首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced drug delivery systems that target the vascular endothelium   总被引:1,自引:0,他引:1  
Targeted drug delivery to endothelial cells lining the vascular lumen will provide effective, precise and safe therapeutic interventions for treatment of diverse disease conditions. Rational design of such drug delivery systems (DDS) includes the following intertwined tasks: 1) selection of proper target determinants on endothelial surfaces, such as cell adhesion molecules, ectopeptidases, or caveolar antigens; 2) production of affinity ligands useful for targeting, such as affinity peptides, antibodies, or their fragments; 3) selection and adopting of suitable delivery vehicles (such as liposomes or polymer nanocarriers); and 4) formulation of DDS with optimal targeting and therapeutic features. Important therapeutic features of DDS include: 1) sufficient targeting effectiveness, circulation time, and safety (i.e., lack of systemic and local adverse effects); 2) precise subcellular localization of drugs targeted to endothelial cells; and 3) adequate amplitude, kinetics, and duration of effects. This review utilizes examples of DDS-mediated interventions in vascular inflammation, oxidative stress, and thrombosis and analyzes them in an attempt to create design parameters that best regulate the pharmacological and therapeutic features of DDS that target endothelial cells.  相似文献   

2.
Vascular immunotargeting may facilitate the rapid and specific delivery of therapeutic agents to endothelial cells. We investigated whether targeting of an antioxidant enzyme, catalase, to the pulmonary endothelium alleviates oxidative stress in an in vivo model of lung transplantation. Intravenously injected enzymes, conjugated with an antibody to platelet-endothelial cell adhesion molecule-1, accumulate in the pulmonary vasculature and retain their activity during prolonged cold storage and transplantation. Immunotargeting of catalase to donor rats augments the antioxidant capacity of the pulmonary endothelium, reduces oxidative stress, ameliorates ischemia-reperfusion injury, prolongs the acceptable cold ischemia period of lung grafts, and improves the function of transplanted lung grafts. These findings validate the therapeutic potential of vascular immunotargeting as a drug delivery strategy to reduce endothelial injury. Potential applications of this strategy include improving the outcome of clinical lung transplantation and treating a wide variety of endothelial disorders.  相似文献   

3.
Targeted delivery of drugs to vascular endothelium promises more effective and specific therapies in many disease conditions, including acute lung injury (ALI). This study evaluates the therapeutic effect of drug targeting to PECAM (platelet/endothelial cell adhesion molecule-1) in vivo in the context of pulmonary oxidative stress. Endothelial injury by reactive oxygen species (e.g., H2O2) is involved in many disease conditions, including ALI/acute respiratory distress syndrome and ischemia-reperfusion. To optimize delivery of antioxidant therapeutics, we conjugated catalase with PECAM antibodies and tested properties of anti-PECAM/catalase conjugates in cell culture and mice. Anti-PECAM/catalase, but not an IgG/catalase counterpart, bound specifically to PECAM-expressing cells, augmented their H2O2-degrading capacity, and protected them against H2O2 toxicity. Anti-PECAM/catalase, but not IgG/catalase, rapidly accumulated in the lungs after intravenous injection in mice, where it was confined to the pulmonary endothelium. To test its protective effect, we employed a murine model of oxidative lung injury induced by glucose oxidase coupled with thrombomodulin antibody (anti-TM/GOX). After intravenous injection in mice, anti-TM/GOX binds to pulmonary endothelium and produces H2O2, which causes lung injury and 100% lethality within 7 h. Coinjection of anti-PECAM/catalase protected against anti-TM/GOX-induced pulmonary oxidative stress, injury, and lethality, whereas polyethylene glycol catalase or IgG/catalase conjugates afforded only marginal protective effects. This result validates vascular immunotargeting as a prospective strategy for therapeutic interventions aimed at immediate protective effects, e.g., for augmentation of antioxidant defense in the pulmonary endothelium and treatment of ALI.  相似文献   

