首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Potato virus X (PVX) isolates were obtained from a simple seed potato production scheme or from ware potatoes produced by seed potatoes obtained from it. In this scheme, PVX infection is widespread in seed stocks and most of the potatoes grown lack PVX resistance genes. Thirteen PVX isolates were typed to strain group by inoculation to potato cultivars containing different combinations of hypersensitivity genes Nx and Nb. Six failed to overcome either gene and therefore belonged to strain group 1, four overcame Nb only and were placed in strain group 3 and three were mixtures of the two. All 13 isolates failed to overcome extreme resistance/immunity gene Rx. Naturally infected cultivars of genotype nx.nb contained strain group 1 alone or strain groups 1 and 3, while those of genotype nx:Nb contained only strain group 3. The widespread occurrence of strain group 1 contrasts with the predominant occurrence of strain group 3 in potatoes in the UK. However, it resembles the UK situation before sophisticated seed potato production schemes were introduced and before PVX hypersensitivity genes Nx and Nb were deliberately exploited in potato breeding. Prior infection with potato leafroll virus (PLRV) did not affect expression of hypersensitivity to PVX in inoculated leaves of an nx:Nb genotype.  相似文献   

3.
In the past 10 years, different strategies have been used to produce transgenic plants that are less susceptible to diseases caused by phytopathogenic fungi and bacteria. Genes from different organisms, including bacteria, fungi and plants, have been successfully used to develop these strategies. Some strategies have been shown to be effective against different pathogens, whereas others are specific to a single pathogen or even to a single pathovar or race of a given pathogen. In this review, we present the strategies that have been employed to produce transgenic plants less susceptible to bacterial and fungal diseases and which constitute an important area of plant biotechnology.The authors are with the Departamento de Ingeniería Genética de Plantas. Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Km 9.6 del Libramiento Norte carretera Irapuato-León, Apdo Postal 629, Irapuato, Mexico.  相似文献   

4.
SixteenPisum sativum cultivars were mechanically inoculated with two isolates of PVX. Distinct necrotic local lesions on the inoculated leaves were found in six cultivars 5 to 6 days after inoculation. The best results were obtained with the Meteor and Raman cultivars, 17 to 23 days old.  相似文献   

5.
 The dominant Nb gene of potato confers strain-specific hypersensitive resistance against potato virus X (PVX). A population segregating for Nb was screened for resistance by inoculating with PVX strain CP2, which is sensitive to Nb. Through a combination of bulked segregant analysis and selective restriction fragment amplification, several amplified fragment length polymorphism (AFLP) markers linked to Nb were identified. These were cloned and converted into dominant cleaved amplified polymorphic sequence (CAPS) markers. The segregation of these markers in a Lycopersicon esculentum×L. pennellii mapping population suggested that Nb is located on chromosome 5. This was confirmed by examining resistant and susceptible potato individuals with several tomato and potato chromosome-5-specific markers. Nb maps to a region of chromosome 5 where several other resistance genes– including R1, a resistance gene against Phytophthora infestans, Gpa, a locus that confers resistance against Globodera pallida, and Rx2, a gene that confers extreme resistance against PVX–have previously been identified. Received: 2 January 1997/Accepted: 7 February 1997  相似文献   

6.
Although Solanum brevidens could be infected with potato virus X (PVX), potato virus Y0 (PVY0) and PVYN, no symptoms of infection were apparent and tests by double antibody sandwich ELISA, electron microscopy and sap transmission to local lesion test plants indicated that the titres of PVX were less than a tenth of those of PVY0 and PVYN were less than a hundredth of those in infected plants of PDH40, a susceptible dihaploid clone of S. tuberosum cv. Pentland Crown. Furthermore, PVY0- and PVYN- infected leaves of S. brevidens were a poor source of inoculum in aphid transmission tests. The possibility of a common mechanism and genetic basis of resistance to PVY, PVX and potato leaf roll virus in S. brevidens is discussed.  相似文献   

7.
Nepoviruses are a group of isometric plant viruses with a genome divided between two-single-stranded, positive-sense, RNA molecules. They are usually transmitted by nematodes and a number of them have significant economic impact, especially in perennial crops such as grapevine and fruit trees. Like all other picorna-like viruses, nepoviruses express their coat protein (CP) as part of a larger polyprotein which is further processed by a virus-encoded protease, a feature which poses specific problems when trying to express the viral coat protein in transgenic plants. A hybrid gene, driving the high-level expression of the CP of grapevine chrome mosaic nepovirus (GCMV) has been constructed and transferred to the genome of tobacco plants. Progeny of CP-expressing transformants show resistance against GCMV. When compared to control plants, fewer inoculated plants become infected and those that become infected accumulate reduced levels of viral RNAs. This protection was also shown to be efficient when plants are inoculated with purified viral RNA.  相似文献   

