首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concanavalin A (Con A) covalently linked to Sepharose 4B beads induced localized degranulation of sensitized rat peritoneal mast cells in regions of contact between beads and cells. This degranulation was Ca2+ dependent and was not seen when sensitized mast cells bound to beads conjugated with a nonstimulating lectin, wheat germ agglutinin, or when unsensitized mast cells bound to Con A-Sepharose. The finding that sensitized mast cells which had adhered to Con A-Sepharose beads degranulated in regions of the cell away from the area of bead contact if exposed to soluble Con A excluded the possibility that the localized release was due to a redistribution of the IgE receptors or putative Ca2+ channels to the region of bead contact. The results suggest that, if an influx of Ca2+ is the mechanism for initiating mast cell degranulation, then the opening of Ca2+ channels in the plasma membrane of activated mast cells is a localized event and that Ca2+ acts locally within the cell to initiate exocytosis.  相似文献   

2.
Rat basophilic leukemia (RBL-2H3) cells, like mast cells and basophils, carry monovalent membrane receptors with high affinity for IgE (Fc epsilon R). Cross-linking of these receptors provides the immunologic stimulus which initiates a series of biochemical events, culminating in secretion of inflammatory mediators. In an attempt to identify membrane components involved in the stimulus-secretion coupling of these cells, hybridomas were produced from splenocytes of mice immunized with intact RBL-2H3 cells. Here we report the production of a mAb (designated G63) that inhibits the Fc epsilon R-mediated secretion from RBL cells. At low degrees of Fc epsilon R aggregation, the mAb G63-induced inhibition may be complete, whereas at the maximum of secretion the inhibition is in the range of 30 to 40%. The relative degree of inhibition of secretion is dependent on the dose of mAb G63. Furthermore, inhibition requires the bivalency of G63, as the Fab fragments are inactive. The number of antigenic epitopes recognized by G63 per RBL-2H3 cell is 1.8 x 10(4) epitopes/cell, as determined by direct binding studies of 125I-labeled Fab fragments of G63. This number is 20 to 30 times smaller than that of Fc epsilon R on the same cells. The membrane component to which G63 binds has been identified by immunoprecipitation as a glycoprotein with an apparent Mr of 58 to 70 kDa. All of these results, and the fact that no competition for binding to RBL cells between mAb G63 and IgE can be resolved, indicate that mAb G63 binds to a membrane component which is distinct from the Fc epsilon R. mAb G63 suppresses the Fc epsilon R-mediated rise in cytoplasmic concentration of free Ca2+ ions, known to be one of the biochemical signals involved in the stimulus-secretion coupling in RBL-2H3 cells. G63 does not affect, however, the degranulation induced by the Ca2+ ionophore A23187. Therefore, mAb G63 probably exerts its inhibitory effect on a step preceding the rise in cytoplasmic free Ca2+. Thus, mAb G63 defines a previously unidentified membrane component that is involved in one of the early steps of the RBL-2H3 activation mediated by their Fc epsilon R.  相似文献   

3.
Wortmannin, a specific inhibitor of myosin light chain kinase (MLCK) blocked IgE mediated histamine release from rat basophilic leukemia cell (RBL-2H3) and human basophils dose-dependently. Its IC50 was 20 nM for RBL-2H3 cells and 30 nM for human basophils. There was complete inhibition at the concentration of 1 microM. Wortmannin inhibited partially the A23187 induced histamine release from RBL-2H3 cells (40% inhibition at 1 microM). This inhibition was not accompanied by any significant effect on cytosolic free calcium concentration [( Ca2+]i). KT5926, another MLCK inhibitor, inhibited histamine release comparably with wortmannin and blocked to some degree the increase of [Ca2+]i in RBL-2H3 cells. Thus, the phosphorylation of myosin seems to be involved in signal transduction through Fc epsilon RI.  相似文献   