4.
Endothelial function and coronary artery disease   总被引:20,自引:0,他引:20  
The endothelium produces a number of vasodilator and vasoconstrictor substances that not only regulate vasomotor tone, but also the recruitment and activity of inflammatory cells and the propensity towards thrombosis. Endothelial vasomotor function is a convenient way to assess these other functions, and is related to the long-term risk of cardiovascular disease. Lipids (particularly low density lipoprotein cholesterol) and oxidant stress play a major role in impairing these functions, by reducing the bioavailability of nitric oxide and activating pro-inflammatory signalling pathways such as nuclear factor kappa B. Biomechanical forces on the endothelium, including low shear stress from disturbed blood flow, also activate the endothelium increasing vasomotor dysfunction and promoting inflammation by upregulating pro-atherogenic genes. In contrast, normal laminar shear stress promotes the expression of genes that may protect against atherosclerosis. The sub-cellular structure of endothelial cells includes caveolae that play an integral part in regulating the activity of endothelial nitric oxide synthase. Low density lipoprotein cholesterol and oxidant stress impair caveolae structure and function and adversely affect endothelial function. Lipid-independent pathways of endothelial cell activation are increasingly recognized, and may provide new therapeutic targets. Endothelial vasoconstrictors, such as endothelin, antagonize endothelium-derived vasodilators and contribute to endothelial dysfunction. Some but not all studies have linked certain genetic polymorphisms of the nitric oxide synthase enzyme to vascular disease and impaired endothelial function. Such genetic heterogeneity may nonetheless offer new insights into the variability of endothelial function.  相似文献   

5.
Nanotechnologies promise new means for drug delivery. ICAM-1 is a good target for vascular immunotargeting of nanoparticles to the perturbed endothelium, although endothelial cells do not internalize monomeric anti-ICAM-1 antibodies. However, coupling ICAM-1 antibodies to nanoparticles creates multivalent ligands that enter cells via an amiloride-sensitive endocytic pathway that does not require clathrin or caveolin. Fluorescence microscopy revealed that internalized anti-ICAM nanoparticles are retained in a stable form in early endosomes for an unusually long time (1-2 h) and subsequently were degraded following slow transport to lysosomes. Inhibition of lysosome acidification by chloroquine delayed degradation without affecting anti-ICAM trafficking. Also, the microtubule disrupting agent nocodazole delayed degradation by inhibiting anti-ICAM nanoparticle trafficking to lysosomes. Addition of catalase to create anti-ICAM nanoparticles with antioxidant activity did not affect the mechanisms of nanoparticle uptake or trafficking. Intracellular anti-ICAM/catalase nanoparticles were active, because endothelial cells were resistant to H2O2-induced oxidative injury for 1-2 h after nanoparticle uptake. Chloroquine and nocodazole increased the duration of antioxidant protection by decreasing the extent of anti-ICAM/catalase degradation. Therefore, the unique trafficking pathway followed by internalized anti-ICAM nanoparticles seems well suited for targeted delivery of therapeutic enzymes to endothelial cells and may provide a basis for treatment of acute vascular oxidative stress.  相似文献   

6.
An important function of the endothelium is to regulate the transport of liquid and solutes across the semi-permeable vascular endothelial barrier. Two cellular pathways have been identified controlling endothelial barrier function. The normally restrictive paracellular pathway, which can become "leaky" during inflammation when gaps are induced between endothelial cells at the level of adherens and tight junctional complexes, and the transcellular pathway, which transports plasma proteins the size of albumin via transcytosis in vesicle carriers originating from cell surface caveolae. During non-inflammatory conditions, caveolae-mediated transport may be the primary mechanism of vascular permeability regulation of fluid phase molecules as well as lipids, hormones, and peptides that bind avidly to albumin. Src family protein tyrosine kinases have been implicated in the upstream signaling pathways that lead to endothelial hyperpermeability through both the paracellular and transcellular pathways. Endothelial barrier dysfunction not only affects vascular homeostasis and cell metabolism, but also governs drug delivery to underlying cells and tissues. In this review of the field, we discuss the current understanding of Src signaling in regulating paracellular and transcellular endothelial permeability pathways and effects on endogenous macromolecule and drug delivery.  相似文献   

