首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of the nucleotide precursors for peptidoglycan is regulated by the relA gene in Escherichia coli. Thus, nucleotide precursors labeled with [3H]diaminopimelic acid accumulated in a relA strain but not in an isogenic relA+ strain during amino acid deprivation. Furthermore, nucleotide precursor synthesis was relaxed in the amino acid deprived relA+ strain by treatment with chloramphenicol. Uridine diphosphate-N-acetylmuramyl-pentapeptide (UDP-MurNAc-pentapeptide) was the major component accumulated during the relaxed synthesis of nucleotide precursors in both relA+ and relA strains. The effect of beta-chloro-L-alanine (CLA) on the relaxed synthesis of nucleotide precursors for peptidoglycan was determined. At a low concentration (0.0625 mM) CLA inhibited the synthesis of UDP-MurNAc-pentapeptide and caused the accumulation of UDP-MurNAc-tripeptide. Thus, low concentrations of CLA probably inhibited alanine racemase, as reported previously. Higher concentrations of CLA also inhibited an earlier step in nucleotide precursor synthesis. This was shown to be due to the inhibition of UDP-MurNAc-L-alanine synthetase by CLA. CLA inhibited the activity of this enzyme in cell-free extracts as well as in intact cells.  相似文献   

2.
Partly autolyzed, osmotically stabilized cells of Bacillus subtilis W23 synthesized peptidoglycan from the exogenously supplied nucleotide precursors UDP-N-acetylglucosamine and UDP-N-acetylmuramyl pentapeptide. Freshly harvested cells did not synthesize peptidoglycan. The peptidoglycan formed was entirely hydrolyzed by N-acetylmuramoylhydrolase, and its synthesis was inhibited by the antibiotics bacitracin, vancomycin, and tunicamycin. Peptidoglycan formation was optimal at 37 degrees C and pH 8.5, and the specific activity of 7.0 nmol of N-acetylglucosamine incorporated per mg of membrane protein per h at pH 7.5 was probably decreased by the action of endogenous wall autolysins. No cross-linked peptidoglycan was formed. In addition, a lysozyme-resistant polymer was also formed from UDP-N-acetylglucosamine alone. Peptidoglycan synthesis was inhibited by trypsin and p-chloromercuribenzenesulfonic acid, and we conclude that it occurred at the outer surface of the membrane. Although phospho-N-acetylmuramyl pentapeptide translocase activity was detected on the outside surface of the membrane, no transphosphorylation mechanism was observed for the translocation of UDP-N-acetylglucosamine. Peptidoglycan was similarly formed with partly autolyzed preparations of B. subtilis NCIB 3610, B. subtilis 168, B. megaterium KM, and B. licheniformis ATCC 9945. Intact protoplasts of B. subtilis W23 did not synthesize peptidoglycan from externally supplied nucleotides although the lipid intermediate was formed which was inhibited by tunicamycin and bacitracin. It was therefore considered that the lipid cycle had been completed, and the absence of peptidoglycan synthesis was believed to be due to the presence of lysozyme adhering to the protoplast membrane. The significance of these results and similar observations for teichoic acid synthesis (Bertram et al., J. Bacteriol. 148:406-412, 1981) is discussed in relation to the translocation of bacterial cell wall polymers.  相似文献   

3.
The bacterial endospore cortex peptidoglycan is synthesized between the double membranes of the developing forespore and is required for attainment of spore dehydration and dormancy. The Bacillus subtilis spoVB, spoVD and spoVE gene products are expressed in the mother cell compartment early during sporulation and play roles in cortex synthesis. Here we show that mutations in these genes block synthesis of cortex peptidoglycan and cause accumulation of peptidoglycan precursors, indicating a defect at the earliest steps of peptidoglycan polymerization. Loss of spoIV gene products involved in activation of later, sigma(K)-dependent mother cell gene expression results in decreased synthesis of cortex peptidoglycan, even in the presence of the SpoV proteins that were synthesized earlier, apparently due to decreased precursor production. Data show that activation of sigma(K) is required for increased synthesis of the soluble peptidoglycan precursors, and Western blot analyses show that increases in the precursor synthesis enzymes MurAA, MurB, MurC and MurF are dependent on sigma(K) activation. Overall, our results indicate that a decrease in peptidoglycan precursor synthesis during early sporulation, followed by renewed precursor synthesis upon sigma(K) activation, serves as a regulatory mechanism for the timing of spore cortex synthesis.  相似文献   