8.
Commercially-grown potato cultivars were assessed for antibiotic resistance to Myzus persicae in a culture room at 19°C with a 2°C range and a 16 h photoperiod. The resistant rankings obtained were consistent for the following aphid metrics: maturation time, teneral adult weight, embryo complement and the production of nymphs. Intrinsic rates of increase (rm) correlated with the above parameters of aphid growth and reproduction but this was not always the case for nymphal survival rate. The cultivars Ulster Tarn, Record and Maris Piper were relatively resistant to M. persicae and cultivars Desirée and King Edward were the most susceptible. When the aphid clone or the culture plants were changed there was no significant effect on the relative resistance of the potato cultivars under test. The relationship between the number of embryos in teneral adults and the production of nymphs by aphids was examined by grouping aphids in weight batches. There was a strong relationship between these two variables.  相似文献   

9.
Novel potyvirus resistance specificities were found in eight tested wild potato species (clones): hypersensitive resistance (HR) to potato Y potyvirus (PVY) strain groups PVYO in Solanum megistacrolobum and S. polyadenium and PVYN in S. stoloniferum; HR to potato V potyvirus (PW) in S. maglia, S. polyadenium, S. stoloniferum, S. sparsipilum and S. sucrense, HR to potato A potyvirus (PVA) strain group 1 in S. sucrense, and extreme resistance (ER) to PVA in S. polyadenium. S. commersonii and S. stoloniferum expressed HR to tobacco etch potyvirus (TEV) which has not been reported previously in potato species. The studied clone of S. stoloniferum expressed HR to all potyviruses and potyvirus strains tested. The clone of S. stoloniferum (2n = 48; nuclear DNA content (2C) = 3.6 pg) and S. chacoense (2n = 24; 2C=1.9 pg) were crossed and one hybrid (2n = 36; 2C = 2.9 pg) was obtained. The hybrid expressed HR to all tested potyviruses except PVA, which indicated that HR to PVA was controlled by a gene which is different from the genes (or gene) controlling HR to PVYO, PVYN, PVV and TEV in S. stoloniferum. On the other hand, S. chacoense and the hybrid expressed ER to cucumber mosaic cucumovirus (CMV), whereas S. stoloniferum was susceptible to CMV. All tested wild species and the six tested potato cultivars (S. tuberosum subsp. tuberosum) expressed HR to PVV. Expression of HR following infection with PVYN induced systemic acquired resistance (SAR) in S. chacoense. HR to PVYN in S. sparsipilum and S. sucrense and to PVYO in potato cv. Pito was efficiently expressed at lower temperatures (16/18°C) indicated by the development of distinct necrotic lesions and/or vein necrosis in inoculated leaves, whereas the HR was rendered less effective at higher temperatures (19/24°C) which was indicated by the development of systemic infection with leaf-drop and mosaic symptoms.  相似文献   

10.
The Rx locus in potato confers extreme resistance to PVX. In the F1 progeny of crosses between the PVX-susceptible cultivar Huinkel and the cultivar Cara (Rx genotype) there was a 1?:?1 segregation of PVX resistance, indicating that Rx in Cara is present in the simplex condition. Using potato and tomato RFLP markers, we mapped Rx in Cara to the distal end of chromosome XII at a different position to the previously mapped Rx1 locus. To generate a high-resolution linkage map in the vicinity of Rx a total 728 AFLP primer combinations were screened using DNA of bulked resistant and susceptible segregants. We also screened segregating populations for chromosomal recombination events linked to the Rx locus and identified 82 plants with recombination events close to Rx. Using these recombinant plants we have identified AFLPs that flank Rx and span an interval of 0.23 cM in a region of the genome where 1 cM corresponds to approximately 400?kb.  相似文献   

11.
The Rx1 gene in potato confers extreme resistance to potato virus X (PVX). To investigate the mechanism and elicitation of Rx resistance, protoplasts of potato cv. Cara (Rx1 genotype) and Maris Bard (rx1 genotype) were inoculated with PVX and tobacco mosaic virus (TMV). At 24 h post-inoculation in Maris Bard protoplasts there was at least 100-fold more PVX RNA than in protoplasts of Cara. TMV RNA accumulated to the same level in both types of protoplast. However, when the TMV was inoculated together with PVX the accumulation of TMV RNA was suppressed in the Cara (Rx1 genotype) protoplasts to the same extent as PVX. The Rx1 resistance also suppressed accumulation of a recombinant TMV in which the coat protein gene was replaced with the coat protein gene of PVX. It is therefore concluded that Rx1-mediated resistance is elicited by the PVX coat protein, independently of any other proteins encoded by PVX. The domain of the coat protein with elicitor activity was localized by deletion and mutation analysis to the structural core of a non-virion form of the coat protein.  相似文献   

