首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown that the ability of a protein to be in globular or in natively unfolded state (under native conditions) may be determined (besides low overall hydrophobicity and a large net charge) by such a property as the average environment density, the average number of residues enclosed at the given distance. A statistical scale of the average number of residues enclosed at the given distance for 20 types of amino acid residues in globular state has been created on the basis of 6626 protein structures. Using this scale for separation of 80 globular and 90 natively unfolded proteins we fail only in 11% of proteins (compared with 17% of errors which are observed if to use hydrophobicity scale). The present scale may be used both for prediction of form (folded or unfolded) of the native state of protein and for prediction of natively unfolded regions in protein chains. The results of comparison of our method of predicting natively unfolded regions with the other known methods show that our method has the highest fraction of correctly predicted natively unfolded regions (that is 87% and 77% if to make averaging over residues and over proteins correspondingly).  相似文献   

2.
Singh GP  Ganapathi M  Sandhu KS  Dash D 《Proteins》2006,62(2):309-315
The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and, therefore, efforts are ongoing to delineate the sequence motifs, which might contribute to protein disorder. We find that PEST motifs are enriched in the characterized disordered regions as compared with globular ones. Analysis of representative PDB chains revealed very few structures containing PEST sequences and the majority of them lacked regular secondary structure. A proteome-wide study in completely sequenced eukaryotes with predicted unfolded and folded proteins shows that PEST proteins make up a large fraction of unfolded dataset as compared with the folded proteins. Our data also reveal the prevalence of PEST proteins in eukaryotic proteomes (approximately 25%). Functional classification of the PEST-containing proteins shows an over- and under-representation in proteins involved in regulation and metabolism, respectively. Furthermore, our analysis shows that predicted PEST regions do not exhibit any preference to be localized in the C terminals of proteins, as reported earlier.  相似文献   

3.
Partly unfolded protein conformations close to the native state may play important roles in protein function and in protein misfolding. Structural analyses of such conformations which are essential for their fully physicochemical understanding are complicated by their characteristic low populations at equilibrium. We stabilize here with a single mutation the equilibrium intermediate of apoflavodoxin thermal unfolding and determine its solution structure by NMR. It consists of a large native region identical with that observed in the X-ray structure of the wild-type protein plus an unfolded region. Small-angle X-ray scattering analysis indicates that the calculated ensemble of structures is consistent with the actual degree of expansion of the intermediate. The unfolded region encompasses discontinuous sequence segments that cluster in the 3D structure of the native protein forming the FMN cofactor binding loops and the binding site of a variety of partner proteins. Analysis of the apoflavodoxin inner interfaces reveals that those becoming destabilized in the intermediate are more polar than other inner interfaces of the protein. Natively folded proteins contain hydrophobic cores formed by the packing of hydrophobic surfaces, while natively unfolded proteins are rich in polar residues. The structure of the apoflavodoxin thermal intermediate suggests that the regions of natively folded proteins that are easily responsive to thermal activation may contain cores of intermediate hydrophobicity.  相似文献   

4.
Shutova T  Irrgang K  Klimov VV  Renger G 《FEBS letters》2000,467(2-3):137-140
This study compares the properties of the extrinsic 33 kDa subunit acting as 'manganese stabilizing protein' (MSP) of the water oxidizing complex with characteristic features of proteins that are known to attain a 'natively unfolded' or a 'molten globule' structure. The analysis leads to the conclusion that the MSP in solution is most likely a 'molten globule' with well defined compact regions of beta structure. The possible role of these structural peculiarities of MSP in solution for its function as important constituent of the WOC is discussed.  相似文献   

5.
Proteins are folded during their synthesis; this process may be spontaneous or assisted. Both phenomena are carefully regulated by the "housekeeping" mechanism and molecular chaperones to avoid the appearance of misfolded proteins. Unfolding process generally occurs during physiological degradation of protein, but in some specific cases it results from genetic or environmental changes and does not correspond to metabolic needs. The main outcome of these phenomena is the appearance of nonfunctional pathologically unfolded proteins with a strong tendency to aggregation. Moreover, for some of these unfolded proteins, the agglomeration that follows initial proteins association may give rise to highly structured soluble aggregates. These aggregates have been identified as the main cause of the so-called amyloidosis or amyloid diseases, such as Alzheimer's, Parkinson's, and Creutzfeldt-Jakob diseases, and type II diabetes mellitus. Although some common mechanisms of amyloid protein aggregation have been identified, the roles of the environmental conditions inducing amyloidosis remain to be clarified. In this review, we will summarize recent studies identifying the origin of amyloid nucleation and will try to predict the therapeutic prospects that may be opened by elucidation of the amyloidosis mechanisms.  相似文献   