4.
One of the major functions of the N-formyl peptide receptor (FPR) is to mediate leukocyte degranulation. Phosphorylation of the C-terminal domain of the FPR is required for receptor internalization and desensitization. Although arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of novel signaling cascades for a number of G protein-coupled receptors, their roles in FPR regulation and signaling remain unclear. CXCR1-mediated degranulation of RBL-2H3 cells is promoted by arrestin binding. To determine whether receptor phosphorylation or arrestin binding is required to promote FPR-mediated degranulation, we used RBL-2H3 cells stably transfected with either the wild-type FPR or a mutant form, DeltaST, which is incapable of undergoing ligand-stimulated phosphorylation. We observed that stimulation of wild-type FPR resulted in very low levels of degranulation compared with that mediated by cross-linking of the Fc(epsilon)RI receptor. Stimulation of the DeltaST mutant, however, resulted in levels of degranulation comparable to those of the Fc(epsilon)RI receptor, demonstrating that neither receptor phosphorylation nor arrestin binding was necessary to initiate FPR-mediated degranulation. Degranulation initiated by the DeltaST mutant was proportional to the level of active cell surface receptor, suggesting that either receptor internalization or desensitization may be responsible for terminating degranulation of the wild-type FPR. To distinguish between these possibilities, we used a partially phosphorylation-deficient mutant of the FPR that can undergo internalization, but not desensitization. Degranulation by this mutant FPR was indistinguishable from that of the DeltaST mutant, indicating that FPR phosphorylation or binding of arrestin but not internalization terminates the degranulation response.  相似文献   

5.
The Mast cell Function-associated Antigen (MAFA) is a membrane glycoprotein on rat mast cells (RBL-2H3) expressed at a ratio of approximately 1:30 with respect to the Type I Fc epsilon receptor (Fc epsilon RI). Despite this stoichiometry, clustering MAFA by its specific mAb G63 substantially inhibits secretion of both granular and de novo synthesized mediators induced upon Fc epsilon RI aggregation. Since the Fc epsilon RIs apparently signal from within raft micro-environments, we investigated possible co-localization of MAFA within these membrane compartments containing aggregated Fc epsilon RI. We used cholera toxin B subunit (CTB) to cluster the raft component ganglioside GM1 and studied the effects of this perturbation on rotation of Fc epsilon RI and MAFA by time-resolved phosphorescence anisotropy of erythrosin-conjugated probes. CTB treatment would be expected to substantially inhibit rotation of raft-associated molecules. Experimentally, CTB has no effect on rotational parameters such as the long-time anisotropy (r(infinity)) of unperturbed Fc epsilon RI or MAFA. However, on cells where Fc epsilon RI-IgE has previously been clustered by antigen (DNP(14)-BSA), CTB treatment increases the Fc epsilon RI-IgE's r(infinity) by 0.010 and MAFA's by 0.014. Similarly, CTB treatment of cells where MAFA had been clustered by mAb G63 increases MAFA's r(infinity) by 0.010 but leaves Fc epsilon RI's unaffected. Evaluation of raft localization of Fc epsilon RI and MAFA using sucrose gradient ultracentrifugation of Triton X-100 treated membrane fragments demonstrates that a significant fraction of MAFA molecules sediments with rafts when Fc epsilon RI is clustered by antigen or when MAFA itself is clustered by mAb G63. The large excess of Fc epsilon RI over MAFA explains why clustering MAFA does not substantively affect Fc epsilon RI dynamics. Moreover, in single-particle tracking studies of individual Fc epsilon RI-IgE or MAFA molecules, these proteins, upon clustering by antigen, move into small membrane compartments of reduced, but similar, dimensions. This provides additional indication of constitutive interactions between Fc epsilon RI and MAFA. Taken together, these results of distinct methodologies suggest that MAFA functions within raft microdomains of the RBL-2H3 cell membrane and thus in close proximity to the Fc epsilon RI which themselves signal from within the raft environment.  相似文献   

6.
Gangliosides are complex glycosphingolipids that are important in many biological processes. The present study investigated the role of gangliosides in the organization of lipid rafts in RBL-2H3 mast cells and in the modulation of mast cell degranulation via FcRI. The role of gangliosides was examined using two ganglioside deficient cell lines (B6A4A2III-E5 and B6A4C1III-D1) as well as the parent cell line (RBL-2H3). All three cell lines examined express FcRI, Lyn, Syk and LAT. However, only in RBL-2H3 cells were FcRI, LAT and α-galactosyl derivatives of ganglioside GD1b mobilized to lipid raft domains following FcRI stimulation. The inhibition of glycosphingolipid synthesis in RBL-2H3 cells also resulted in a decrease in the release of β-hexosaminidase activity after FcRI activation. The two mutant cell lines have a reduced release of β-hexosaminidase activity after FcRI stimulation, but not after exposure to calcium ionophore. These results indicate that the α-galactosyl derivatives of ganglioside GD1b are important in the initial events of FcRI signaling upstream of Ca2+ influx. Since the initial signaling events occur in lipid rafts and in the mutant cell lines the rafts are disorganized, these results also suggest that these gangliosides contribute to the correct assembly of lipid rafts and are essential for mast cell activation via FcRI.  相似文献   

