首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
Cohesin is a ring‐shaped protein complex that plays a crucial role in sister chromatid cohesion and gene expression. The dynamic association of cohesin with chromatin is essential for these functions. However, the exact nature of cohesin dynamics, particularly cohesin translocation, remains unclear. We evaluated the dynamics of individual cohesin molecules on DNA and found that the cohesin core complex possesses an intrinsic ability to traverse DNA in an adenosine triphosphatase (ATPase)‐dependent manner. Translocation ability is suppressed in the presence of Wapl‐Pds5 and Sororin; this suppression is alleviated by the acetylation of cohesin and the action of mitotic kinases. In Xenopus laevis egg extracts, cohesin is translocated on unreplicated DNA in an ATPase‐ and Smc3 acetylation‐dependent manner. Cohesin movement changes from bidirectional to unidirectional when cohesin faces DNA replication; otherwise, it is incorporated into replicating DNA without being translocated or is dissociated from replicating DNA. This study provides insight into the nature of individual cohesin dynamics and the mechanisms by which cohesin achieves cohesion in different chromatin contexts.  相似文献   

3.
Sister chromatid cohesion is mediated by cohesin, but the process of cohesion establishment during S-phase is still enigmatic. In mammalian cells, cohesin binding to chromatin is dynamic in G1, but becomes stabilized during S-phase. Whether the regulation of cohesin stability is integral to the process of cohesion establishment is unknown. Here, we provide evidence that fission yeast cohesin also displays dynamic behavior. Cohesin association with G1 chromosomes requires continued activity of the cohesin loader Mis4/Ssl3, suggesting that repeated loading cycles maintain cohesin binding. Cohesin instability in G1 depends on wpl1, the fission yeast ortholog of mammalian Wapl, suggestive of a conserved mechanism that controls cohesin stability on chromosomes. wpl1 is nonessential, indicating that a change in wpl1-dependent cohesin dynamics is dispensable for cohesion establishment. Instead, we find that cohesin stability increases at the time of S-phase in a reaction that can be uncoupled from DNA replication. Hence, cohesin stabilization might be a pre-requisite for cohesion establishment rather than its consequence.  相似文献   

4.
5.
Sister chromatid separation in anaphase depends on the removal of cohesin complexes from chromosomes. In vertebrates, the bulk of cohesin is already removed from chromosome arms during prophase and prometaphase, whereas cohesin remains at centromeres until metaphase, when cohesin is cleaved by the protease separase. In unperturbed mitoses, arm cohesion nevertheless persists throughout metaphase and is principally sufficient to maintain sister chromatid cohesion. How arm cohesion is maintained until metaphase is unknown. Here we show that small amounts of cohesin can be detected in the interchromatid region of metaphase chromosome arms. If prometaphase is prolonged by treatment of cells with microtubule poisons, these cohesin complexes dissociate from chromosome arms, and arm cohesion is dissolved. If cohesin dissociation in prometaphase-arrested cells is prevented by depletion of Plk1 or inhibition of Aurora B, arm cohesion is maintained. These observations imply that, in unperturbed mitoses, small amounts of cohesin maintain arm cohesion until metaphase. When cells lacking Plk1 and Aurora B activity enter anaphase, chromatids lose cohesin. This loss is prevented by proteasome inhibitors, implying that it depends on separase activation. Separase may therefore be able to cleave cohesin at centromeres and on chromosome arms.  相似文献   

6.
The separation of sister chromatids in anaphase depends on the dissociation of cohesin from chromosomes. In vertebrates, some cohesin is removed from chromosomes at the onset of anaphase by proteolytic cleavage. In contrast, the bulk of cohesin is removed from chromosomes already in prophase and prometaphase by an unknown mechanism that does not involve cohesin cleavage. We show that Polo-like kinase is required for the cleavage-independent dissociation of cohesin from chromosomes in Xenopus. Cohesin phosphorylation depends on Polo-like kinase and reduces the ability of cohesin to bind to chromatin. These results suggest that Polo-like kinase regulates the dissociation of cohesin from chromosomes early in mitosis.  相似文献   