4.
Purification of the peptidoglycan transglycosylase of Bacillus megaterium   总被引:1,自引:0,他引:1  
The peptidoglycan transglycosylase of Bacillus megaterium has been purified approximately 500-fold from a crude membrane fraction. This protein is likely to be the one previously called PG-II and was assayed by its ability to reconstitute with a crude phospho-N-acetyl-muramyl-pentapeptide translocase preparation and partially purified N-acetylglucosaminyl transferase to give peptidoglycan synthesis from nucleotide precursors. The protein was identified as the peptidoglycan transglycosylase by its ability to synthesize lysozyme-sensitive peptidoglycan from undecaprenylpyrophosphoryl-disaccharide-pentapeptide. The enzyme is inhibited by vancomycin but not by bacitracin, penicillin G, or tunicamycin. The enzyme has no detectable transpeptidase activity, but it does bind penicillin.  相似文献   

5.
Cultures of a stable L-phase variant of Streptococcus faecium F24 produced and retained peptidoglycan precursors intracellularly over the entire growth cycle in a chemically defined medium. The identity of the most abundant precursor, UDP N-acetylmuramyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine (UDP-MurNAc-pentapeptide), was confirmed by demonstrating in vitro the presence of enzymes required for the cytoplasmic stage of peptidoglycan biosynthesis. The initial membrane-bound reaction in peptidoglycan biosynthesis involving phospho-MurNAc-pentapeptide translocase and undecaprenyl-phosphate membrane carrier was catalyzed by protoplast membrane preparations but not by L-phase membrane preparations. However, both protoplast and L-phase membranes incorporated radioactivity from dTDP-L-[14C]rhamnose, the presumed precursor to a non-peptidoglycan cell surface component, into high-molecular-weight material. dTDP-L-rhamnose did not accumulate in growing cultures but was synthesized from D-glucose-1-phosphate and dTTP by cell-free extracts of the streptococcus and L-phase variant. Neither rhamnose- nor muramic acid-containing compounds were detected in culture fluids. It is suggested that continued inhibition of cell wall biosynthesis in this stable L-phase variant is the result of a defect expressed at the membrane stage of peptidoglycan biosynthesis specifically involving the translocation step.  相似文献   

6.
7.
Most bacteria synthesize muramyl-pentapeptide peptidoglycan precursors ending with a D-alanyl residue (e.g., UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala). However, it was recently demonstrated that other types of precursors, notably D-lactate-ending molecules, could be synthesized by several lactic acid bacteria. This particular feature leads to vancomycin resistance. Vancomycin is a glycopeptide antibiotic that blocks cell wall synthesis by the formation of a complex with the extremity of peptidoglycan precursors. Substitution of the terminal D-alanine by D-lactate reduces the affinity of the antibiotic for its target. Lactobacillus plantarum is a lactic acid bacterium naturally resistant to vancomycin. It converts most of the glycolytic pyruvate to L- and D-lactate by using stereospecific enzymes designated L- and D-lactate dehydrogenases, respectively. In the present study, we show that L. plantarum actually synthesizes D-lactate-ending peptidoglycan precursors. We also report the construction of a strain which is deficient for both D- and L-lactate dehydrogenase activities and which produces only trace amounts of D- and L-lactate. As a consequence, the peptidoglycan synthesis pathway is drastically affected. The wild-type precursor is still present, but a new type of D-alanine-ending precursor is also synthesized in large quantities, which results in a highly enhanced sensitivity to vancomycin.  相似文献   