7.
The activation of mast cells by immunoglobulin E-mediated stimuli is considered as a central event in allergic responses. In this regard, chitosan oligosaccharides (COS) of two different molecular weight ranges (1–3 kDa and 3–5 kDa) were investigated for their capabilities against the activation of RBL-2H3 mast cell sensitized with dinitrophenyl-specific immunoglobulin E antibody and stimulated by antigen dinitrophenyl-bovine serum albumin. It was found that COS significantly inhibited RBL-2H3 cell degranulation via attenuating the releases of histamine and β-hexosaminidase. Moreover, the inhibitory activity of COS was accompanied by a reduction in intracellular Ca2+ elevation. Notably, the expression of immunoglobulin Fc epsilon receptor I (Fc?RI) in RBL-2H3 cells was down-regulated by COS treatment in a dose-dependent manner. The suppressive effect of COS on RBL-2H3 cell activation suggested that COS may be potential candidates of novel inhibitors against allergic reactions.  相似文献   

8.
A monoclonal antibody (mAb), AD1, was isolated that recognized a cell surface protein on rat basophilic leukemia cells (RBL-2H3). At high concentration, this antibody inhibited IgE-mediated but not calcium ionophore-induced histamine release (49% inhibition at 100 micrograms/ml). The mAb AD1 did not inhibit the binding of IgE or of several antibodies directed to the high affinity IgE receptor (Fc epsilon RI). Likewise, IgE did not inhibit mAb AD1 binding. However, several anti-Fc epsilon RI antibodies did inhibit mAb AD1 binding as intact molecules but not as Fab fragments. Therefore, the sites on the cell surface to which mAb AD1 binds are close to Fc epsilon RI. The mAb AD1 immunoprecipitated a broad, 50-60-kDa band from 125I-surface-labeled RBL-2H3 cells that upon peptide N-glycosidase F treatment was transformed into a sharp 27-kDa band. A similar 27-kDa protein was immunoprecipitated from surface-radiolabeled cells after culture with tunicamycin. Thus, the protein recognized by mAb AD1 is highly glycosylated with predominantly N-linked oligosaccharides. The N-terminal sequence of 43 amino acids was found to be different from any subunit of Fc epsilon RI but nearly identical to that of the human melanoma-associated antigen ME491. Therefore, mAb AD1 binds to a surface glycoprotein on RBL-2H3 cells sterically close to the Fc epsilon RI but distinct from the recognized subunits of the receptor.  相似文献   

9.
Kinetics of ligand binding to the type 1 Fc epsilon receptor on mast cells   总被引:2,自引:0,他引:2  
Rates of association and dissociation of several specific monovalent ligands to and from the type I Fc epsilon receptor (Fc epsilon RI) were measured on live mucosal type mast cells of the rat line RBL-2H3. The ligands employed were a monoclonal murine IgE and Fab fragments prepared from three different, Fc epsilon RI-specific monoclonal IgG class antibodies. These monoclonals (designated H10, J17, and F4) were shown previously to trigger mediator secretion by RBL-2H3 mast cells upon binding to and dimerization of the Fc epsilon RI. Analysis of the kinetics shows that the minimal mechanism to which all data can be fitted involves two consecutive steps: namely, ligand binding to a low-affinity state of the receptor, followed by a conformational transition into a second, higher affinity state h of the receptor-ligand complex. These results resolve the recently noted discrepancy between the affinity of IgE binding to the Fc epsilon RI as determined by means of binding equilibrium measurements [Ortega et al. (1988) EMBO J. 7, 4101] and the respective parameter derived from the ratio of the rate constant of rat IgE dissociation and the initial rate of rat IgE association [Wank et al. (1983) Biochemistry 22, 954]. The probability of undergoing the conformational transition differs for the four different Fc epsilon RI-ligand complexes: while binding of Fab-H10 and IgE favors the h state, binding of Fab-J17 and Fab-F4 preferentially maintains the low-affinity 1 state (at 25 degrees C). The temperature dependence of the ligand interaction kinetics with the Fc epsilon RI shows that the activation barrier for ligand association is determined by positive enthalpic and entropic contributions. The activation barrier of the 1----h transition, however, has negative enthalpic contributions counteracted by a decrease in activation entropy. The h----1 transition encounters a barrier that is predominantly entropic and similar for all ligands employed, thus suggesting that the Fc epsilon RI undergoes a similar conformational transition upon binding any of the ligands.  相似文献   