7.
Sister chromatid cohesion depends on cohesin [1-3]. Cohesin associates with chromatin dynamically throughout interphase [4]. During DNA replication, cohesin establishes cohesion [5], and this process coincides with the generation of a cohesin subpopulation that is more stably bound to chromatin [4]. In mitosis, cohesin is removed from chromosomes, enabling sister chromatid separation [6]. How cohesin associates with chromatin and establishes cohesion is poorly understood. By searching for proteins that are associated with chromatin-bound cohesin, we have identified sororin, a protein that was known to be required for cohesion [7]. To obtain further insight into sororin's function, we have addressed when during the cell cycle sororin is required for cohesion. We show that sororin is dispensable for the association of cohesin with chromatin but that sororin is essential for proper cohesion during G2 phase. Like cohesin, sororin is also needed for efficient repair of DNA double-strand breaks in G2. Finally, sororin is required for the presence of normal amounts of the stably chromatin-bound cohesin population in G2. Our data indicate that sororin interacts with chromatin-bound cohesin and functions during the establishment or maintenance of cohesion in S or G2 phase, respectively.  相似文献   

8.
The cohesin multiprotein complex containing SMC1, SMC3, Scc3 (SA), and Scc1 (Rad21) is required for sister chromatid cohesion in eukaryotes. Although metazoan cohesin associates with chromosomes and was shown to function in the establishment of sister chromatid cohesion during interphase, the majority of cohesin was found to be off chromosomes and reside in the cytoplasm in metaphase. Despite its dissociation from chromosomes, however, microinjection of an antibody against human SMC1 led to disorganization of the metaphase plate and cell cycle arrest, indicating that human cohesin still plays an important role in metaphase. To address the mitotic function of human cohesin, the subcellular localization of cohesin components was reexamined in human cells. Interestingly, we found that cohesin localizes to the spindle poles during mitosis and interacts with NuMA, a spindle pole-associated factor required for mitotic spindle organization. The interaction with NuMA persists during interphase. Similar to NuMA, a significant amount of cohesin was found to associate with the nuclear matrix. Furthermore, in the absence of cohesin, mitotic spindle asters failed to form in vitro. Our results raise the intriguing possibility that in addition to its well demonstrated function in sister chromatid cohesion, cohesin may be involved in spindle assembly during mitosis.  相似文献   

9.
Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci. Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis.  相似文献   

10.
张雨  方玉达 《遗传》2020,(1):57-72
Cohesin是一类在真核生物进化过程中保守的蛋白复合体,由4个重要亚基相互作用形成环状结构,在细胞分裂过程中参与维持染色体的有序排布。在动物中研究发现cohesin还可以作为分子间的连结器介导绝缘子/增强子–启动子间长距离交互,导致基因表达增强或者抑制,但在植物中关于cohesin在调控基因表达和维持染色体构象方面的研究却相对滞后。本文介绍了cohesin的结构特点和主要组成亚基,对调控cohesin在染色质上动态变化的相关因子进行了总结,并结合近年来植物中cohesin的功能研究和动物中cohesin在三维基因组及转录调控中的重要作用,展望了植物中cohesin在转录调控中的潜在功能。  相似文献   

11.
12.
Wapl controls the dynamic association of cohesin with chromatin   总被引:18,自引:0,他引:18  
Cohesin establishes sister-chromatid cohesion from S phase until mitosis or meiosis. To allow chromosome segregation, cohesion has to be dissolved. In vertebrate cells, this process is mediated in part by the protease separase, which destroys a small amount of cohesin, but most cohesin is removed from chromosomes without proteolysis. How this is achieved is poorly understood. Here, we show that the interaction between cohesin and chromatin is controlled by Wapl, a protein implicated in heterochromatin formation and tumorigenesis. Wapl is associated with cohesin throughout the cell cycle, and its depletion blocks cohesin dissociation from chromosomes during the early stages of mitosis and prevents the resolution of sister chromatids until anaphase, which occurs after a delay. Wapl depletion also increases the residence time of cohesin on chromatin in interphase. Our data indicate that Wapl is required to unlock cohesin from a particular state in which it is stably bound to chromatin.  相似文献   