7.
Vascular endothelium the inside layer of the cardiovascular system is presently looked upon as an important paracrine, autocrine and endocrine organ that determines the health of the cardiovascular system. In fact, healthy endothelium is essential for homeostasis of cardiovascular system, while endothelial dyfunction leads to cardiovascular diseases including atherosclerosis, diabetes and heart failure. Endothelial dysfunction is tightly linked to the overproduction of reactive oxygen species, development of oxidant stress and inflammatory response of endothelium. Mitochondria of the vascular endothelium seem to be an important player in these processes. In contrast to numerous cell types, synthesis of ATP in endothelium occurs in major part via a glycolytic pathway and endothelium seem to be relatively independent of the mitochondrial pathway of energy supply. However, as evident from recent studies, mitochondrial pathways of free radicals production tighly linked to mitochondrial and cytosol changes in the ion homeostasis play an important role in the regulation of endothelial inflammatory response, in the development of oxidative stress and apoptosis of vascular endothelium. Therefore, endothelial mitochondria appears critical in the regulation of endothelial functions and represent a novel target in pharmacology of endothelial dysfunction in cardiovascular diseases.  相似文献   

8.
PURPOSE OF REVIEW: Endothelial dysfunction plays a crucial role in the pathogenesis of atherosclerosis and related cardiovascular diseases. Glucotoxicity, lipotoxicity, and inflammation all independently contribute to development of both endothelial dysfunction and insulin resistance. We review pathophysiological mechanisms underlying reciprocal relationships between endothelial dysfunction and insulin resistance and recent insights from therapeutic interventions to improve both metabolic and vascular function. RECENT FINDINGS: Shared causal factors such as glucotoxicity, lipotoxicity, and inflammation interact at multiple levels creating reciprocal relationships between insulin resistance and endothelial dysfunction that help to explain frequent clustering of metabolic and cardiovascular disorders. Metabolic abnormalities implicated in the development of insulin resistance, including hyperglycemia, elevated levels of free fatty acids, accumulation of advanced glycation end products, dyslipidemias, and decreased levels of adiponectin, also contribute importantly to endothelial dysfunction. Diet, exercise, cardiovascular drugs, and insulin sensitizers simultaneously improve endothelium-dependent vascular function, reduce inflammation, and improve insulin sensitivity by both distinct and interrelated mechanisms. SUMMARY: Pathophysiological mechanisms underlying reciprocal relationships between endothelial dysfunction and insulin resistance contribute to clustering of metabolic and cardiovascular diseases represented by the metabolic syndrome. Therapeutic interventions that target endothelial dysfunction or insulin resistance often simultaneously improve both metabolic and vascular function.  相似文献   

9.
The first-generation platforms for vascular drug delivery adopted spherical morphologies. These carriers relied primarily on the size dependence of the enhanced permeability and retention effect to passively target vasculature, resulting in inefficient delivery due to significant variation in endothelial permeability. Enhanced delivery typically requires active targeting via receptor-mediated endocytosis by surface conjugation of targeting ligands. However, vascular carriers (VCs) still face numerous challenges en route to reaching their targets before delivery. The control of carrier shape offers opportunities to overcome in vivo barriers and enhance vascular drug delivery. Geometric features influence the ability of carrier particles to navigate physiological flow patterns, evade biological clearance mechanisms, sustain circulation, adhere to the vascular surface, and finally transport across or internalize into the endothelium. Although previous formulation strategies limited the fabrication of nonspherical carriers, numerous recent advances in both top-down and bottom-up fabrication techniques have enabled shape modulation as a key design element. As part of a series on vascular drug delivery, this review focuses on recent developments in novel vascular platforms with controlled geometry that enhance or modulate delivery functions. Starting with an overview of controlled geometry platforms, we review their shape-dependent functional characteristics for each stage of their vascular journey in vivo. We sequentially explore carrier geometries that evade reticuloendothelial system uptake, display enhanced circulation persistence and margination dynamics in flow, encourage adhesion to the vascular surface or extravasation through endothelium, and impact extravascular transport and cell internalization. The eventual biodistribution of VCs results from the culmination of their successive navigation of all these barriers and is profoundly influenced by their morphology. To enhance delivery efficacy, carrier designs synergistically combining controlled geometry with standard drug delivery strategies such as targeting moieties, surface decorations, and bulk material properties are discussed. Finally, we speculate on possibilities for innovation, harnessing shape as a design parameter for the next generation of vascular drug delivery platforms.  相似文献   