6.
Apparent transition state movement upon mutation or changes in solvent conditions is frequently observed in protein folding and is often interpreted in terms of Hammond behavior. This led to the conclusion that barrier regions in protein folding are broad maxima on the free energy landscape. Here, we use the concept of self-interaction and cross-interaction parameters to test experimental data of 21 well-characterized proteins for Hammond behavior. This allows us to characterize the origin of transition state movements along different reaction coordinates. Only one of the 21 proteins shows a small but coherent transition state movement in agreement with the Hammond postulate. In most proteins the structure of the transition state is insensitive to changes in protein stability. The apparent change in the position of the transition state upon mutation, which is frequently observed in phi-value analysis, is in most cases due to ground-state effects caused by structural changes in the unfolded state. This argues for significant residual structure in unfolded polypeptide chains of many proteins. Disruption of these residual interactions by mutation often leads to decreased folding rates, which implies that these interactions are still present in the transition state. The failure to detect Hammond behavior shows that the free energy barriers encountered by a folding polypeptide chain are generally rather narrow and robust maxima for all experimentally explorable reaction coordinates.  相似文献   

7.
Zhang L  Lu D  Liu Z 《Biophysical chemistry》2008,133(1-3):71-80
Aggregation of native proteins in solution is of fundamental importance with regard to both the processing and the utilization of proteins. In the present work, a dynamic Monte Carlo simulation has been performed to give a molecular insight into the way in which native proteins aggregate in solution and to explore means of suppressing aggregation, using two proteins of different compositions and conformations represented by a two-dimensional (2D) lattice model (HP model). It is shown that the native HP protein with accessible hydrophobic beads on its surface is prone to aggregation. The aggregation of this protein is intensified when the solution conditions favor the partially unfolded conformation as opposed to either the native or fully unfolded conformations. In this case, the partially unfolded proteins form the cores of aggregates, which may also encapsulate the native protein. One way to inhibit protein aggregation is to introduce polymers of appropriate hydrophobicity and chain length into the solution, such that these polymer molecules wrap around the hydrophobic regions of both the unfolded and folded proteins, thereby segregating the protein molecules. Our simulation is consistent with experimental observations reported elsewhere and provides a molecular basis for the behavior of proteins in liquid environments.  相似文献   

8.
Prediction of natively unfolded regions in protein chains   总被引:1,自引:0,他引:1  
Analysis showed that the globular or natively unfolded state of a protein can be inferred not only from a lower hydrophobicity or a higher charge, but also from the average environment density (average number of close residues located within a certain distance of a given one) of its residues. A database of 6626 protein structures was used to construct a statistical scale of the average number of close residues in globular structures for the 20 amino acids. The portion of false predictions in distinguishing between 80 globular and 90 natively unfolded proteins was 11% with the new scale and 17% with a hydrophobicity scale. The new scale proved suitable for predicting the folded or unfolded state for native proteins or the natively unfolded regions for protein chains. In comparisons with the available algorithms, the new method yielded the highest portion of true predictions (87 and 77% with averaging over residues and over proteins, respectively).  相似文献   

9.
Lovell SC 《FEBS letters》2003,554(3):237-239
It has recently been shown that many proteins are unfolded in their functional state. In addition, a large number of stretches of protein sequences are predicted to be unfolded. It has been argued that the high frequency of occurrence of these predicted unfolded sequences indicates that the majority of these sequences must also be functional. These sequences tend to be of low complexity. It is well established that certain types of low-complexity sequences are genetically unstable, and are prone to expand in the genome. It is possible, therefore, that in addition to these well-characterised functional unfolded proteins, there are a large number of unfolded proteins that are non-functional. Analogous to 'junk DNA' these protein sequences may arise due to physical characteristics of DNA. Their high frequency may reflect, therefore, the high probability of expansion in the genome. Such 'junk proteins' would not be advantageous, and may be mildly deleterious to the cell.  相似文献   

10.
Increasing evidence indicates that many peptides and proteins can be converted in vitro into highly organised amyloid structures, provided that the appropriate experimental conditions can be found. In this work, we define intrinsic propensities for the aggregation of individual amino acids and develop a method for identifying the regions of the sequence of an unfolded peptide or protein that are most important for promoting amyloid formation. This method is applied to the study of three polypeptides associated with neurodegenerative diseases, Abeta42, alpha-synuclein and tau. In order to validate the approach, we compare the regions of proteins that are predicted to be most important in driving aggregation, either intrinsically or as the result of mutations, with those determined experimentally. The knowledge of the location and the type of the "sensitive regions" for aggregation is important both for rationalising the effects of sequence changes on the aggregation of polypeptide chains and for the development of targeted strategies to combat diseases associated with amyloid formation.  相似文献   