8.
Quantitative mass conversion of intact bacterial cells of Bacillus subtilis and B. licheniformis to L-phase variants has been effected after lysozyme treatment. After subculture of the unstable L-phase variants for several months in the presence of methicillin, stable L-phase variants were obtained which grew in the absence of the antibiotic and were then unable to revert to the classical bacterial phase under conditions which gave rise to mass reversion of the protoplasts and unstable L-variants. These stable L-phase variants, which retained many of the physiological properties of the bacterium from which they were derived, were capable of growing exponentially and multiplying in liquid medium. Their morphology and apparent modes of reproduction were consistent with that described for other L-phase variants. The morphological events, as monitored by the electron microscope, of the reversion to the intact bacterial phase of an unstable L-phase variant of B. licheniformis are described.  相似文献   

9.
Based on autoradiographic and microscopic evidence, it seems likely that a membrane protein essential for peptidoglycan synthesis can be extracted from uhlysed toluene-treated Bacillus megaterium cells. Furthermore, this protein can be added back to the membrane through the wall to reconstitute peptidoglycan synthesis. Autoradiograms also show that peptidoglycan is synthesized from externally added nucleotide precursors over the entire length of the toluene-treated bacterial. The amounts of peptidoglycan made is to small to be visible by thin section electron microscopy.  相似文献   

10.
A soluble extract from Corynebacterium poinsettiae able to synthesize the nucleotide precursor of ite peptidoglycan was prepared. This extract contained all the enzymes necessary for the synthesis of the peptide side-chain. The spedificity of these enzymes was determined and compared with the specificity of similar enzymes extracted from the closely related Corynebacterium insidiosum. In both organsims, addition of the third amino acid of the peptide side-chain was specific for the amino acid and nucleotide dipeptide involved in peptidoglycan synthesis in the parent organism. L-Diaminobutyric acid, which is found as the acetyl derivative in the precursor nucleotide and in the completed peptidoglycan of C. insidiosum, was added as the free amino acid and not as the acetylated compound.  相似文献   

11.
A mutant of Bacillus subtilis which grew in complex medium at 30 degrees C but lysed at 45 degrees C has been isolated. It could only grow on minimal medium at 45 degrees C with added aspartate (20 microgram ml-1) but lysed if lysine (20 microgram ml-1) was also present. The requirement for aspartate was due to a low activity of pyruvate carboxylase; the site of the mutation (pyc) was linked (16% cotransducible using phage PBSI) to the pyrD locus, and the order of markers deduced was: pyrD-cysC-pyc. This defect appeared to lead to decreased synthesis of mesodiaminopimelic acid (mesoA2pm), an amino acid unique to peptidoglycan and its precursors. At the restrictive temperature the mutant accumulated uridine-5'-diphosphate N-acetylmuramyl-L-alanyl-D-glutamate, since meso A2pm is the next amino acid to be added to the growing peptide chain of peptidoglycan. This resulted in an inhibition of peptidoglycan synthesis, determined as a reduced incorporation of N-acetyl[14C]glucosamine. Peptidoglycan synthesis was not decreased if the mutant was grown in media containing aspartate but lacking lysine. The sensitivity to lysine may arise because (i) at 45 degrees C the mutant was starved for aspartate and hence mesoA2pm even when aspartate was present, since aspartate utilization, as estimated by the incorporation of [3H]aspartate into trichloroacetic acid precipitable material, was relatively inefficient; and (ii) this diminished level of mesoA2pm synthesis from aspartate was further curtailed since lysine inhibits one of the aspartokinases in B. subtilis. Thus, addition of lysine allowed protein synthesis and hence autolysin production to proceed whilst peptidoglycan synthesis remained inhibited. When autolysis was blocked, either indirectly by stopping protein synthesis through starvation of aspartate and lysine, or directly by introducing a lyt mutation, then shifting the mutant to 45 degrees C did not result in lysis but growth still ceased.  相似文献   

