首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nonmucoid colonial variant of a mucoid Bacillus subtilis strain produced less amylase activity and a transparent colonial variant of a B. licheniformis strain produced less protease activity compared with their parents. Antibiotic susceptibility patterns of the colonial variants differed, and increased resistance to beta-lactam antibiotics was correlated with increased production of extracellular beta-lactamase.  相似文献   

2.
Quantitative mass conversion of intact bacterial cells of Bacillus subtilis and B. licheniformis to L-phase variants has been effected after lysozyme treatment. After subculture of the unstable L-phase variants for several months in the presence of methicillin, stable L-phase variants were obtained which grew in the absence of the antibiotic and were then unable to revert to the classical bacterial phase under conditions which gave rise to mass reversion of the protoplasts and unstable L-variants. These stable L-phase variants, which retained many of the physiological properties of the bacterium from which they were derived, were capable of growing exponentially and multiplying in liquid medium. Their morphology and apparent modes of reproduction were consistent with that described for other L-phase variants. The morphological events, as monitored by the electron microscope, of the reversion to the intact bacterial phase of an unstable L-phase variant of B. licheniformis are described.  相似文献   

3.
A nonmucoid colonial variant of a mucoid Bacillus subtilis strain produced less amylase activity and a transparent colonial variant of a B. licheniformis strain produced less protease activity compared with their parents. Antibiotic susceptibility patterns of the colonial variants differed, and increased resistance to beta-lactam antibiotics was correlated with increased production of extracellular beta-lactamase.  相似文献   

4.
The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular gamma-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreover, the synthesis of PGA in the absence of detectable GGT activity in B. subtilis S317 indicated that this enzyme was not involved in PGA biosynthesis in this bacterium. Glutamate repression of PGA biosynthesis may offer a simple means of preventing unwanted slime production in industrial fermentations using B. licheniformis.  相似文献   

5.
Partly autolyzed, osmotically stabilized cells of Bacillus subtilis W23 synthesized peptidoglycan from the exogenously supplied nucleotide precursors UDP-N-acetylglucosamine and UDP-N-acetylmuramyl pentapeptide. Freshly harvested cells did not synthesize peptidoglycan. The peptidoglycan formed was entirely hydrolyzed by N-acetylmuramoylhydrolase, and its synthesis was inhibited by the antibiotics bacitracin, vancomycin, and tunicamycin. Peptidoglycan formation was optimal at 37 degrees C and pH 8.5, and the specific activity of 7.0 nmol of N-acetylglucosamine incorporated per mg of membrane protein per h at pH 7.5 was probably decreased by the action of endogenous wall autolysins. No cross-linked peptidoglycan was formed. In addition, a lysozyme-resistant polymer was also formed from UDP-N-acetylglucosamine alone. Peptidoglycan synthesis was inhibited by trypsin and p-chloromercuribenzenesulfonic acid, and we conclude that it occurred at the outer surface of the membrane. Although phospho-N-acetylmuramyl pentapeptide translocase activity was detected on the outside surface of the membrane, no transphosphorylation mechanism was observed for the translocation of UDP-N-acetylglucosamine. Peptidoglycan was similarly formed with partly autolyzed preparations of B. subtilis NCIB 3610, B. subtilis 168, B. megaterium KM, and B. licheniformis ATCC 9945. Intact protoplasts of B. subtilis W23 did not synthesize peptidoglycan from externally supplied nucleotides although the lipid intermediate was formed which was inhibited by tunicamycin and bacitracin. It was therefore considered that the lipid cycle had been completed, and the absence of peptidoglycan synthesis was believed to be due to the presence of lysozyme adhering to the protoplast membrane. The significance of these results and similar observations for teichoic acid synthesis (Bertram et al., J. Bacteriol. 148:406-412, 1981) is discussed in relation to the translocation of bacterial cell wall polymers.  相似文献   

6.
7.
Penicillin-binding proteins (PBPs) catalyze the final, essential reactions of peptidoglycan synthesis. Three classes of PBPs catalyze either trans-, endo-, or carboxypeptidase activities on the peptidoglycan peptide side chains. Only the class A high-molecular-weight PBPs have clearly demonstrated glycosyltransferase activities that polymerize the glycan strands, and in some species these proteins have been shown to be essential. The Bacillus subtilis genome sequence contains four genes encoding class A PBPs and no other genes with similarity to their glycosyltransferase domain. A strain lacking all four class A PBPs has been constructed and produces a peptidoglycan wall with only small structural differences from that of the wild type. The growth rate of the quadruple mutant is much lower than those of strains lacking only three of the class A PBPs, and increases in cell length and frequencies of wall abnormalities were noticeable. The viability and wall production of the quadruple-mutant strain indicate that a novel enzyme can perform the glycosyltransferase activity required for peptidoglycan synthesis. This activity was demonstrated in vitro and shown to be sensitive to the glycosyltransferase inhibitor moenomycin. In contrast, the quadruple-mutant strain was resistant to moenomycin in vivo. Exposure of the wild-type strain to moenomycin resulted in production of a phenotype similar to that of the quadruple mutant.  相似文献   