11.
The unfolded state of a protein is an ensemble of a large number of conformations ranging from fully extended to compact structures. To investigate the effects of the difference in the unfolded-state ensemble on protein folding, we have studied the structure, stability, and folding of "circular" dihydrofolate reductase (DHFR) from Escherichia coli in which the N and C-terminal regions are cross-linked by a disulfide bond, and compared the results with those of disulfide-reduced "linear" DHFR. Equilibrium studies by circular dichroism, difference absorption spectra, solution X-ray scattering, and size-exclusion chromatography show that whereas the native structures of both proteins are essentially the same, the unfolded state of circular DHFR adopts more compact conformations than the unfolded state of the linear form, even with the absence of secondary structure. Circular DHFR is more stable than linear DHFR, which may be due to the decrease in the conformational entropy of the unfolded state as a result of circularization. Kinetic refolding measurements by stopped-flow circular dichroism and fluorescence show that under the native conditions both proteins accumulate a burst-phase intermediate having the same structures and both fold by the same complex folding mechanism with the same folding rates. Thus, the effects of the difference in the unfolded state of circular and linear DHFRs on the refolding reaction are not observed after the formation of the intermediate. This suggests that for the proteins with close termini in the native structure, early compaction of a protein molecule to form a specific folding intermediate with the N and C-terminal regions in close proximity is a crucial event in folding. If there is an enhancement in the folding reflecting the reduction in the breadth of the unfolded-state ensemble for circular DHFR, this acceleration must occur in the sub-millisecond time-range.  相似文献   

12.
Dafforn TR  Smith CJ 《EMBO reports》2004,5(11):1046-1052
It is commonly assumed that a protein must adopt a tertiary structure to achieve its active native state and that regions of a protein that are devoid of alpha-helix or beta-sheet structures are functionally inert. Although extended proline-rich regions are recognized as presenting binding motifs to, for example, Src homology 2 (SH2) and SH3 domains, the idea persists that natively unfolded regions in functional proteins are simply 'spacers' between the folded domains. Such a view has been challenged in recent years and the importance of natively unfolded proteins in biology is now being recognized. In this review, we highlight the role of natively unfolded domains in the field of endocytosis, and show that some important endocytic proteins lack a traditionally folded structure and harbour important binding motifs in their unstructured linker regions.  相似文献   

13.

Background  

The polypeptides involved in amyloidogenesis may be globular proteins with a defined 3D-structure or natively unfolded proteins. The first class includes polypeptides such as β2-microglobulin, lysozyme, transthyretin or the prion protein, whereas β-amyloid peptide, amylin or α-synuclein all belong to the second class. Recent studies suggest that specific regions in the proteins act as "hot spots" driving aggregation. This should be especially relevant for natively unfolded proteins or unfolded states of globular proteins as they lack significant secondary and tertiary structure and specific intra-chain interactions that can mask these aggregation-prone regions. Prediction of such sequence stretches is important since they are potential therapeutic targets.  相似文献   

14.
Reactive oxygen species, generated as normal by-products of aerobic metabolism or due to cellular stress, oxidize molecules and cause cell death by apoptosis. The accumulation of oxidized proteins is a hallmark of aging and a number of aging diseases. Oxidation can impair protein function as the proteins are unfolded leading to an increase of protein hydrophobicity and often resulting in the formation of toxic aggregates. The yeast Saccharomyces cerevisiae has been used as a eukaryotic model system to analyze the molecular mechanisms of oxidative stress protection. This paper reviews how the identification in yeast of specific damaged proteins has provided new insights into mechanisms of cytotoxicity and highlights the role of repair and degradative processes, including vacuolar/lysosomal and proteasomal proteolysis, in housekeeping after protein oxidative damage.  相似文献   

15.
Fesselin is a heat stable proline-rich actin binding protein. The stability, amino acid composition, and ability to bind to several proteins suggested that fesselin may be unfolded under native conditions. While the complete sequence of fesselin is unknown an analysis of a closely related protein, synaptopodin 2 from Gallus gallus, indicates that fesselin consists of a series of unstructured regions interspersed between short folded regions. To determine if fesselin is natively unfolded, we compared fesselin to a known globular protein (myosin S1) and a known unfolded protein Cad22 (the COOH terminal 22 kDa fragment of caldesmon). Fesselin, and Cad22, had larger Stokes radii than globular proteins of equivalent mass. The environments of tryptophan residues of fesselin and Cad22 were the same in the presence and absence of 6 M guanidine hydrochloride. Fesselin had a circular dichroism spectrum that was primarily random coil. Changes in pH over the range of 1.5-11.5 did not alter that spectrum. Increasing the temperature to 85 degrees C caused an increase in the degree of secondary structure. Calmodulin binding to fesselin altered the environment of the tryptophan residues so that they became less sensitive to the quencher acrylamide. These results show that fesselin is a natively unfolded protein.  相似文献   

