首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
The fibroblast growth factor (FGF) family consists of 22 ligands in mice and humans. FGF signaling is vital for embryogenesis and, when dysregulated, can cause disease. Loss‐of‐function genetic analysis in the mouse has been crucial for understanding FGF function. Such analysis has revealed that multiple Fgfs sometimes function redundantly. Exploring such redundancy between Fgf3 and Fgf4 is currently impossible because both genes are located on chromosome 7, about 18.5 kb apart, making the frequency of interallelic cross‐over between existing mutant alleles too infrequent to be practicable. Therefore, we retargeted Fgf3 and Fgf4 in cis, generating an Fgf3 null allele and a conditional Fgf4 allele, subject to Cre inactivation. To increase the frequency of cis targeting, we used an F1 embryonic stem cell line that contained 129/SvJae (129) and C57BL/6J (B6) chromosomes and targeting constructs isogenic to the 129 chromosome. We confirmed cis targeting by assaying for B6/129 allele‐specific single‐nucleotide polymorphisms. We demonstrated the utility of the Fgf3Δ‐Fgf4floxcis mouse line by showing that the caudal axis extension defects found in the Fgf3 mutants worsen when Fgf4 is also inactivated. This Fgf3Δ‐Fgf4floxcis line will be useful to study redundancy of these genes in a variety of tissues and stages in development. genesis 54:91–98, 2016. Published 2016. This article is a US Government work and is in the public domain in the USA.  相似文献   

2.
Background: Retinoic acid (RA) is essential for inner ear development. However, exposure to excess RA at a critical period leads to inner ear defects. These defects are associated with disruption in epithelial–mesenchymal interactions. METHODS: This study investigates the role of Dlx5 in the epithelial–mesenchymal interactions that guide otic capsule chondrogenesis, as well as the effect of excess in utero RA exposure on Dlx5 expression in the developing mouse inner ear. Control of Dlx5 by Fgf3 and Fgf10 under excess RA conditions is investigated by examining the developmental window during which Fgf3 and Fgf10 are altered by in utero RA exposure and by testing the ability of Fgf3 and Fgf10 to mitigate the reduction in chondrogenesis and Dlx5 expression mediated by RA in high‐density cultures of periotic mesenchyme containing otic epithelium, a model of epithelial–mesenchymal interactions in which chondrogenic differentiation of periotic mesenchyme ensues in response to induction by otic epithelium. RESULTS: Dlx5 deletion alters expression of TGFβ1, important for otic capsule chondrogenesis, in the developing inner ear and compromises the ability of cultured periotic mesenchyme containing otic epithelium, harvested from Dlx5 null embryos, to differentiate into cartilage when compared with control cultures. Downregulation in Dlx5 ensues as a consequence of in utero RA exposure in association with inner ear dysmorphogenesis. This change in Dlx5 is noted at embryonic day 10.5 (E10.5), but not at E9.5, suggesting that Dlx5 is not a direct RA target. Before Dlx5 downregulation, Fgf3 and Fgf10 expression is modified in the inner ear by excess RA, with the ability of exogenous Fgf3 and Fgf10 to rescue chondrogenesis and Dlx5 expression in RA‐treated cultures of periotic mesenchyme containing otic epithelium supporting these fibroblast growth factors (FGFs) as intermediary genes by which RA mediates its effects. CONCLUSIONS : Disruption in an Fgf3, ‐10/Dlx5 signaling cascade is operant in molecular mechanisms of inner ear teratogenesis by excess RA. Birth Defects Res (Part B) 2008. ©2008 Wiley‐Liss, Inc.  相似文献   

3.
Heart development requires contributions from, and coordinated signaling interactions between, several cell populations, including splanchnic and pharyngeal mesoderm, postotic neural crest and the proepicardium. Here we report that Fgf3 and Fgf10, which are expressed dynamically in and near these cardiovascular progenitors, have redundant and dosage sensitive requirements in multiple aspects of early murine cardiovascular development. Embryos with Fgf3−/+;Fgf10−/−, Fgf3−/−;Fgf10−/+ and Fgf3−/−;Fgf10−/− genotypes formed an allelic series of increasing severity with respect to embryonic survival, with double mutants dead by E11.5. Morphologic analysis of embryos with three mutant alleles at E11.5–E13.5 and double mutants at E9.5–E11.0 revealed multiple cardiovascular defects affecting the outflow tract, ventricular septum, atrioventricular cushions, ventricular myocardium, dorsal mesenchymal protrusion, pulmonary arteries, epicardium and fourth pharyngeal arch artery. Assessment of molecular markers in E8.0–E10.5 double mutants revealed abnormalities in each progenitor population, and suggests that Fgf3 and Fgf10 are not required for specification of cardiovascular progenitors, but rather for their normal developmental coordination. These results imply that coding or regulatory mutations in FGF3 or FGF10 could contribute to human congenital heart defects.  相似文献   