8.
9.
Bacteriophage SP-15, a large generalized transducing phage of Bacillus, was compared with phages PBS-1 and SP-10 for the ability to cotransduce pairs of genetic markers exhibiting different degrees of linkage. When auxotrophs of B. subtilis W-23 were used as recipients, SP-15 and PBS-1 effected a much higher frequency of cotransduction than did SP-10 with markers that were not closely linked. With more closely linked loci, the differences were not as great. SP-15 cotransduced linked markers at a higher mean frequency than PBS-1, suggesting that SP-15 is able to transfer a larger fragment of the Bacillus genome than any phage heretofore described. The frequency of the joint transfer of genetic markers in B. licheniformis was lower via transforming deoxyribonucleic acid than by transduction with phage SP-10. The availability of three procedures for genetic exchange-transduction by SP-15 and SP-10 as well as transformation-each of which reveals a different degree of linkage, makes B. licheniformis 9945A especially amenable to genetic analysis.  相似文献   

10.
Active 50 S ribosomal subunits from Bacillus licheniformis and Bacillus subtilis can be reconstituted in vitro from dissociated RNA and proteins. The reconstituted 50 S sub-units are indistinguishable from native 50 S subunits in sedimentation on sucrose gradients and in protein composition. The procedure used is similar to that developed for reconstitution of Bacillus stearothermophilus 50 S subunits, though the optimal conditions are somewhat different. Hybrid ribosomes can be reconstituted with 23 S RNA and proteins from different sources (B. stearothermophilus and B. licheniformis or B. subtilis). The thermal stability of these ribosomes depends on the source of the proteins, and not on the source of 23 S RNA.  相似文献   

11.
The synthesis of peptidoglycan by an autolysin-deficient beta-lactamase-negative mutant of Bacillus licheniformis was studied in vivo in the absence of protein synthesis. Benzylpenicillin and cephaloridine inhibited the formation of cross-bridges between newly synthesized peptidoglycan and the pre-existing cell wall. This inhibition, detected by measurement of the incorporation of N-acetyl[14C]glucosamine into the glycan fraction of the cell wall, was reversed by treatment with beta-lactamase and washing. Inhibition of D-alanine carboxypeptidase by benzylpenicillin was not reversed under similar conditions. Cells in which the initial penicillin inhibition of transpeptidation had been reversed showed an increased sensitivity to a subsequent addition of the antibiotic. Chemical analysis of peptidoglycan synthesized after reversal of penicillin inhibition revealed the presence of excess of alanine resulting from the continued inhibition of D-alanine carboxypeptidase. When the cell walls were digested to yield muropeptides so that the degree of cross-linking could be measured, the product after reversal of penicillin inhibition contained fewer cross-links than did the control preparation. Cultures treated with benzylpenicillin and cephaloridine continued to synthesize uncross-linked soluble peptidoglycan, which accumulated in the medium. This soluble material was all newly synthesized peptidoglycan and did not result from autolysis of the bacteria. The average chain lengths of the glycan synthesized in vivo and released as soluble peptidoglycan in the presence of both benzylpenicillin and cephaloridine were similar to those found previously in this organism.  相似文献   

12.
13.
The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular γ-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreover, the synthesis of PGA in the absence of detectable GGT activity in B. subtilis S317 indicated that this enzyme was not involved in PGA biosynthesis in this bacterium. Glutamate repression of PGA biosynthesis may offer a simple means of preventing unwanted slime production in industrial fermentations using B. licheniformis.  相似文献   

14.
The genome sequence of Bacillus subtilis was published in 1997 and since then many other bacterial genomes have been sequenced, among them Bacillus licheniformis in 2004. B. subtilis and B. licheniformis are closely related and feature similar saprophytic lifestyles in the soil. Both species can secrete numerous proteins into the surrounding medium enabling them to use high-molecular-weight substances, which are abundant in soils, as nutrient sources. The availability of complete genome sequences allows for the prediction of the proteins containing signals for secretion into the extracellular milieu and also of the proteins which form the secretion machinery needed for protein translocation through the cytoplasmic membrane. To confirm the predicted subcellular localization of proteins, proteomics is the best choice. The extracellular proteomes of B. subtilis and B. licheniformis have been analyzed under different growth conditions allowing comparisons of the extracellular proteomes and conclusions regarding similarities and differences of the protein secretion mechanisms between the two species.  相似文献   