12.
Cholate-solubilized Bacillus megaterium membranes can be reconstituted by dialysis in the presence of magnesium ion to regain approximately 12% of the original peptidoglycan synthetic activity. Bio-Gel A-5m filtration of the solubilized components shows that all of the compounds necessary for peptidoglycan synthesis can be dissociated into material with a molecular weight of less than approximately 68,000. Using this reconstitution system, an assay has been developed for a new protein factor, PG-II, of B. megaterium. This factor could be combined with phospho-N-acetylmuramyl pentapeptide translocase and N-acetylglucosaminyl transferase to synthesize polymerized peptidoglycan from the precursors UDP-N-acetylmuramyl pentapeptide and UDP-N-acetylglucosamine. In the absence of PG-II, the disaccharide pentapeptide substrate for the polymerase was accumulated. In the presence of this factor, the amount of the substrate was diminished and polymeric peptidoglycan was formed. Therefore, PG-II was likely to be necessary for the polymerization step and may well have been the polymerase itself. From three chromatographic steps developed for the purification of PG-II, it seemed likely that a single protein with a molecular weight of approximately 60,000 could have PG-II activity.  相似文献   

13.
The role of cytidine diphosphate (CDP)-glycerol in gram-positive bacteria whose walls lack poly(glycerol phosphate) was investigated. Membrane preparations from Staphylococcus aureus H, Bacillus subtilis W23, and Micrococcus sp. 2102 catalyzed the incorporation of glycerol phosphate residues from radioactive CDP-glycerol into a water-soluble polymer. In toluenized cells of Micrococcus sp. 2102, some of this product became linked to the wall. In each case, maximum incorporation of glycerol phosphate residues required the presence of the nucleotide precursors of wall teichoic acid and of uridine diphosphate-N-acetylglucosamine. In membrane preparations capable of synthesizing peptidoglycan, vancomycin caused a decrease in the incorporation of isotope from CDP-glycerol into polymer. Synthesis of the poly (glycerol phosphate) unit thus depended at an early stage on the concomitant synthesis of wall teichoic acid and later on the synthesis of peptidoglycan. It is concluded that CDP-glycerol is the biosynthetic precursor of the tri(glycerol phosphate) linkage unit between teichoic acid and peptidoglycan that has recently been characterized in S. aureus H.  相似文献   

14.
Synthesis of teichoic acid by Bacillus subtilis protoplasts   总被引:6,自引:5,他引:1       下载免费PDF全文
Protoplasts of Bacillus subtilis W23 readily synthesized ribitol teichoic acid from nucleotide precursors in the surrounding medium. With cytidine diphosphate-ribitol they made poly(ribitol phosphate), presumably attached to lipoteichoic acid carrier; when cytidine diphosphate-glycerol and uridine diphosphate-N-acetylglucosamine were also present a 10-fold increase in the rate of polymer synthesis occurred, and the product contained both the main chain and the linkage unit. Synthesis was inhibited by trypsin or p-chloromercuribenzenesulfonate in the medium, and we concluded that it occurred at the outer surface of the membrane. During synthesis, which was also achieved readily by whole cells after a brief period of wall lysis, the cytidine phosphate portion of the nucleotide precursors did not pass through the membrane. No evidence could be obtained for a transphosphorylation mechanism for the translocation process. It is suggested that reaction with exogenous substrates was due to temporary exposure of a protein component of the enzyme complex at the outer surface of the membrane during the normal biosynthetic cycle.  相似文献   

15.
Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Delta-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development.  相似文献   

16.
In synchronously sporulating cells of Bacillus sphaericus 9602, the specific activities of those enzymes specifically required for the synthesis of the UDP-N-acetyl-muramyl-pentapeptide precursor of vegetative cell wall peptidoglycan decay by 50% after the end of exponential cell division, probably as a consequence of dilution by newly synthesized protein. The meso-diaminopimelate ligase is the only new activity whose synthesis is required for synthesis of the nucleotide-pentapeptide precursor of spore cortex peptidoglycan. The addition of d-Ala-d-Ala to the nucleotide tripeptide is catalyzed by an enzyme present in both vegetative and sporulating cells, which apparently does not discriminate between lysine- and diaminopimelate-containing acceptors. The activities of the l-Ala and d-Ala-d-Ala ligases and of the d-Ala-d-Ala synthetase increases in parallel with the appearance of the diaminopimelate ligase, indicating coordinate derepression and suggesting operon-like organization of the appropriate structural genes.  相似文献   