10.
Characterization of defects in a variant subline of RBL mast cells has revealed a biochemical event proximal to IgE receptor (Fc epsilon RI)-stimulated tyrosine phosphorylation that is required for multiple functional responses. This cell line, designated B6A4C1, is deficient in both Fc epsilon RI-mediated degranulation and biosynthesis of several lipid raft components. Agents that bypass receptor-mediated Ca(2+) influx stimulate strong degranulation responses in these variant cells. Cross-linking of IgE-Fc epsilon RI on these cells stimulates robust tyrosine phosphorylation but fails to mobilize a sustained Ca(2+) response. Fc epsilon RI-mediated inositol phosphate production is not detectable in these cells, and failure of adenosine receptors to mobilize Ca(2+) suggests a general deficiency in stimulated phospholipase C activity. Antigen stimulation of phospholipases A(2) and D is also defective. Infection of B6A4C1 cells with vaccinia virus constructs expressing constitutively active Rho family members Cdc42 and Rac restores antigen-stimulated degranulation, and active Cdc42 (but not active Rac) restores ganglioside and GPI expression. The results support the hypothesis that activation of Cdc42 and/or Rac is critical for Fc epsilon RI-mediated signaling that leads to Ca(2+) mobilization and degranulation. Furthermore, they suggest that Cdc42 plays an important role in the biosynthesis and expression of certain components of lipid rafts.  相似文献   

11.
In the mast cell signaling pathways, the binding of immunoglobulin E (IgE) to FcRI, its high-affinity receptor, is generally thought to be a passive step. In this study, we examined the effect of IgE alone, that is, without antigen stimulation, on the degranulation in mast cells. Monomeric IgE (500–5,000 ng/ml) alone increased cytosolic Ca2+ level ([Ca2+]i) and induced degranulation in rat basophilic leukemia (RBL)-2H3 mast cells. Monomeric IgE (5,000 ng/ml) alone also increased [Ca2+]i and induced degranulation in bone marrow-derived mast cells. Interestingly, monomeric IgE (5–50 ng/ml) alone, in concentrations too low to induce degranulation, increased filamentous actin content in RBL-2H3 mast cells. We next examined whether actin dynamics affect the IgE alone-induced RBL-2H3 mast cell activation pathways. Cytochalasin D inhibited the ability of IgE alone (50 ng/ml) to induce de novo actin assembly. In cytochalasin D-treated cells, IgE (50 ng/ml) alone increased [Ca2+]i and induced degranulation. We have summarized the current findings into two points. First, IgE alone increases [Ca2+]i and induces degranulation in mast cells. Second, IgE, at concentrations too low to increase either [Ca2+]i or degranulation, significantly induces actin assembly, which serves as a negative feedback control in the mast cell Ca2+ signaling and degranulation. mast cell; immunoglobulin E; cytochalasin D; Y-27632; wortmannin  相似文献   