10.
The microcirculation is a complex and integrated system, transporting oxygen and nutrients to the cells. The key component of this system is the endothelium, contributing to the local balance between pro and anti-inflammatory mediators, hemostatic balance, as well as vascular permeability and cell proliferation. A constant shear stress maintains vascular endothelium homeostasis while perturbed shear stress leads to changes in secretion of vasodilator and vasoconstrictor agents. Increased oxidative stress is a major pathogenetic mechanism of endothelial dysfunction by decreasing NO bioavailability, promoting inflammation and participating in activation of intracellular signals cascade, so influencing ion channels activation, signal transduction pathways, cytoskeleton remodelling, intercellular communication and ultimately gene expression. Targeting the microvascular inflammation and oxidative stress is a fascinating approach for novel therapies in order to decrease morbidity and mortality of chronic and acute diseases.  相似文献   

11.
纳米技术应用于药物载体的研究一直是近年生物医学所关注的热点。纳米药物载体在实现靶向性给药、缓释药物、提高难溶性药物与多肽药物的生物利用度、降低药物的毒副作用等方面表现出明显的优势。本文就近些年常见的纳米载药体的种类及其特性、常用制备方法、靶向治疗方面的研究进行综述,并对未来发展前景进行展望。  相似文献   

12.
Vascular oxidative stress, endothelial injury, and thrombosis are intertwined processes that display a synergistic pathological effect in many cardiovascular diseases. Antithrombotic therapy with anticoagulant and/or antiplatelet agents, combined with interventions against vascular oxidative stress and/or inflammation, both boosting endothelial antithrombotic potential, could display a synergistic action in the treatment of thrombosis. Of the compounds 10a-h and 11a-d, shown to possess thrombin inhibitory activity, 11a-d were found to display radical scavenging activity, 10a, 10d, and 10f were demonstrated to inhibit lipid peroxidation of linoleic acid, and 10b and 10h inhibited soybean lipoxygenase. The observed combination of thrombin inhibition with lipid peroxidation and/or lipoxygenase inhibitory activity makes compounds 10 and 11 interesting candidates for further investigations towards multiple antithrombotic drugs.  相似文献   

13.
Arming antibodies: prospects and challenges for immunoconjugates   总被引:26,自引:0,他引:26  
Wu AM  Senter PD 《Nature biotechnology》2005,23(9):1137-1146
Immunoconjugates--monoclonal antibodies (mAbs) coupled to highly toxic agents, including radioisotopes and toxic drugs (ineffective when administered systemically alone)--are becoming a significant component of anticancer treatments. By combining the exquisite targeting specificity of mAbs with the enhanced tumor-killing power of toxic effector molecules, immunoconjugates permit sensitive discrimination between target and normal tissue, resulting in fewer toxic side effects than most conventional chemotherapeutic drugs. Two radioimmunoconjugates, ibritumomab tiuxetan (Zevalin) and tositumomab-131I (Bexxar), and one drug conjugate, gemtuzumab ozogamicin (Mylotarg), are now on the market. For the next generation of immunoconjugates, advances in protein engineering will permit greater control of mAb targeting, clearance and pharmacokinetics, resulting in significantly improved delivery to tumors of radioisotopes and potent anticancer drugs. Pre-targeting strategies, which separate the two functions of antibody-based localization and delivery or generation of the toxic agent into two steps, also promise to afford superior tumor targeting and therapeutic efficacy. Several challenges in optimizing immunoconjugates remain, however, including poor intratumoral mAb uptake, normal tissue conjugate exposure and issues surrounding drug potency and conditional release from mAb carriers. Nonetheless, highly promising results from preclinical models will continue to drive the clinical development of this therapeutic class.  相似文献   

