首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The expression of two β-amylase loci was analysed in the developing seeds of two inbred lines of rye (Secale cereale L.), one of which was a β-amylase deficient mutant. Enzymatic activity and the contents of enzymatic protein and mRNA specific for each of an endosperm-characteristic and ubiquitous β-amylase were determined throughout the course of caryopsis development. Both loci were expressed in the developing normal line caryopses according to different temporal and quantitative patterns. The ubiquitous enzyme-specific locus β-Amy 2 was expressed earlier; both mRNA and enzymatic protein accumulated to a maximum extent at 10 to 15 days after pollination. In contrast, the highest content of mRNA for endosperm β-amylase (encoded by the β-Amy I locus) was found 20 days after pollination, and the corresponding enzymatic protein accumulated throughout seed development. The expression of the β-Amy I locus was 30- to 40-fold higher than that of the β-Amy 2 locus in terms of maximum specific mRNA accumulation. The expression product of only the β-Amy 2 locus was found in the developing mutant line caryopses. The expression pattern of this locus was similar in the developing normal and mutant line seeds in terms of the temporal accumulation of mRNA and enzymatic protein. However, an approximately 4-fold higher level of ubiquitous β-amylase-specific mRNA was found in the mutant than in the normal line caryopses, and the content of ubiquitous β-amylase protein decreased to near zero at seed maturity in the mutant line, but not in the normal line, caryopses. The enzymatic activities of both β-amylases appeared to be regulated at the level of accumulated enzymatic protein.  相似文献   

3.
Abstract: The regional distributions of the G protein β subunits (Gβ1–β5) and of the Gγ3 subunit were examined by immunohistochemical methods in the adult rat brain. In general, the Gβ and Gγ3 subunits were widely distributed throughout the brain, with most regions containing several Gβ subunits within their neuronal networks. The olfactory bulb, neocortex, hippocampus, striatum, thalamus, cerebellum, and brainstem exhibited light to intense Gβ immunostaining. Negative immunostaining was observed in cortical layer I for Gβ1 and layer IV for Gβ4. The hippocampal dentate granular and CA1–CA3 pyramidal cells displayed little or no positive immunostaining for Gβ2 or Gβ4. No anti-Gβ4 immunostaining was observed in the pars compacta of the substantia nigra or in the cerebellar granule cell layer and Purkinje cells. Immunoreactivity for Gβ1 was absent from the cerebellar molecular layer, and Gβ2 was not detected in the Purkinje cells. No positive Gγ3 immunoreactivity was observed in the lateral habenula, lateral septal nucleus, or Purkinje cells. Double-fluorescence immunostaining with anti-Gγ3 antibody and individual anti-Gβ1–β5 antibodies displayed regional selectivity with Gβ1 (cortical layers V–VI) and Gβ2 (cortical layer I). In conclusion, despite the widespread overlapping distributions of Gβ1–β5 with Gγ3, specific dimeric associations in situ were observed within discrete brain regions.  相似文献   

4.
The physiological and molecular events of ethylene‐induced abscission in mature fruit calyx, laminar and floral abscission zones of cv. Valencia orange were examined. Continuous exposure of fruit explants to 5 µl 1−1 ethylene for 2 to 40 h resulted in marked increases in endo‐1,4‐β‐glucanase (cellulase) and polygalacturonase (PG) activities in calyx abscission zones. Two abscission‐related cellulases and one PG were found. The major peak of cellulase activity corresponded to a pI of 8.0 and molecular weight of 51 kDa, whereas the minor cellulase peak had a pI of 5.5. The abscission polygalacturonase had a pI of 5.5. Calyx abscission zone RNA was amplified with degenerate primers based on sequence of the purified Valencia orange calyx abscission cellulase, and cloned. The two partial cellulase cDNA clones were 59% identical at the nucleotide level. Genomic Southern analysis suggested that Valencia orange contained two groups of cellulase genes. A full‐length cDNA clone from each group was isolated from a cDNA library prepared from ethylene‐induced calyx abscission zone mRNA. Both genes were expressed in ethylene‐induced calyx, laminar and floral abscission zones, but were not expressed in non‐induced abscission zones or mature leaves treated with or without ethylene, young bark or young fruit of Valencia.  相似文献   

5.
Killing of wild-type spores of Bacillus subtilis with formaldehyde also caused significant mutagenesis; spores (termed αβ) lacking the two major α/β-type small, acid-soluble spore proteins (SASP) were more sensitive to both formaldehyde killing and mutagenesis. A recA mutation sensitized both wild-type and αβ spores to formaldehyde treatment, which caused significant expression of a recA - lacZ fusion when the treated spores germinated. Formaldehyde also caused protein–DNA cross-linking in both wild-type and αβ spores. These results indicate that: (i) formaldehyde kills B. subtilis spores at least in part by DNA damage and (b) α/β-type SASP protect against spore killing by formaldehyde, presumably by protecting spore DNA.  相似文献   