4.
5.
The anterior part of the embryonic telencephalon gives rise to several brain regions that are important for animal behavior, including the frontal cortex (FC) and the olfactory bulb. The FC plays an important role in decision‐making behaviors, such as social and cognitive behavior, and the olfactory bulb is involved in olfaction. Here, we show the organizing activity of fibroblast growth factor 8 (Fgf8) in the regionalization of the anterior telencephalon, specifically the FC and the olfactory bulb. Misexpression of Fgf8 in the most anterior part of the mouse telencephalon at embryonic day 11.5 (E11.5) by ex utero electroporation resulted in a lateral shift of dorsal FC subdivision markers and a lateral expansion of the dorsomedial part of the FC, the future anterior cingulate and prelimbic cortex. Fgf8‐transfected brains had lacked ventral FC, including the future orbital cortex, which was replaced by the expanded olfactory bulb. The olfactory region occupied a larger area of the FC when transfection efficiency of Fgf8 was higher. These results suggest that Fgf8 regulates the proportions of the FC and olfactory bulb in the anterior telencephalon and has a medializing effect on the formation of FC subdivisions.  相似文献   

6.

Hair length in mammals is generally regulated by the hair cycle, and its disruption leads to abnormal hair morphogenesis in several species. FGF5, one of the hair cycle regulators, has a role in inducing catagen, and that mutation causes abnormal hair length in both sexes in humans, mice, dogs, and cats. Male-dominant long-haired coat (MALC) is an inbred strain of Syrian hamster exhibiting spontaneous long hair in males. After castration, MALC exhibited significantly shorter hair than the control individuals, but testosterone administration to castrated MALC showed reversion to the original phenotype. Moreover, flutamide administration led to MALC phenotype repression. Histological analysis revealed that hair follicle regression was shown in the wild-type 4 weeks after depilation, but that of MALC remained in the anagen phase. We detected a c.546delG of Fgf5 in MALC (Fgf5 malc) that might lead to truncation resulting from a frame shift in FGF5 (p.Arg184GlyfsX6). Additionally, homozygous Fgf5 malc was only detected in long-haired (Slc:Syrian × MALC)F2 and (J-2-Nn × MALC)F2 progenies, and all homozygous wild and heterozygous Fgf5 malc individuals showed normal hair length. Thus, Fgf5 malc leads to male-dominant long hair via a prolonged anagen phase which is affected by testosterone in hamsters. To our knowledge, this report is the first to present the sexual dimorphism of hair length caused by the Fgf5 mutation.

  相似文献   

7.
8.
The development of multicellular embryos depends on coordinated cell-to-cell signalling events. Among the numerous cell-signalling pathways, fibroblast growth factors (FGFs) are involved in important processes during embryogenesis, such as mesoderm formation during gastrulation and growth. In vertebrates, the Fgf superfamily consists of 22 family members, whereas only few FGFs are contained in the less complex genomes of insects and worms. In the recently sequenced genome of the beetle Tribolium, we identified four Fgf family members representing three subfamilies. Tribolium has Fgf1 genes that are absent in Drosophila but known from vertebrates. By phylogenetic analysis and microsynteny to Drosophila, we further classify Tc-fgf 8 as an ancestor of pyramus and thisbe, the fly Fgf8 genes. Tc-fgf8 expression in the growth zone suggests an involvement in mesoderm formation. In the embryonic head, expression of Tc-fgf8 subdivides the brain into a larger anterior and a smaller posterior region. The Fgf Tc-branchless is expressed in the embryonic tracheal placodes and in various gland-like structures. The expression patterns of the only Tribolium Fgf receptor and the adaptor molecule Downstream-of-Fgfr are largely congruent with Tc-Fgf8 and Tc-bnl. Thus, in contrast to Drosophila, only one Fgf receptor canalises Fgf signalling in different tissues in Tribolium. Our findings significantly advance our understanding of the evolution of Fgf signalling in insects.  相似文献   

9.
The genes encoding members of the wingless-related MMTV integration site (WNT) and fibroblast growth factor (FGF) families coordinate growth, morphogenesis, and differentiation in many fields of cells during development. In the mouse, Fgf9 and Wnt4 are expressed in gonads of both sexes prior to sex determination. Loss of Fgf9 leads to XY sex reversal, whereas loss of Wnt4 results in partial testis development in XX gonads. However, the relationship between these signals and the male sex-determining gene, Sry, was unknown. We show through gain- and loss-of-function experiments that fibroblast growth factor 9 (FGF9) and WNT4 act as opposing signals to regulate sex determination. In the mouse XY gonad, Sry normally initiates a feed-forward loop between Sox9 and Fgf9, which up-regulates Fgf9 and represses Wnt4 to establish the testis pathway. Surprisingly, loss of Wnt4 in XX gonads is sufficient to up-regulate Fgf9 and Sox9 in the absence of Sry. These data suggest that the fate of the gonad is controlled by antagonism between Fgf9 and Wnt4. The role of the male sex-determining switch— Sry in the case of mammals—is to tip the balance between these underlying patterning signals. In principle, sex determination in other vertebrates may operate through any switch that introduces an imbalance between these two signaling pathways.  相似文献   