12.
Degranulation of mast cells and basophils during the allergic response is initiated by Ag-induced cross-linking of cell surface IgE-Fc epsilon RI receptor complexes. To investigate how separation distances between cross-linked receptors affect the competency of signal transduction, we synthesized and characterized bivalent dinitrophenyl (DNP)-modified dsDNA oligomers with rigid spacing lengths of approximately 40-100 A. All of these bivalent ligands effectively bind and cross-link anti-DNP IgE with similar affinities in the nanomolar range. The 13-mer (dsDNA length of 44 A), 15-mer (51 A), and flexible 30-mer ligands stimulate similar amounts of cellular degranulation, about one-third of that with multivalent Ag, whereas the 20-mer (68 A) ligand is less effective and the rigid 30-mer (102 A) ligand is ineffective. Surprisingly, all stimulate tyrosine phosphorylation of Fc epsilon RI beta, Syk, and linker for activation of T cells to similar extents as multivalent Ag at optimal ligand concentrations. The magnitudes of Ca(2+) responses stimulated by these bivalent DNP-dsDNA ligands are small, implicating activation of Ca(2+) mobilization by stimulated tyrosine phosphorylation as a limiting process. The results indicate that structural constraints on cross-linked IgE-Fc epsilon RI complexes imposed by these rigid DNP-dsDNA ligands prevent robust activation of signaling immediately downstream of early tyrosine phosphorylation events. To account for these results, we propose that activation of a key downstream target is limited by the spacing between cross-linked, phosphorylated receptors and their associated components.  相似文献   

13.
The Cbl family of proteins negatively regulate signaling from tyrosine kinase-coupled receptors. Among the three members of this family, only c-Cbl and Cbl-b are expressed in hemopoietic cells. To examine the role of c-Cbl and Cbl-b in Fc epsilon RI signaling, mast cell cultures from wild-type, c-Cbl(-/-), and Cbl-b(-/-) mice were generated. Cell growth rates and cell surface expression of Fc epsilon RI were similar in the different cell populations. Compared with control cells, Cbl-b inactivation resulted in increases in Fc epsilon RI-induced Ca(2+) response and histamine release. Fc epsilon RI-induced tyrosine phosphorylation of total cellular proteins, Syk, and phospholipase C-gamma was also enhanced by Cbl-b deficiency, whereas receptor-initiated phosphorylation of Vav, JNK, and p38 kinases was not changed in these cells. In contrast to Cbl-b, c-Cbl deficiency had no detectable effect on Fc epsilon RI-induced histamine release or on the phosphorylation of total cellular proteins or Syk. The absence of c-Cbl increased the phosphorylation of ERK after receptor stimulation, but resulted in slightly reduced p38 phosphorylation and Ca(2+) response. These results suggest that Cbl-b and c-Cbl have divergent effects on Fc epsilon RI signal transduction and that Cbl-b, but not c-Cbl, functions as a negative regulator of Fc epsilon RI-induced degranulation.  相似文献   

14.
Activation of protein tyrosine kinases is one of the initial events following aggregation of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on RBL-2H3 cells, a model mast cell line. The protein tyrosine kinase p72syk (Syk), which contains two Src homology 2 (SH2) domains, is activated and associates with phosphorylated Fc epsilon RI subunits after receptor aggregation. In this report, we used Syk SH2 domains, expressed in tandem or individually, as fusion proteins to identify Syk-binding proteins in RBL-2H3 lysates. We show that the tandem Syk SH2 domains selectively associate with tyrosine-phosphorylated forms of the gamma and beta subunits of Fc epsilon RI. The isolated carboxy-proximal SH2 domain exhibited a significantly higher affinity for the Fc epsilon RI subunits than did the amino-proximal domain. When in tandem, the Syk SH2 domains showed enhanced binding to phosphorylated gamma and beta subunits. The conserved tyrosine-based activation motifs contained in the cytoplasmic domains of the gamma and beta subunits, characterized by two YXXL/I sequences in tandem, represent potential high-affinity binding sites for the dual SH2 domains of Syk. Peptide competition studies indicated that Syk exhibits a higher affinity for the phosphorylated tyrosine activation motif of the gamma subunit than for that of the beta subunit. In addition, we show that Syk is the major protein in RBL-2H3 cells that is affinity isolated with phosphorylated peptides corresponding to the phosphorylated gamma subunit motif. These data suggest that Syk associates with the gamma subunit of the high-affinity receptor for immunoglobulin E through an interaction between the tandem SH2 domains of SH2 domains of Syk and the phosphorylated tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Fc epsilon RI tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Dc epsilon tyrosine activation motifs in RBL-2H3 cells.  相似文献   