14.
Systemic inhibition of the mammalian target of rapamycin (mTOR) delays aging and many age-related conditions including arterial and metabolic dysfunction. However, the mechanisms and tissues involved in these beneficial effects remain largely unknown. Here, we demonstrate that activation of S6K, a downstream target of mTOR, is increased in arteries with advancing age, and that this occurs preferentially in the endothelium compared with the vascular smooth muscle. Induced endothelial cell-specific deletion of mTOR reduced protein expression by 60–70%. Although this did not significantly alter arterial and metabolic function in young mice, endothelial mTOR reduction reversed arterial stiffening and improved endothelium-dependent dilation (EDD) in old mice, indicating an improvement in age-related arterial dysfunction. Improvement in arterial function in old mice was concomitant with reductions in arterial cellular senescence, inflammation, and oxidative stress. The reduction in endothelial mTOR also improved glucose tolerance in old mice, and this was associated with attenuated hepatic gluconeogenesis and improved lipid tolerance, but was independent of alterations in peripheral insulin sensitivity, pancreatic beta cell function, or fasted plasma lipids in old mice. Lastly, we found that endothelial mTOR reduction suppressed gene expression of senescence and inflammatory markers in endothelial-rich (i.e., lung) and metabolically active organs (i.e., liver and adipose tissue), which may have contributed to the improvement in metabolic function in old mice. This is the first evidence demonstrating that reducing endothelial mTOR in old age improves arterial and metabolic function. These findings have implications for future drug development.  相似文献   

15.
Catechins are dietary polyphenolic compounds associated with a wide variety of beneficial health effects in vitro, in vivo and clinically. These therapeutic properties have long been attributed to the catechins' antioxidant and free radical scavenging effects. Emerging evidence has shown that catechins and their metabolites have many additional mechanisms of action by affecting numerous sites, potentiating endogenous antioxidants and eliciting dual actions during oxidative stress, ischemia and inflammation. Catechins have proven to modulate apoptosis at various points in the sequence, including altering expression of anti- and proapoptotic genes. Their anti-inflammatory effects are activated through a variety of different mechanisms, including modulation of nitric oxide synthase isoforms. Catechins' actions of attenuating oxidative stress and the inflammatory response may, in part, account for their confirmed neuroprotective capabilities following cerebral ischemia. The versatility of the mechanisms of action of catechins increases their therapeutic potential as interventions for numerous clinical disorders. However, more epidemiological and clinical studies need to be undertaken for their efficacy to be fully elucidated.  相似文献   

16.
The development of liposomes targeted to angiogenic endothelial cells offers exciting prospects for intervention in cancer and inflammation. Several proteins are (strongly) over-expressed on angiogenic endothelial cells as compared to the quiescent endothelium, and could potentially serve as targets for site-specific drug delivery. In this contribution particular attention is given to the design of targeted long-circulating liposomes directed against the alpha v beta 3-integrin protein.  相似文献   