13.
Cohesin is an essential protein complex required for sister chromatid cohesion. Cohesin associates with chromosomes and establishes sister chromatid cohesion during interphase. During metaphase, a small amount of cohesin remains at the chromosome-pairing domain, mainly at the centromeres, whereas the majority of cohesin resides in the cytoplasm, where its functions remain unclear. We describe the mitosis-specific recruitment of cohesin to the spindle poles through its association with centrosomes and interaction with nuclear mitotic apparatus protein (NuMA). Overexpression of NuMA enhances cohesin accumulation at spindle poles. Although transient cohesin depletion does not lead to visible impairment of normal spindle formation, recovery from nocodazole-induced spindle disruption was significantly impaired. Importantly, selective blocking of cohesin localization to centromeres, which disrupts centromeric sister chromatid cohesion, had no effect on this spindle reassembly process, clearly separating the roles of cohesin at kinetochores and spindle poles. In vitro, chromosome-independent spindle assembly using mitotic extracts was compromised by cohesin depletion, and it was rescued by addition of cohesin that was isolated from mitotic, but not S phase, cells. The combined results identify a novel spindle-associated role for human cohesin during mitosis, in addition to its function at the centromere/kinetochore regions.  相似文献   

14.
Sister chromatid cohesion, crucial for faithful segregation of replicated chromosomes in eukaryotes, is mediated by the multi-subunit protein complex cohesin. The Saccharomyces cerevisiae plasmid 2 micron circle mimics chromosomes in assembling cohesin at its partitioning locus. The plasmid is a multi-copy selfish DNA element that resides in the nucleus and propagates itself stably, presumably with assistance from cohesin. In metaphase cell lysates, or fractions enriched for their cohesed state by sedimentation, plasmid molecules are trapped topologically by the protein ring formed by cohesin. They can be released from cohesin’s embrace either by linearizing the DNA or by cleaving a cohesin subunit. Assays using two distinctly tagged cohesin molecules argue against the hand-cuff (an associated pair of monomeric cohesin rings) or the bracelet (a dimeric cohesin ring) model as responsible for establishing plasmid cohesion. Our cumulative results most easily fit a model in which a single monomeric cohesin ring, rather than a series of such rings, conjoins a pair of sister plasmids. These features of plasmid cohesion account for its sister-to-sister mode of segregation by cohesin disassembly during anaphase. The mechanistic similarities of cohesion between mini-chromosome sisters and 2 micron plasmid sisters suggest a potential kinship between the plasmid partitioning locus and centromeres.  相似文献   

15.
Cohesin, an SMC (structural maintenance of chromosomes) protein-containing complex, governs several important aspects of chromatin dynamics, including the essential chromosomal process of sister chromatid cohesion. The exact mechanism by which cohesin achieves the bridging of sister chromatids is not known. To elucidate this mechanism, we reconstituted a recombinant cohesin complex and investigated its binding to DNA fragments corresponding to natural chromosomal sites with high and low cohesin occupancy in vivo. Cohesin displayed uniform but nonspecific binding activity with all DNA fragments tested. Interestingly, DNA fragments with high occupancy by cohesin in vivo showed strong nucleosome positioning in vitro. We therefore utilized a defined model chromatin fragment (purified reconstituted dinucleosome) as a substrate to analyze cohesin interaction with chromatin. The four-subunit cohesin holocomplex showed a distinct chromatin binding activity in vitro, whereas the Smc1p-Smc3p dimer was unable to bind chromatin. Histone tails and ATP are dispensable for cohesin binding to chromatin in this reaction. A model for cohesin association with chromatin is proposed.  相似文献   

16.
17.
Recent studies have shown that the protein CTCF, which plays an important role in insulation and in large-scale organization of chromatin within the eukaryotic nucleus, depends for both activities on recruitment of the cohesin complex. We show here that the interaction of CTCF with the cohesin complex involves direct contacts between the cohesin subunit SA2 and specific regions of the C-terminal tail of CTCF. All other cohesin components are recruited through their interaction with SA2. Expression in vivo of CTCF mutants lacking the C-terminal domain, or with mutations at sites within it required for SA2 binding, disrupts the normal expression profile of the imprinted genes IGF2-H19 and also results in a loss of insulation activity. Taken together, our results demonstrate that specific sites on the C terminus of CTCF are essential for cohesin binding and insulator function. The only direct interaction between CTCF and cohesin involves contact with SA2, which is external to the cohesin ring. This suggests that in recruiting cohesin to CTCF, SA2 could bind first and the ring could assemble subsequently.  相似文献   