10.
The midbrain-hindbrain (MHB) junction has the properties of an organizer that patterns the MHB region early in vertebrate development. Fgf8 is thought to mediate this organizer function. In addition to Fgf8, Fgf17 and Fgf18 are also expressed in the MHB junction. Fgf17 is expressed later and broader than either Fgf8 or Fgf18. Disrupting the Fgf17 gene in the mouse decreased precursor cell proliferation in the medial cerebellar (vermis) anlage after E11.5. Loss of an additional copy of Fgf8 enhanced the phenotype and accelerated its onset, demonstrating that both molecules cooperate to regulate the size of the precursor pool of cells that develop into the cerebellar vermis. However, expression patterns of Wnt1, En2, Pax5 and Otx2 were not altered suggesting that specification and patterning of MHB tissue was not perturbed and that these FGFs are not required to pattern the vermis at this stage of development. The consequence of this developmental defect is a progressive, dose-dependent loss of the most anterior lobe of the vermis in mice lacking Fgf17 and in mice lacking Fgf17 and one copy of Fgf8. Significantly, the differentiation of anterior vermis neuroepithelium was shifted rostrally and medially demonstrating that FGF also regulates the polarized progression of differentiation in the vermis anlage. Finally, this developmental defect results in an ataxic gait in some mice.  相似文献   

11.
Fgf signaling plays crucial roles in morphogenesis. Fgf19 is required for zebrafish forebrain development. Here, we examined the roles of Fgf19 in the formation of the lens and retina in zebrafish. Knockdown of Fgf19 caused a size reduction of the lens and the retina, failure of closure of the choroids fissure, and a progressive expansion of the retinal tissue to the midline of the forebrain. Fgf19 expressed in the nasal retina and lens was involved in cell survival but not cell proliferation during embryonic lens and retina development. Fgf19 was essential for the differentiation of lens fiber cells in the lens but not for the neuronal differentiation and lamination in the retina. Loss of nasal fate in the retina caused by the knockdown of Fgf19, expansion of nasal fate in the retina caused by the overexpression of Fgf19 and eye transplantation indicated that Fgf19 in the retina was crucial for the nasal-temporal patterning of the retina that is critical for the guidance of retinal ganglion cell axons. Knockdown of Fgf19 also caused incorrect axon pathfinding. The present findings indicate that Fgf19 positively regulates the patterning and growth of the retina, and the differentiation and growth of the lens in zebrafish.  相似文献   

12.
In cranial skeletal development, the establishment of the ectomesenchymal lineage within the cranial neural crest is of great significance. Fgfs are polypeptide growth factors with diverse functions in development and metabolism. Fgf20b knockdown zebrafish embryos showed dysplastic neurocranial and pharyngeal cartilages. Ectomesenchymal cells from cranial neural crest cells were significantly decreased in Fgf20b knockdown embryos, but cranial neural crest cells with a non-ectomesnchymal fate were increased. However, the proliferation and apoptosis of cranial neural crest cells were essentially unchanged. Fgfr1 knockdown embryos also showed dysplastic neurocranial and pharyngeal cartilages. The present findings indicate that Fgf20b is required for ectomesenchymal fate establishment via the activation of Fgfr1 in zebrafish.  相似文献   

13.
14.
The key role played by Fgf10 during early lung development is clearly illustrated in Fgf10 knockout mice, which exhibit lung agenesis. However, Fgf10 is continuously expressed throughout lung development suggesting extended as well as additional roles for FGF10 at later stages of lung organogenesis. We previously reported that the enhancer trap Mlcv1v-nLacZ-24 transgenic mouse strain functions as a reporter for Fgf10 expression and displays decreased endogenous Fgf10 expression. In this paper, we have generated an allelic series to determine the impact of Fgf10 dosage on lung development. We report that 80% of the newborn Fgf10 hypomorphic mice die within 24 h of birth due to respiratory failure. These mutant mouse lungs display severe hypoplasia, dilation of the distal airways and large hemorrhagic areas. Epithelial differentiation and proliferation studies indicate a specific decrease in TTF1 and SP-B expressing cells correlating with reduced epithelial cell proliferation and associated with a decrease in activation of the canonical Wnt signaling in the epithelium. Analysis of vascular development shows a reduction in PECAM expression at E14.5, which is associated with a simplification of the vascular tree at E18.5. We also show a decrease in α-SMA expression in the respiratory airway suggesting defective smooth muscle cell formation. At the molecular level, these defects are associated with decrease in Vegfa and Pdgfa expression likely resulting from the decrease of the epithelial/mesenchymal ratio in the Fgf10 hypomorphic lungs. Thus, our results indicate that FGF10 plays a pivotal role in maintaining epithelial progenitor cell proliferation as well as coordinating alveolar smooth muscle cell formation and vascular development.  相似文献   