6.
7.
8.
9.
Abstract: Confusion appears to have arisen in the literature regarding the designation of α-and β-tubulin in polyacrylamide gels. The presence or absence of 8 M-urea in sodium dodecyl sulfate (SDS) polyacrylamide gels leads to different patterns for unalkylated tubulin subunits (and other proteins), making difficult the designation of the α and β subunits by original definition using electrophoretic mobility in the molecular weight dimension. The specific biochemical property of posttranslational tyrosylation of the α subunit has been used to identify further this subunit. Under all conditions tested, the β subunit has been found to be more acidic than the α subunit, with isoelectric point differences that agree with theoretical and published values. If the tubulin subunits are reduced and alkylated, the β subunit migrates more rapidly in SDS polyacrylamide gels, with or without urea present. However, unalkylated tubulin subunits can comigrate or even reverse their relative mobility if 8 M-urea-SDS polyacrylamide gels are used for subunit separation. The results also confirm the earlier reports that the post-translational tyrosylation of protein appears exclusively restricted to α-tubulin and can be demonstrated in an in vivo situation. In addition, the results suggest that only the α2 subunit of tubulin is tyrosylated.  相似文献   

10.
The localization of β -glucosidase was determined at the tissue level in roots and shoots of rye, wheat and maize seedlings, using an immunohistochemical approach with antibodies directed against purified maize β -glucosidase as the primary antibody. In the roots, the β -glucosidase was found in the epidermis and the underlying cell layer. In the leaves, staining was seen in the epidermis (rye and wheat) and nearby vascular tissue (rye, wheat and maize). In all 3 species, β -glucosidase activity was highest in the coleoptile. Here the enzyme was restricted to the epidermis in wheat and to cells near the vascular tissue in maize, but was found in the whole tissue, except the vascular tissue, in rye. Maize, wheat and rye all contain hydroxamic acid glucosides and results are discussed in relation to a proposed role of β -glucosidase as part of a defense system releasing hydroxamic acid aglucone upon herbivore attack, pathogen penetration or aphid infestation.  相似文献   

11.
12.
M Lussier  T Ouellet  C Lampron  L Lapointe  A Royal 《Gene》1989,85(2):435-444
The complete amino acid sequence of the mouse keratin 19 (K19) was determined from a partial sequence of cDNA isolated from a mouse (day 10.5) embryo library and an amplified genomic fragment. Analysis of the sequence reveals strong evolutionary conservation with other K19s. Examination of the expression of the gene encoding K19 (K19) during development using an RNase protection assay reveals it is expressed in extra-embryonic tissues by day 8.5 and in the embryo proper by at least day 9.5. Furthermore, the K19 gene is induced in differentiating F9 embryonal carcinoma cells. These results indicate that K19 is another keratin, in addition to the K8-K18 pair, which is synthesized early during mouse development. Finally, Southern analysis of the K19 gene reveals that it is found as a unique copy in the mouse genome, in contrast to what is found in humans, which have at least one processed pseudogene.  相似文献   

13.
14.
15.
The cellular localization of β-amylase (EC 3.2.1.2) in resting barley seeds was investigated by immunohistochemistry. The monospecificity of the antibodies used was shown by immunoelectrophoresis and western blotting. An adaptation of the immunofluorescence technique allowed the localization of β-amylase. free of autofluorescence, in the different parts of the seed. In endosperm, there was β-amylase protein in aleurone layers, only in the starchy endosperm, where the distribution of the enzyme was not uniform. The β-amylase of starchy endosperm. which can be in a free or a hound form, was mainly localized around starch granules of different sizes. In the embryo. β-amylase was present only in the part of the scutellum in front of the first leaf. By immunoquantitation after separation of the seed parts, its was shown that the ratio between the amounts of enzyme in embryo and endosperm was less than 1/3000.  相似文献   

16.
Differential expression of keratin genes during mouse development   总被引:1,自引:0,他引:1  
Suprabasal layers of the newborn mouse epidermis contain two mRNAs of 2.0 and 2.4 kb which are translated into keratins of 59 and 67 kDa, respectively. To study their expression during development, cDNA sequences corresponding to the 2.0- and the 2.4-kb mRNAs were cloned, characterized by hybridization selection assay, and used as probes to detect keratin sequences in polyadenylated RNA from Day 11, 13, 15, and 17 embryos. In RNA from Day 11 of gestation, two RNAs of 2.8 and 1.8 kb were identified. They were found to have homologies with both epidermal RNAs, suggesting that they are coding for proteins of the keratin family. These two sequences were not detected in sample of later stages. RNAs comigrating with the two epidermal keratin RNAs were identified only in Day 15 and 17 embryos indicating that their expression was induced between Day 13 and 15. Finally, the localization of the 59-kDa keratin mRNA was examined by in situ hybridization. The spinous and granulous cell layers were found to be heavily covered with grains while other regions of the tissue sections were unlabeled. All these results support the hypothesis of a sequential expression of keratins during differentiation of epidermal cells and suggest that proteins related to the keratins expressed specifically in keratinizing cells are expressed earlier during development.  相似文献   