12.
Resistance to potato leafroll virus (PLRV), potato virus Y (PVYo) and potato virus X (PVX) was studied in symmetric and asymmetric somatic hybrids produced by electrofusion between Solanum brevidens (2n=2×=24) and dihaploid S. tuberosum (2n=2×=24), and also in regenerants (B-hybrids) derived through protoplast culture from a single somatic hybrid (chromosome number 48). All of the somatic hybrids between 5. brevidens and the two dihaploid lines of potato cv. Pito were extremely resistant to PLRV and PVYoand moderately resistant to PVX, irrespective of their chromosome number and ploidy level (tetraploid or hexaploid). Most (56%) of the asymmetric hybrids of irradiated S. brevidens and the dihaploid line of potato cv. Pentland Crown (PDH40) had high titres of PVYosimilar to those of PDH40, whereas the rest of the hybrids had PVYotitres less than a tenth of those in PDH40. Three B-hybrids had a highly reduced chromosome number (27, 30 and 34), but were however as resistant to PLRV, PVYoand PVX as 5. brevidens. Two asymmetric hybrids and one B-hybrid were extremely resistant to PLRV but susceptible to both PVY and PVX. The results suggested that resistance to PLRV in 5. brevidens is controlled by a gene or genes different from those controlling resistance to PVY and PVX, and the gene(s) for resistance to PVY and PVX are linked in S. brevidens.  相似文献   

13.
The inhibitors present in the extracts ofCinchoma ledgeriana, Emblica officinalis, Chrysobalanus C. icaco andTerminalia chebula were heat-stable, resistant to autoclaving, aging and desiccation for a week. However, they did not withstand dialysis for 48 hrs (exceptT. chebula extract.) These four extracts markedly inhibited the virus even on dilution in the ratio of 1?1 but viral infectivity was sharply reduced at higher dilutions in each case. Moreover, the inhibitors in the stem bark extract ofC. ledgeriana, fruit pericarp extract ofE. officinalis andT. chebula were highly inhibitory even at pH 10·0, whereas inhibition of the virus by leaf extract ofC. icaco was reduced to 24 per cent only at the same pH. The inhibitors in these four extracts were found to be probably not proteinaceous in nature, when precipitated with ammonium sulphate and ethanol.  相似文献   

14.
Aspects of resistance to sweet potato virus disease in sweet potato   总被引:3,自引:0,他引:3  
In field trials during the first and the second rainy season of 1996 in Uganda, whiteflies were similarly abundant and aphids were absent on three clones of sweet potato (NIS-93–63, cv. Tanzania and cv. New Kawogo) although the three clones differed considerably in their resistance to sweet potato virus disease (SPVD), a complex disease resulting from infection by both the aphid-borne sweet potato feathery mottle virus (SPFMV) and the whitefly-borne sweet potato chlorotic stunt virus (SPCSV). This suggests that vector resistance does not determine the relative SPVD resistance of these genotypes. SPFMV alone had only a low virus titre in sweet potato cvs Tanzania and New Kawogo, became increasingly difficult to detect in plants of these cultivars and was seldom acquired by aphids. However, this resistance to SPFMV was not apparent in plants which were also infected with SPCSV. Plants then had a high SPFMV titre, appeared unable to eliminate SPFMV and provided good sources for aphids to acquire it.  相似文献   

15.
Agrobacterium tumefaciens carrying a disarmed Ti-plasmid vector containing a chimeric NPT-ll gene and a mutant acetolactate synthase gene (conferring resistance to the herbicide chlorsulfuron) from Arabidopsis was used to transform flax (Linum usitatissimum) hypocotyl tissue. Transgenic regenerants were recovered from the inoculated tissue and were tested for expression of the foreign genes by leaf callus assays on kanamycin and on chlorsulfuron. Transgenic plants were grown to maturity; selfed progeny were similarly tested to determine segregation pattern for the novel genes, and some were grown in chlorsulfuron containing soil. Lines from two major commercial cultivars express chlorsulfuron resistance in greenhouse tests.  相似文献   

16.
The decapeptide killer peptide (KP) derived from the sequence of a single-chain, anti-idiotypic antibody acting as a functional internal image of a microbicidal, broad-spectrum yeast killer toxin (KT) was shown to exert a strong microbicidal activity against human pathogens. With the aim to exploit this peptide to confer resistance to plant pathogens, we assayed its antimicrobial activity against a broad spectrum of phytopathogenic bacteria and fungi. Synthetic KP exhibited antimicrobial activity in vitro towards Pseudomonas syringae, Erwinia carotovora, Botrytis cinerea, and Fusarium oxysporum. KP was also expressed in plants by using a Potato virus X (PVX)-derived vector as a fusion to the viral coat protein, yielding chimeric virus particles (CVPs) displaying the heterologous peptide. Purified CVPs showed enhanced antimicrobial activity against the above-mentioned plant pathogens and human pathogens such as Staphylococcus aureus and Candida albicans. Moreover, in vivo assays designed to challenge KP-expressing plants (as CVPs) with Pseudomonas syringae pv. tabaci showed enhanced resistance to bacterial attack. The results indicate that the PVX-based display system is a high-yield, rapid, and efficient method to produce and evaluate antimicrobial peptides in plants, representing a milestone for the large-scale production of high-added-value peptides through molecular farming. Moreover, KP is a promising molecule to be stably engineered in plants to confer broad-spectrum resistance to phytopathogens.  相似文献   