15.
Fgf3 has long been implicated in otic placode induction and early development of the otocyst; however, the results of experiments in mouse and chick embryos to determine its function have proved to be conflicting. In this study, we determined fgf3 expression in relation to otic development in the zebrafish and used antisense morpholino oligonucleotides to inhibit Fgf3 translation. Successful knockdown of Fgf3 protein was demonstrated and this resulted in a reduction of otocyst size together with reduction in expression of early markers of the otic placode. fgf3 is co-expressed with fgf8 in the hindbrain prior to otic induction and, strikingly, when Fgf3 morpholinos were co-injected together with Fgf8 morpholinos, a significant number of embryos failed to form otocysts. These effects were made manifest at early stages of otic development by an absence of early placode markers (pax2.1 and dlx3) but were not accompanied by effects on cell division or death. The temporal requirement for Fgf signalling was established as being between 60% epiboly and tailbud stages using the Fgf receptor inhibitor SU5402. However, the earliest molecular event in induction of the otic territory, pax8 expression, did not require Fgf signalling, indicating an inductive event upstream of signalling by Fgf3 and Fgf8. We propose that Fgf3 and Fgf8 are required together for formation of the otic placode and act during the earliest stages of its induction.  相似文献   

16.
The Fgf8 gene encodes a series of secreted signalling molecules important in the normal development of the face, brain and limbs. The genomic structure of the chick Fgf8 gene has been analysed and compared to the human and mouse sequences. Divergence between the chick, human and mouse genomic structure was observed. Data indicates that the long alternatively spliced form of exon 1b observed in mouse and exon 1c observed in human and mouse do not exist in the chick Fgf8 gene. RT-PCR analysis indicates that chick Fgf8, like its mouse and human counterpart is alternatively spliced. This data along with the genomic structure data indicates that in the chick there are only two isoforms of Fgf8. This is in contrast to the human and mouse, where evidence suggests that there are 4 and 8 isoforms, respectively. Approximately 400 bp of intron 1d is highly conserved between chick, human and mouse genomic sequences. Using TRANSFAC possible conserved regulatory element binding sites within this domain were identified.  相似文献   

17.
Developmental patterning and growth of the vertebrate digestive and respiratory tracts requires interactions between the epithelial endoderm and adjacent mesoderm. The esophagus is a specialized structure that connects the digestive and respiratory systems and its normal development is critical for both. Shh signaling from the epithelium regulates related aspects of mammalian and zebrafish digestive organ development and has a prominent effect on esophageal morphogenesis. The mechanisms underlying esophageal malformations, however, are poorly understood. Here, we show that zebrafish Ihha signaling from the epithelium acting in parallel, but independently of Shh, controls epithelial and mesenchymal cell proliferation and differentiation of smooth muscles and neurons in the gut and swimbladder. In zebrafish ihha mutants, the esophageal and swimbladder epithelium is dysmorphic, and expression of fgf10 in adjacent mesenchymal cells is affected. Analysis of the development of the esophagus and swimbladder in fgf10 mutant daedalus (dae) and compound dae/ihha mutants shows that the Ihha–Fgf10 regulatory interaction is realized through a signaling feedback loop between the Ihha-expressing epithelium and Fgf10-expressing mesenchyme. Disruption of this loop further affects the esophageal and swimbladder epithelium in ihha mutants, and Ihha acts in parallel to but independently of Shha in this process. These findings contribute to the understanding of epithelial–mesenchymal interactions and highlight an interaction between Hh and Fgf signaling pathways during esophagus and swimbladder development.  相似文献   

18.
19.
20.
FGFs with similar sequences can play different roles depending on the model organisms examined. Determining these roles requires knowledge of spatio-temporal Fgf gene expression patterns. In this study, we report the cloning of chick Fgf5, 6 and 7, and examine their gene expression patterns by whole mount in situ hybridization. We show that Fgf5's spatio-temporally restricted expression pattern indicates a potentially novel role during inner ear development. Fgf6 and Fgf7, although belonging to different subfamilies with diverged sequences, are expressed in similar patterns within the mesoderm. Alignment of protein sequences and phylogenetic analysis demonstrate that FGF5 and FGF6 are highly conserved between chick, human, mouse and zebrafish. FGF7 is similarly conserved except for the zebrafish, which has considerably diverged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号