15.
Peptidoglycan structural dynamics during endospore germination of Bacillus subtilis 168 have been examined by muropeptide analysis. The first germination-associated peptidoglycan structural changes are detected within 3 min after the addition of the specific germinant l-alanine. We detected in the spore-associated material new muropeptides which, although they have slightly longer retention times by reversed-phase (RP)-high-pressure liquid chromatography (HPLC) than related ones in dormant spores, show the same amino acid composition and molecular mass. Two-dimensional nuclear magnetic resonance (NMR) analysis shows that the chemical changes to the muropeptides on germination are minor and are probably limited to stereochemical inversion. These new muropeptides account for almost 26% of the total muropeptides in spore-associated material after 2 h of germination. The exudate of germinated spores of B. subtilis 168 contains novel muropeptides in addition to those present in spore-associated material. Exudate-specific muropeptides have longer retention times, have no reducing termini, and exhibit a molecular mass 20 Da lower than those of related reduced muropeptides. These new products are anhydro-muropeptides which are generated by a lytic transglycosylase, the first to be identified in a gram-positive bacterium. There is also evidence for the activity of a glucosaminidase during the germination process. Quantification of muropeptides in spore-associated material indicates that there is a heterogeneous distribution of muropeptides in spore peptidoglycan. The spore-specific residue, muramic δ-lactam, is proposed to be a major substrate specificity determinant of germination-specific lytic enzymes, allowing cortex hydrolysis without any effect on the primordial cell wall.The extreme heat resistance of dormant bacterial endospores has made them an important problem in the production of safe foodstuffs (3). The spore cell wall peptidoglycan is considered to play a major role in the maintenance of heat resistance and dormancy (6). Bacillus subtilis spore peptidoglycan is composed of two layers. A thin, inner layer called the primordial cell wall retains the basic vegetative cell peptidoglycan structure. The primordial cell wall represents 2 to 4% of the total endospore peptidoglycan, is not digested during germination, and serves as the initial cell wall during outgrowth (2, 5, 25, 29). The outer thick layer of peptidoglycan, known as the cortex, is characterized by several unique spore-specific features. Approximately 50% of the muramic acid residues in the glycan strands are present in the δ-lactam form (2, 24). Muramic acid side chains are composed of 26 and 23% of tetrapeptide and single l-alanine, respectively (2).Despite their extreme dormancy and thermostability, bacterial endospores retain an alert sensory mechanism enabling them to respond within minutes to the presence of specific germinants. Spores of B. subtilis respond to at least two different types of germinative stimuli: (i) l-alanine and (ii) a combination of l-asparagine, glucose, fructose, and KCl (AGFK) (34). The germination response is initiated by the interaction of a receptor protein with specific germinants which triggers the loss of spore-specific properties and the transformation of a dormant resistant bacterial spore into a metabolically active vegetative cell. The germination process is characterized by sequential, interrelated biochemical events. The specific hydrolysis of peptidoglycan in the spore cortex layer is an essential event in germination (2, 25). Its degradation removes the physical constraints of the cortex and allows core expansion and outgrowth (9, 25). As a consequence of cortex hydrolysis, peptidoglycan fragments can be detected in the germination exudate (13, 33).A number of bacterial spore germination-specific cortex-lytic enzymes (GSLEs) have been reported to be involved in cortex hydrolysis (9, 1820). A gene homologous to that encoding the GSLE from Bacillus cereus has been identified and inactivated in B. subtilis, and the resulting mutant germinates more slowly than the wild type (22). Recently a germination-specific muramidase isolated from a germination extract of Clostridium perfringens S40 has been purified and characterized (4).GSLEs have a high substrate specificity, requiring intact spore cortex for activity (9, 23). The muramidase from C. perfringens S40, however, hydrolyzes cortical fragments but has a strict requirement for the presence of the muramic δ-lactam residues (4). Thus, the GSLEs are highly specialized and may exist as proforms which are specifically activated during germination (9).Very little is known about the mechanism by which the cortex is hydrolyzed during germination and the autolytic enzymes involved. Muropeptide analysis provides a method for fine chemical structural determination of spore cortex (2, 24, 25). In this paper, we report the use of muropeptide analysis to determine the peptidoglycan structural dynamics which occur during spore germination of B. subtilis 168 and the evidence for a number of different enzyme activities.  相似文献   