17.
Two bacteriocins produced by Lactobacillus plantarum TMW1.25 have been purified by a four-step purification procedure, including ammonium sulphate precipitation and cation-exchange chromatography followed by hydrophobic-interaction chromatography on octyl sepharose. The final purification was performed by repeated reversed-phase chromatography steps which yielded two bacteriocin fractions designated plantaricin 1.25 alpha and plantaricin 1.25 beta. The molecular masses of the peptides in these fractions were 5979 and 5203 Da, respectively. Combination of the fractions did not have any synergistic effects on bacteriocin activity, indicating that they each contain a one-peptide bacteriocin. The major peptide in the alpha fraction was blocked at its N-terminus, and a partial sequence (25 residues) could only be obtained after cleavage with CNBr. This sequence did not show clear homologies with known bacteriocins. The beta peptide has been sequenced almost completely and consists, presumably, of 53 residues. This peptide displayed strong homology to the known N-terminal part of brevicin 27 produced by Lactobacillus brevis SB27. The results showed that the beta peptide contains as many as six consecutive lysine residues at the N-terminus.  相似文献   

18.
Differences in starch metabolism during seed development and germination of two soybean [ Glycine max (L.) Merrill] genotypes with normal seed β-amylase activity ['Williams' ( Sp 1b and 'Altona' ( Sp 1b)] and two soybean genotypes with undetectable seed β-amylase activity ['Chestnut' ( Sp 1au) and 'Altona' ( Sp 1)] were investigated. Starch and soluble sugar profiles were essentially the same during seed development and germination. Total amylase activity of Williams and Altona ( Sp 1b) peaked just prior to seed maturity and then dropped off slowly; whereas, the total amylase activity of Chestnut and Altona ( sp 1) was very low throughout seed development and germination. The differences in amylase activity between Altona ( Sp 1 b) and Altona ( sp 1) was also seen in leaves. α-Amylase activity was similar in the four genotypes when β-amylase was inhibited with Hg2+ but was higher in the two genotypes with normal β-amylase activity when β-amylase was inhibited with heat plus Ca2+. Low levels of starch phosphorylase activity were detected throughout seed development and germination, and the activity was similar in three of the genotypes and higher in Altona ( sp 1).
The protein, oil and oligosaccharide contents of mature seeds of the four genotypes were similar. Altona ( sp 1 b) and ( sp 1), which appear to be near isogenic lines, were not different in any morphological character or yield.
Altona ( Sp 1 b) showed greater hydrolysis of soybean seed starch than Altona ( sp 1), but the evidence indicates that the mutation resulting in greatly reduced or missing β-amylase activity has no effect on starch metabolism of developing and germinating soybean seeds.  相似文献   

19.
20.
Abstract: One of the problems faced when using heterologous expression systems to study receptors is that the pharmacological and physiological properties of expressed receptors often differ from those of native receptors. In the case of neuronal nicotinic receptors, one or two subunit cDNAs are sufficient for expression of functional receptors in Xenopus oocytes. However, the stoichiometries of nicotinic receptors in neurons are not known and expression patterns of mRNA coding for different nicotinic receptor subunits often overlap. Consequently, one explanation for the discrepancy between properties of native versus heterologously expressed nicotinic receptors is that more than two types of subunit are necessary for correctly functioning receptors. The Xenopus oocyte expression system was used to test the hypothesis that more than two types of subunit can coassemble; specifically, can two different β subunits assemble with an α subunit forming a receptor with unique pharmacological properties? We expressed combinations of cDNA coding for α3, β2, and β4 subunits. β2 and β4, in pairwise combination with α3, are differentially sensitive to cytisine and neuronal bungarotoxin (nBTX). α3β4 receptors are activated by cytisine and are not blocked by low concentrations of nBTX; acetylcholine-evoked currents through α3β2 receptors are blocked by both cytisine and low concentrations of nBTX. Coinjection of cDNA coding for α3, β2, and β4 into oocytes resulted in receptors that were activated by cytisine and blocked by nBTX, thus demonstrating inclusion of both β2 and β4 subunits in functional receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号