15.
Recent studies in rat basophilic leukemia cells (RBL-2H3) have shown that two pharmacological agents, ionomycin and thapsigargin, induce leukotriene C4 production and translocation of 5-lipoxygenase from cytosol to membrane, primarily by causing an influx of extracellular calcium. In the present study, we investigate the induction of these events by receptor activation. Cross-linking of high-affinity IgE receptors (Fc epsilon RI) by antigen in RBL-2H3 cells leads to leukotriene C4 production and membrane translocation of 5-lipoxygenase. As in the ionomycin-stimulated cells, leukotriene C4 production in antigen-stimulated cells is calcium-dependent since the amount of leukotriene C4 produced correlates quantitatively with the increase in intracellular free calcium concentration ([Ca2+]i). However, the increase in [Ca2+]i required for equivalent leukotriene C4 production by antigen is not as high as it is using ionomycin. In addition, no threshold [Ca2+]i level is required for leukotriene production by antigen, which is in contrast to the ionomycin stimulation that a [Ca2+]i level of 300-400 nM is required. Furthermore, antigen causes an additive increase in leukotriene C4 production in cells stimulated by the ionomycin. These results suggest that another as yet unidentified intracellular pathway acts in conjunction with Ca2+ for leukotriene synthesis in antigen-stimulated cells. Antigen stimulation causes 20-30% of the total cell 5-lipoxygenase to associate with membranes (compared with 10% in unstimulated cells) as demonstrated by enzyme activity assay and by Western Blot using antibodies to 5-lipoxygenase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Ceramide kinase (CERK) catalyzes the conversion of ceramide to ceramide 1-phosphate (C1P) and is known to be activated by calcium. Although several groups have examined the functions of CERK and its product C1P, the functions of C1P and CERK are not understood. We studied the RBL-2H3 cell line, a widely used model for mast cells, and found that CERK and C1P are required for activation of the degranulation process in mast cells. We found that C1P formation was enhanced during activation induced by IgE/antigen or by Ca(2+) ionophore A23187. The formation of C1P required the intracellular elevation of Ca(2+). We generated RBL-2H3 cells that stably express CERK, and when these cells were treated with A23187, a concomitant C1P formation was observed and degranulation increased 4-fold, compared with mock transfectants. The cell-permeable N-acetylsphingosine (C(2)-ceramide), a poor substrate of CERK, inhibited both the formation of C1P and degranulation, indicating that C1P formation was necessary for degranulation. Exogenous introduction of CERK into permeabilized RBL-2H3 cells caused degranulation. We identified a cytosolic localization of CERK that provides exposure to cytosolic Ca(2+). Taken together, these results indicate that C1P formation is a necessary step in the degranulation pathway in RBL-2H3 cells.  相似文献   

17.
The gamma subunit of the high affinity IgE receptor, Fc epsilon RI, is a member of a family of proteins which form disulfide-linked dimers. This family also includes the zeta- and eta-chains of the T cell receptor. Engagement of Fc epsilon RI activates src-related protein tyrosine kinases in basophils and mast cells. However, the role of individual subunits of Fc epsilon RI in this activation is still not known. In an effort to determine the function of Fc epsilon RI-gamma, we used chimeric proteins containing the extracellular and transmembrane domains of the alpha chain of the human interleukin 2 receptor (Tac) and the cytoplasmic domains of either T cell receptor-zeta or Fc epsilon RI-gamma. We show that while cross-linking of the Tac chimeras in the rat basophilic leukemia cell line RBL-2H3 resulted in the tyrosine phosphorylation of a subset of proteins and a portion of the degranulation normally observed after Fc epsilon RI-mediated stimulation, no detectable activation of p56lyn or pp60c-src was observed. In contrast, an apparent transient deactivation of these two kinases was observed after Tac chimera cross-linking. These observations suggest that Fc epsilon RI-gamma is responsible for some, but not all, of the signaling that occurs after engagement of its receptor, and that other receptor subunits may also play important roles in this signaling process.  相似文献   