17.
18.
Encephalomyocarditis virus (EMCV), has caused the deaths of many species of animals in zoological parks and research institutions. The Audubon Park Zoo, (New Orleans, Louisiana, USA) attempted vaccination of several species with a killed EMCV vaccine with mixed results. This paper reports an attempt at vaccination against EMCV using a genetically engineered, live attenuated Mengo virus (vMC0) at the Audubon Park Zoo and Miami Metro Zoo, (Miami, Florida, USA) from December 1996 to June 1997. Several species of animals were vaccinated with vMC0, which is serologically indistinguishable from the field strain of EMCV. Serum samples were taken at the time of vaccination and again 21 days later, then submitted for serum neutralization titers against EMCV. The vaccinate species included red capped mangebey (Cercocebus torquatus), colobus (Colobus guereza), angolan colobus (Colobus angolensis), ruffed lemur (Lemur variegatus ruber and Lemur variegatus variegatus), back lemur (Lemur macaco), ring-tailed lemur (Lemur catta), siamang (Hylobates syndactylus), diana guenon (Cercopithicus diana), spider monkey (Ateles geoffroyi), common marmoset (Callithrix jacchus), talapoin monkey (Cercopithecus talapoin), Brazilian tapir (Tapirus terrestris), Baird's tapir (Tapirus bairdii), Malayan tapir (Tapirus indicus), dromedary camel (Camelus dromedarius), bactrian camel (Camelus bactrianus), gerenuk (Litocranius walleri), guanaco (Lama glama guanicoe), black duiker (Cephalophus niger), Vietnamese potbellied pig (Sus scrofa), babirusa (Babyrousa babyrussa), collard peccary (Tayass tajacu), and African crested porcupine (Hystrix africaeaustralis). The vaccine response was variable, with high virus neutralizing antibody titer responses in some primate species and mixed to poor responses for other species. No ill effects were seen with vaccination.  相似文献   

19.
N T Parkin  P Chiu    K Coelingh 《Journal of virology》1997,71(4):2772-2778
We have generated new influenza A virus live attenuated vaccine candidates by site-directed mutagenesis and reverse genetics. By mutating specific amino acids in the PB2 polymerase subunit, two temperature-sensitive (ts) attenuated viruses were obtained. Both candidates have 38 degrees C shutoff temperatures in MDCK cells, are attenuated in the respiratory tracts of mice and ferrets, and have very low reactogenicity in ferrets. Infection of mice or ferrets with either mutant conferred significant protection from challenge with the homologous wild-type virus. Three tests for genetic stability were used to assess the propensity for reversion to virulence: 14 days of replication in nude mice, growth at 37 degrees C in tissue culture, and serial passage in ferrets. One candidate, which contains mutations intended to reduce the ability of PB2 to bind to cap structures, was stable in all three assays, whereas the second candidate, which contains mutations found only in other ts strains of influenza virus, lost its ts phenotype in the last two assays. This approach has therefore enabled the creation of live attenuated influenza A virus vaccine candidates suitable for human testing.  相似文献   

20.
Fusarium head blight (FHB) is a devastating disease of wheat and barley which causes extensive losses worldwide. Monogenic, gene-for-gene resistance to FHB has not been reported. The best source of resistance to FHB is a complex, quantitative trait derived from the wheat cv. Sumai 3. Here, we show that the Arabidopsis thaliana NPR1 gene (AtNPR1), which regulates the activation of systemic acquired resistance, when expressed in the FHB-susceptible wheat cv. Bobwhite, confers a heritable, type II resistance to FHB caused by Fusarium graminearum. The heightened FHB resistance in the transgenic AtNPRI -expressing wheat is associated with the faster activation of defense response when challenged by the fungus. PR1 expression is induced rapidly to a high level in the fungus-challenged spikes of the AtNPR1-expressing wheat. Furthermore, benzothiadiazole, a functional analog of salicylic acid, induced PR1 expression faster and to a higher level in the AtNPR1-expressing wheat than in the nontransgenic plants. We suggest that FHB resistance in the AtNPR1-expressing wheat is a result of these plants being more responsive to an endogenous activator of plant defense. Our results demonstrate that NPR1 is an effective candidate for controlling FHB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号