17.
One of the most important pathological consequences of renal ischemia/reperfusion (I/R) is kidney malfunctioning. I/R leads to oxidative stress, which affects not only nephron cells but also cells of the vascular wall, especially endothelium, resulting in its damage. Assessment of endothelial damage, its role in pathological changes in organ functioning, and approaches to normalization of endothelial and renal functions are vital problems that need to be resolved. The goal of this study was to examine functional and morphological impairments occurring in the endothelium of renal vessels after I/R and to explore the possibility of alleviation of the severity of these changes using mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decylrhodamine 19 (SkQR1). Here we demonstrate that 40-min ischemia with 10-min reperfusion results in a profound change in the structure of endothelial cells mitochondria, accompanied by vasoconstriction of renal blood vessels, reduced renal blood flow, and increased number of endothelial cells circulating in the blood. Permeability of the kidney vascular wall increased 48 h after I/R. Injection of SkQR1 improves recovery of renal blood flow and reduces vascular resistance of the kidney in the first minutes of reperfusion; it also reduces the severity of renal insufficiency and normalizes permeability of renal endothelium 48 h after I/R. In in vitro experiments, SkQR1 provided protection of endothelial cells from death provoked by oxygen–glucose deprivation. On the other hand, an inhibitor of NO-synthases, L-nitroarginine, abolished the positive effects of SkQR1 on hemodynamics and protection from renal failure. Thus, dysfunction and death of endothelial cells play an important role in the development of reperfusion injury of renal tissues. Our results indicate that the major pathogenic factors in the endothelial damage are oxidative stress and mitochondrial damage within endothelial cells, while mitochondria-targeted antioxidants could be an effective tool for the protection of tissue from negative effects of ischemia.  相似文献   

18.
血管内皮损伤是糖尿病血管并发症的起始环节,涉及多种机制,氧化应激被认为其中关键的环节,但补充外源性抗氧化剂的治疗目前仍存在争议。内质网及线粒体是参与细胞内活性氧生成的关键细胞器,探讨内质网应激、线粒体功能障碍及氧化应激之间的相互关系可能对于阐明糖尿病相关血管内皮功能障碍的发病机制有重要的意义。本文综述了近年关于内质网及线粒体功能障碍在糖尿病相关血管并发症中的研究进展并分析了二者的相互作用在氧化应激中的重要作用。  相似文献   

19.
Age related macular degeneration (AMD) is a progressive, neurodegenerative disorder that leads to the severe loss of central vision in elderlies. The health of retinal pigment epithelial (RPE) cells is critical for the onset of AMD. Chronic oxidative stress along with loss of lysosomal activity is a major cause for RPE cell death during AMD. Hence, development of a molecule for targeted lysosomal delivery of therapeutic protein/drugs in RPE cells is important to prevent RPE cell death during AMD. Using human RPE cell line (ARPE-19 cells) as a study model, we confirmed that hydrogen peroxide (H2O2) induced oxidative stress results in CD44 cell surface receptor overexpression in RPE cells; hence, an important target for specific delivery to RPE cells during oxidative stress. We also demonstrate that the known nucleic acid CD44 aptamer - conjugated with a fluorescent probe (FITC) - is delivered into the lysosomes of CD44 expressing ARPE-19 cells. Hence, as a proof of concept, we demonstrate that CD44 aptamer may be used for lysosomal delivery of cargo to RPE cells under oxidative stress, similar to AMD condition. Since oxidative stress may induce wet and dry AMD, both, along with proliferative vitreoretinopathy, CD44 aptamer may be applicable as a carrier for targeted lysosomal delivery of therapeutic cargoes in ocular diseases showing oxidative stress in RPE cells.  相似文献   

20.
不仅是"益母"草:益母草的心脏保护作用   总被引:1,自引:0,他引:1  
Liu XH  Xin H  Zhu YZ 《生理学报》2007,59(5):578-584
益母草作为一种传统的妇科中药,近年来的研究表明其作用是多方面的。在心血管方面,益母草能改善心肌缺血、增加冠状动脉血流、提高心功能,其机制主要是在氧化应激状态下通过清除氧自由基、抑制活性氧簇生成发挥抗氧化作用。益母草心脏保护作用的另一机制是促进血管发生。临床试验也表明,益母草能抑制冠心病人的血小板聚集,起抗凝、抗血栓形成作用,从而改善血流变学参数。本文根据目前研究进展,对益母草的心脏保护作用简要综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号