16.
Several regulated enzymes involved in aromatic amino acid synthesis were studied in Bacillus subtilis and B. licheniformis with reference to organization and control mechanisms. B. subtilis has been previously shown (23) to have a single 3-deoxy-d-arabinoheptulosonate 7-phosphate (DAHP) synthetase but to have two isozymic forms of both chorismate mutase and shikimate kinase. Extracts of B. licheniformis chromatographed on diethylaminoethyl (DEAE) cellulose indicated a single DAHP synthetase and two isozymic forms of chorismate mutase, but only a single shikimate kinase activity. The evidence for isozymes has been supported by the inability to find strains mutant in these activities, although strains mutant for the other activities were readily obtained. DAHP synthetase, one of the isozymes of chorismate mutase, and one of the isozymes of shikimate kinase were found in a single complex in B. subtilis. No such complex could be detected in B. licheniformis. DAHP synthetase and shikimate kinase from B. subtilis were feedback-inhibited by chorismate and prephenate. DAHP synthetase from B. licheniformis was also feedback-inhibited by these two intermediates, but shikimate kinase was inhibited only by chorismate. When the cells were grown in limiting tyrosine, the DAHP synthetase, chorismate mutase, and shikimate kinase activities of B. subtilis were derepressed in parallel, but only DAHP synthetase and chorismate mutase were derepressible in B. licheniformis. Implications of the differences as well as the similarities between the control and the pattern of enzyme aggregation in the two related species of bacilli were discussed.  相似文献   

17.
The kerA gene which encodes the enzyme keratinase was isolated from the feather-degrading bacterium Bacillus licheniformis PWD-1. The entire gene, including pre-, pro- and mature protein regions, was cloned with Pker, its own promoter, P43, the vegetative growth promoter, or the combination of P43-Pker into plasmid pUB18. Transformation of the protease-deficient strain B. subtilis DB104 with these plasmids generated transformant strains FDB-3, FDB-108 and FDB-29 respectively. All transformants expressed active keratinase in both feather and LB media, in contrast to PWD-1, in which kerA was repressed when grown in LB medium. With P43-Pker upstream of kerA, FDB-29 displayed the highest activity in feather medium. Production of keratinase in PWD-1 and transformants was further characterized when glucose or casamino acids were supplemented into the feather medium. These studies help understand the regulation of kerA expression and, in the long run, can help strain development and medium conditioning for the production of this industrially important keratinase. Received 31 December 1996/ Accepted in revised form 23 June 1997  相似文献   

18.
The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.  相似文献   

19.
Bacillus subtilis cwlD and dacB mutants produce spore peptidoglycan (PG) with increased cross-linking but with little change in spore core hydration compared to the wild type. A cwlD dacB double mutant produced spores with a two- to fourfold greater increase in PG cross-linking and novel muropeptides containing glycine residues but no significant changes in spore resistance or core hydration.  相似文献   

20.
Aims: To determine if orally ingested Bacillus spores used as probiotics or direct‐fed microbial feed additives germinate and the vegetative cells grow in the gastrointestinal (GI) tract. Methods and Results: Three independent experiments were done to determine if spores of Bacillus licheniformis and Bacillus subtilis germinate and grow in the GI tract of pigs. After a 2 weeks spore‐feeding period, spores were detected in all segments of the GI tract. The lowest number of spores was found in the stomach, increasing in the small intestine to approx. 55% of the dietary inclusion. When spores were withdrawn from the feed, faecal excretion of spores reflected the dietary inclusion, but decreased gradually to the background level after 1 week. By containing spores in short, sealed pieces of dialysis membrane that were orally administered to the pigs, both the number of spores and vegetative cells could be determined by flow cytometry. Spores accounted for 72% of the total counts after 4–6 h in the stomach and proximal part of the small intestine. After 24 h, spores constituted only 12% of the total counts in the stomach, caecum, and mid‐colon. Less spores and more vegetative cells were detected after 24 h, but total counts increased only 2·14‐fold compared to time zero. Conclusions: The experiments showed that 70–90% of dietary‐supplemented Bacillus spores germinate in the proximal part of the pig GI tract, and that only limited outgrowth of the vegetative cell population occurs. The two Bacillus strains can temporarily remain in the GI system, but will be unable to permanently colonize the GI tract. Significance and Impact of the Study: A substantial population of growing vegetative cells in the GI tract is not a prerequisite for the mode of action of Bacillus feed additives and probiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号