18.
We have investigated the effects of wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI 3-kinase), on antigen-mediated signaling in the RBL-2H3 mast cell model. In RBL-2H3 cells, the cross-linking of high affinity IgE receptors (Fc epsilon R1) activates at least two cytoplasmic protein tyrosine kinases, Lyn and Syk, and stimulates secretion, membrane ruffling, spreading, pinocytosis, and the formation of actin plaques implicated in increased cell-substrate adhesion. In addition, Fc epsilon R1 cross-linking activates PI 3-kinase. It was previously shown that wortmannin causes a dose-dependent inhibition of PI 3-kinase activity and also inhibits antigen-stimulated degranulation. We report that the antigen-induced synthesis of inositol(1,4,5)P3 is also markedly inhibited by wortmannin. Consistent with evidence in other cell systems implicating phosphatidylinositol(3,4,5)P3 in ruffling, pretreatment of RBL-2H3 cells with wortmannin inhibits membrane ruffling and fluid pinocytosis in response to Fc epsilon R1 cross-linking. However, wortmannin does not inhibit antigen-induced actin polymerization, receptor internalization, or the actin-dependent processes of spreading and adhesion plaque formation that follow antigen stimulation in adherent cells. Wortmannin also fails to inhibit either of the Fc epsilon R1-coupled tyrosine kinases, Lyn or Syk, or the activation of mitogen-activated protein kinase as measured by in vitro kinase assays. Strikingly, there is substantial in vitro serine/threonine kinase activity in immunoprecipitates prepared from Fc epsilon R1-activated cells using antisera to the p85 subunit of PI 3-kinase. This activity is inhibited by pretreatment of the cells with wortmannin or by the direct addition of wortmannin to the kinase assay, suggesting that PI 3-kinase itself is capable of acting as a protein kinase. We conclude that Fc epsilon R1 cross-linking activates both lipid and protein kinase activities of PI 3-kinase and that inhibiting these activities with wortmannin results in the selective block of a subset of Fc epsilon R1-mediated signaling responses.  相似文献   

19.
O Dar  I Pecht 《FEBS letters》1992,310(2):123-128
The relationship between the Fc epsilon receptor mediated stimulation of mast cells and the Ca2+ signal it induces were studied using thapsigargin (TG), a blocker of the endoplasmic reticulum Ca2+ pump. TG induced, in mucosal mast cells (RBL-2H3 line), a dose-dependent and an InsP3-independent increase in [Ca2+]i (from resting levels of 83-150 nM to 600-680 nM), and a secretory response amounting to 30-50% of that observed upon Fc epsilon RI clustering. The TG induced rise of [Ca2+]i is most probably provided by both arrest of its uptake by the endoplasmic reticulum and influx from the medium. Thus, Ca2+ influx in mast cells may be modulated by the [Ca2+]i level.  相似文献   

20.
Antigen-mediated aggregation of the high-affinity receptor for immunoglobulin E, Fc epsilon RI, results in the activation of multiple signaling pathways, leading to the release of mediators of the allergic response. One of the earliest responses to receptor stimulation is the tyrosine phosphorylation of the beta and gamma subunits of Fc epsilon RI and the association of the tyrosine kinase Syk with the phosphorylated receptor. This association is mediated by the SH2 domains of Syk and is believed to be critical for activating signaling pathways resulting in mediator release. To examine the importance of the interaction of Syk with Fc epsilon RI in signaling events following receptor activation, we introduced a protein containing the SH2 domains of Syk into streptolysin O-permeabilized RBL-2H3 cells. The Syk SH2 domains completely inhibited degranulation and leukotriene production following receptor aggregation, and they blocked the increase in protein tyrosine phosphorylation observed after receptor activation. Inhibition was specific for Fc epsilon RI-mediated signaling, since degranulation of cells activated by alternative stimuli was not blocked by the Syk SH2 domains. A protein containing a point mutation in the carboxy-terminal SH2 domain which abolishes phosphotyrosine binding was not inhibitory. In addition, inhibition of degranulation was reversed by pretreatment of the SH2 domains with a tyrosine phosphorylated peptide corresponding to the tyrosine-based activation motif found in the gamma subunit of Fc epsilon RI, the nonphosphorylated peptide had no effect. The association of Syk with the tyrosine-phosphorylated gamma subunit of the activated receptor was blocked by the Syk SH2 domains, and deregulation in cells activated by clustering of Syk directly without Fc epsilon RI aggregation was not affected by the Syk SH2 domains. These results demonstrate that the association of Syk with the activated Fc epsilon RI is critical for both early and late events following receptor activation and confirm the key role Syk plays in signaling through the high-affinity IgE receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号