18.
The ring-shaped cohesin complex links sister chromatids until their timely segregation during mitosis. Cohesin is enriched at centromeres where it provides the cohesive counterforce to bipolar tension produced by the mitotic spindle. As a consequence of spindle tension, centromeric sequences transiently split in pre-anaphase cells, in some organisms up to several micrometers. This ‘centromere breathing’ presents a paradox, how sister sequences separate where cohesin is most enriched. We now show that in the budding yeast Saccharomyces cerevisiae, cohesin binding diminishes over centromeric sequences that split during breathing. We see no evidence for cohesin translocation to surrounding sequences, suggesting that cohesin is removed from centromeres during breathing. Two pools of cohesin can be distinguished. Cohesin loaded before DNA replication, which has established sister chromatid cohesion, disappears during breathing. In contrast, cohesin loaded after DNA replication is partly retained. As sister centromeres re-associate after transient separation, cohesin is reloaded in a manner independent of the canonical cohesin loader Scc2/Scc4. Efficient centromere re-association requires the cohesion establishment factor Eco1, suggesting that re-establishment of sister chromatid cohesion contributes to the dynamic behaviour of centromeres in mitosis. These findings provide new insights into cohesin behaviour at centromeres. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Ability to reproduce is one of the hallmark features of all life forms by which new organisms are produced from their progenitors. During this process each cell duplicates its genome and passes a copy of its genome to the daughter cells along with the cellular matrix. Unlike bacteria, in eukaryotes there is a definite time gap between when the genome is duplicated and when it is physically separated. Therefore, for precise halving of the duplicated genome into two, it is required that each pair of duplicated chromosomes, termed sister chromatids, should be paired together in a binary fashion from the moment they are generated. This pairing function between the duplicated genome is primarily provided by a multimeric protein complex, called cohesin. Thus, genome integrity largely depends on cohesin as it ensures faithful chromosome segregation by holding the sister chromatids glued together from S phase to anaphase. In this review, we have discussed the life cycle of cohesin during both mitotic and meiotic cell divisions including the structure and architecture of cohesin complex, relevance of cohesin associated proteins, mechanism of cohesin loading onto the chromatin, cohesion establishment and the mechanism of cohesin disassembly during anaphase to separate the sister chromatids. We have also focused on the role of posttranslational modifications in cohesin biology. For better understanding of the complexity of the cohesin regulatory network to the readers, we have presented an interactome profiling of cohesin core subunits in budding yeast during mitosis and meiosis.  相似文献   

20.
BACKGROUND: Cohesion between sister chromatids is promoted by the chromosomal cohesin complex that forms a proteinaceous ring, large enough in principle to embrace two sister strands. The mechanism by which cohesin binds to DNA, and how sister chromatid cohesion is established, is unknown. RESULTS: Biochemical studies of cohesin have largely been limited to protein isolated from soluble cellular fractions. Here, we characterize cohesin purified from budding yeast chromatin, suggesting that chromosomal cohesin is sufficiently described by its known distinctive ring structure. We present evidence that the two Smc subunits of cohesin by themselves form a ring, closed at interacting ATPase head domains. A motif in the Smc1 subunit implicated in ATP hydrolysis is essential for loading cohesin onto DNA. In addition to functional ATPase heads, an intact cohesin ring structure is indispensable for DNA binding, suggesting that ATP hydrolysis may be coupled to DNA transport into the cohesin ring. DNA is released in anaphase when separase cleaves cohesin's Scc1 subunit. We show that a cleavage fragment of Scc1 disrupts the interaction between the two Smc heads, thereby opening the ring. CONCLUSIONS: We present a model for cohesin binding to chromatin by ATP hydrolysis-dependent transport of DNA into the cohesin ring. After DNA replication, two DNA strands may be trapped to promote sister chromatid cohesion. In anaphase, Scc1 cleavage opens the ring to release sister chromatids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号