16.
The use of Western blot analysis is of great importance in research, and the measurement of housekeeping proteins is commonly used for loading controls. However, Ponceau S staining has been shown to be an alternative to analysis of housekeeping protein levels as loading controls in some conditions. In the current study, housekeeping protein levels were measured in skeletal muscle hypertrophy and streptozotocin-induced diabetes experimental models. The following housekeeping proteins were investigated: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-actin, α-tubulin, γ-tubulin, and α-actinin. Evidence is presented that Ponceau S is more reliable than housekeeping protein levels for specific protein quantifications in Western blot analysis.  相似文献   

17.
Amino acid mutation(s) that cause(s) partial or total unfolding of a protein can lead to disease states and failure to produce mutants. It is therefore very useful to be able to predict which mutations can retain the conformation of a wild-type protein and which mutations will lead to local or global unfolding of the protein. We have developed a fast and reasonably accurate method based on a backbone-dependent side-chain rotamer library to predict the (folded or unfolded) conformation of a protein upon mutation. This method has been tested on proteins whose wild-type 3D structures are known and whose mutant conformations have been experimentally characterized to be folded or unfolded. Furthermore, for the cases studied here, the predicted partially folded or denatured mutant conformation correlate with a decrease in the stability of the mutant relative to the wild-type protein. The key advantage of our method is that it is very fast and predicts locally or globally unfolded states fairly accurately. Hence, it may prove to be useful in designing site-directed mutagenesis, X-ray crystallography and drug design experiments as well as in free energy simulations by helping to ascertain whether a mutation will alter or retain the wild-type conformation.  相似文献   

18.
19.
Transient structures in unfolded proteins are important in elucidating the molecular details of initiation of protein folding. Recently, native and non-native secondary structure have been discovered in unfolded A. vinelandii flavodoxin. These structured elements transiently interact and subsequently form the ordered core of an off-pathway folding intermediate, which is extensively formed during folding of this α–β parallel protein. Here, site-directed spin-labelling and paramagnetic relaxation enhancement are used to investigate long-range interactions in unfolded apoflavodoxin. For this purpose, glutamine-48, which resides in a non-native α-helix of unfolded apoflavodoxin, is replaced by cysteine. This replacement enables covalent attachment of nitroxide spin-labels MTSL and CMTSL. Substitution of Gln-48 by Cys-48 destabilises native apoflavodoxin and reduces flexibility of the ordered regions in unfolded apoflavodoxin in 3.4 M GuHCl, because of increased hydrophobic interactions in the unfolded protein. Here, we report that in the study of the conformational and dynamic properties of unfolded proteins interpretation of spin-label data can be complicated. The covalently attached spin-label to Cys-48 (or Cys-69 of wild-type apoflavodoxin) perturbs the unfolded protein, because hydrophobic interactions occur between the label and hydrophobic patches of unfolded apoflavodoxin. Concomitant hydrophobic free energy changes of the unfolded protein (and possibly of the off-pathway intermediate) reduce the stability of native spin-labelled protein against unfolding. In addition, attachment of MTSL or CMTSL to Cys-48 induces the presence of distinct states in unfolded apoflavodoxin. Despite these difficulties, the spin-label data obtained here show that non-native contacts exist between transiently ordered structured elements in unfolded apoflavodoxin.  相似文献   

20.
Although natively unfolded proteins are being observed increasingly, their physiological role is not well understood. Here, we demonstrate that the Escherichia coli YefM protein is a natively unfolded antitoxin, lacking secondary structure even at low temperature or in the presence of a stabilizing agent. This conformation of the protein is suggested to have a key role in its physiological regulatory activity. Because of the unfolded state of the protein, a linear determinant rather than a conformational one is presumably being recognized by its toxin partner, YoeB. A peptide array technology allowed the identification and validation of such a determinant. This recognition element may provide a novel antibacterial target. Indeed, a pair-constrained bioinformatic analysis facilitated the definite determination of novel YefM-YoeB toxin-antitoxin systems in a large number of bacteria including major pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, and Mycobacterium tuberculosis. Taken together, the YefM protein defines a new family of natively unfolded proteins. The existence of a large and conserved group of proteins with a clear physiologically relevant unfolded state serves as a paradigm to understand the structural basis of this state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号