muscles were subjected to histological and ultrastructural analysis. The mononucleated myoblasts of the skeletal muscles are not diseased. Pathology is only expressed in the multinucleated cells, mainly by impaired sarcomerogenesis and distension of the sarcoplasmic reticulum. In the non-skeletal (cardiac or smooth) muscles, the connective tissue scaffolding and the ultrastructural features are similar to those of normal muscles at the same age. The present report confirms that the cn defect is confined to the skeletal muscle cells. All of them belong to the same lineage, which is contained in the somitic mesoderm, whether the latter becomes segmented or not during embryogenesis.  相似文献   

16.
17.
Recent data indicate that placentation in Octodon degus is similar to that in humans, making it a potential animal model for studies in human placental pathologies related to alterations in the migration of the extravillous trophoblast (EVT). Our objective was to immunohistochemically identify degu EVT during placentation by using cytoskeletal protein markers to establish the normal migratory pattern of the EVT. Fifteen O.degus were divided into three equal groups: day 27, 60, and 84 of gestation. The placentas were immunostained for cytokeratin (CK) and alpha smooth muscle actin (SMA). At day 27, the migrating EVT immunostained for SMA but not for CK. Once the EVT was incorporated in the maternal vessels (day 60) it was positive for CK but negative for SMA. The smooth muscle cells of the mesometrial arteries that remained after EVT invasion were positive for SMA. At day 84, the media muscular layer had partially regenerated but some EVT was still present. Furthermore, at day 27 cyclooxygenase-1 (COX-1) was detected in the endothelium of the maternal decidual vessels. Our results suggest that during the early stages of placentation, the cytoskeletal organization of the actin network of the migrating EVT corresponds to that of a cell with motile behavior. Once the EVT invaded the spiral arteries, the cytoskeleton reorganized, adopting the structure of an epithelial-like cell, expressing CK intermediate filaments. The media muscle layer regenerated near the end of gestation but some EVT remained. During EVT formation the endothelium of the maternal decidual vessels immunostained for COX-1.  相似文献   

18.
The spinal muscular atrophies (SMAs) are a genetically and clinically heterogeneous group of disorders characterized by degeneration and loss of anterior horn cells in the spinal cord, leading to muscle weakness and atrophy. Spinal muscular atrophy with pontocerebellar hypoplasia (SMA-PCH, also known as pontocerebellar hypoplasia type 1 [PCH1]) is one of the rare infantile SMA variants that include additional clinical manifestations, and its genetic basis is unknown. We used a homozygosity mapping and positional cloning approach in a consanguineous family of Ashkenazi Jewish origin and identified a nonsense mutation in the vaccinia-related kinase 1 gene (VRK1) as a cause of SMA-PCH. VRK1, one of three members of the mammalian VRK family, is a serine/threonine kinase that phosphorylates p53 and CREB and is essential for nuclear envelope formation. Its identification as a gene involved in SMA-PCH implies new roles for the VRK proteins in neuronal development and maintenance and suggests the VRK genes as candidates for related phenotypes.  相似文献   

19.
P A Lawrence  P Johnston 《Cell》1986,45(4):505-513
Each segment of Drosophila has a characteristic pattern of muscles. Like the segments of the cuticle and the central nervous system, the muscle pattern is ultimately dependent on the deployment of selector genes such as elements of the bithorax complex. We use nuclear transplantation to make genetic mosaics in which the donor, but not the host, is mutant for part of the bithorax complex. Making use of a muscle pattern that is found only in the male, we ask which cells have to be mutant in order to obtain mutant muscles and find that these crucial cells do not contribute to the muscles themselves. The evidence implicates neurons that innervate the muscles. Our hypothesis is that the sex and segmental identity of the motor or neurosecretory neurons determine the development of muscle pattern.  相似文献   

20.
A class of recessive lethal zebrafish mutations has been identified in which normal skeletal muscle differentiation is followed by a tissue-specific degeneration that is reminiscent of the human muscular dystrophies. Here, we show that one of these mutations, sapje, disrupts the zebrafish orthologue of the X-linked human Duchenne muscular dystrophy (DMD) gene. Mutations in this locus cause Duchenne or Becker muscular dystrophies in human patients and are thought to result in a dystrophic pathology through disconnecting the cytoskeleton from the extracellular matrix in skeletal muscle by reducing the level of dystrophin protein at the sarcolemma. This is thought to allow tearing of this membrane, which in turn leads to cell death. Surprisingly, we have found that the progressive muscle degeneration phenotype of sapje mutant zebrafish embryos is caused by the failure of embryonic muscle end attachments. Although a role for dystrophin in maintaining vertebrate myotendinous junctions (MTJs) has been postulated previously and MTJ structural abnormalities have been identified in the Dystrophin-deficient mdx mouse model, in vivo evidence of pathology based on muscle attachment failure has thus far been lacking. This zebrafish mutation may therefore provide a model for a novel pathological mechanism of Duchenne muscular dystrophy and other muscle diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号