17.
Mutants of Bacillus subtilis constitutive for L-leucine dehydrogenase synthesis were selected. Using these mutants we could determine two functional roles for the L-leucine dehydrogenase. This enzyme liberates ammonium ions from branched chain amino acids when supplied as the sole nitrogen source. Another function is to synthesize from L-isoleucine, L-leucine, and L-valine the branched chain -keto acids which are precursors of branched chain fatty acid biosynthesis. These results together with the inducibility of the enzyme suggest that the L-leucine dehydrogenase has primarily a catabolic rather than an anabolic function in the metabolism of Bacillus subtilis.  相似文献   

18.
Cytoplasmic steps of peptidoglycan synthesis in Escherichia coli.   总被引:29,自引:26,他引:3       下载免费PDF全文
The cellular pool levels of most of the cytoplasmic precursors of peptidoglycan synthesis were determined for normally growing cells of Escherichia coli K-12. In particular, a convenient method for analyzing the uridine nucleotide precursor contents was developed by associating gel filtration and reverse-phase high-pressure liquid chromatography techniques. The enzymatic parameters of the four synthetases which catalyze the stepwise addition of L-alanine, D-glutamic acid, meso-diaminopimelic acid, and D-alanyl-D-alanine to uridine diphosphate-N-acetylmuramic acid were determined. It was noteworthy that the pool levels of L-alanine, D-glutamic acid, meso-diaminopimelic acid, and D-alanyl-D-alanine were much higher than the Km values determined for these substrates, whereas the molar concentrations of the uridine nucleotide precursors were lower than or about the same order of magnitude as the corresponding Km values. Taking into consideration the data obtained, an attempt was made to compare the in vitro activities of the D-glutamic acid, meso-diaminopimelic acid, and D-alanyl-D-alanine adding enzymes with their in vivo functioning, expressed by the amounts of peptidoglycan synthesized. The results also suggested that these adding activities were not in excess in the cell under normal growth conditions, but their amounts appeared adjusted to the requirements of peptidoglycan synthesis. Under the different in vitro conditions considered, only low levels of L-alanine adding activity were observed.  相似文献   

19.
Cytoplasmic precursors of the peptidoglycan biosynthetic pathway were purified from vancomycin-treated, glycopeptide-sensitive and -resistant strains of Enterococcus faecium. Resistance was due to production of a modified precursor, UDP-MurNAc-L-Ala-D-Glu-L-Lys-D-Ala-D-lactate, where lactate was identified on the basis of mass of the precursor and on its ability to act as a substrate for D-lactate dehydrogenase after release from the precursor. The presence of the D-lactate residue instead of D-alanine in the terminal position would hinder formation of a vancomycin-precursor complex, without preventing incorporation of the precursor into mature peptidoglycan.  相似文献   

20.
Cell wall peptidoglycan assembly is a tightly regulated process requiring the combined action of multienzyme complexes. In this study we provide direct evidence showing that substrate transformations occurring at the different stages of this process play a crucial role in the spatial and temporal coordination of the cell wall synthesis machinery. Peptidoglycan substrate alteration was investigated in the Gram-positive bacterium Lactococcus lactis by substituting the peptidoglycan precursor biosynthesis genes of this bacterium for those of the vancomycin-resistant bacterium Lactobacillus plantarum. A set of L. lactis mutant strains in which the normal d-Ala-ended precursors were partially or totally replaced by d-Lac-ended precursors was generated. Incorporation of the altered precursor into the cell wall induced morphological changes arising from a defect in cell elongation and cell separation. Structural analysis of the muropeptides confirmed that the activity of multiple enzymes involved in peptidoglycan synthesis was altered. Optimization of this altered pathway was necessary to increase the level of vancomycin resistance conferred by the utilization of d-Lac-ended peptidoglycan precursors in the mutant strains. The implications of these findings on the control of bacterial cell morphogenesis and the mechanisms of vancomycin resistance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号