共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study was carried out to determine the effects of repetitive acute stress exposure on pituitary secretion of both luteinizing hormone (LH) and prolactin (PRL). Adult male rats were exposed to sequential episodes of acute novel environment stress separated by intervals of either 60 or 120 minutes. Serial blood samples were obtained from animals before, during and after each stress episode via indwelling intra-cardiac cannulas. The imposition of 10 minute episodes of novel environment stress on an hourly basis eventually rendered the hypothalamic-hypophyseal LH axis refractory to the stimulatory effect of stress. If sequential stress was imposed at 120 minute intervals, LH release was significantly enhanced during each exposure. A different pattern of PRL release was observed during the same sequential stress schedule. After an initial increase in hormone release in response to the first hourly stress episode, PRL levels were unaltered during the second and third hourly stress exposures. Thereafter, plasma PRL levels showed a trend toward a progressive increase in release during each successive episode, and were significantly elevated above preceding baseline levels during the fourth and fifth hourly stress exposures. In rats exposed to stress every two hours, a significant increase in PRL levels occurred following the first, but not the second stress episode. Hormone release was again enhanced in response to the third exposure to novel environment. The present results demonstrate that the repetitive exposure to acute novel environment stress results in differential alterations in pituitary LH and PRL secretion over time, and that the timing of repeated episodes is an important determinant of continued responsiveness to stress, particularly with regard to LH release. These findings suggest that the LH and PRL hormonal responses to at least this specific stressor are mediated by independent neural mechanisms. 相似文献
2.
The influence of LHRH, an analog of LHRH (hydroxy-PRO1) and inulin on prolactin (PRL) secretion was studied using a clonal strain of pituitary cells. At low concentrations, 0.08 ng to 8 ng/ml, LHRH stimulated PRL release while at higher concentrations the opposite effect was obtained. The analog of LHRH inhibited PRL secretion at all concentrations studied. No effect was measured with inulin. 相似文献
3.
Changes at the anterior pituitary gland level which result in follicle-stimulating hormone (FSH) release after ovariectomy in metestrous rats were investigated. Experimental rats were ovariectomized at 0900 h of metestrus and decapitated at 1000, 1100, 1300, 1500, 1700 or 1900 h of metestrus. Controls consisted of untreated rats killed at 0900 or 1700 h and rats sham ovariectomized at 0900 h and killed at 1700 h. Trunk blood was collected and the serum assayed for FSH and luteinizing hormone (LH) concentrations. The anterior pituitary gland was bisected. One-half was used to assay for FSH concentration. The other half was placed in culture medium for a 30-min preincubation and then placed in fresh medium for a 2-h incubation (basal FSH and LH release rates). The basal FSH release rate and the serum FSH concentration rose significantly by 4 h postovariectomy and remained high for an additional 6 h. The basal FSH release rate and the serum FSH concentration correlated positively (r=0.71 with 72 degrees of freedom) and did not change between 0900 and 1700 h in untreated or sham-ovariectomized rats. In contrast, the serum LH concentration and the basal LH release rate did not increase after ovariectomy. Ovariectomy had no significant effect on anterior pituitary gland FSH concentration. The results suggest that the postovariectomy rise in serum FSH concentration is the result, at least in part, of changes which cause an increase in the basal FSH secretion rate (secretion independent of the immediate presence of any hormones of nonanterior pituitary gland origin). The similarities between the selective rises in the basal FSH release rate and the serum FSH concentration in the ovariectomized metestrous rat and in the cyclic rat during late proestrus and estrus raise the possibility that an increase in the basal FSH release rate may be involved in many or all situations in which serum FSH concentration rises independently of LH. 相似文献
4.
Serum levels of LH, FSH, Prolactin and Testosterone of 90 days old male rats androgenized soon after birth were determined by specific radioimmunoassay and were compared to untreated rats. LH and FSH levels were also determined in 90 days old female rats neo-natally treated with testosterone and compared with normal diestrus rats. Androgenization of male rats significantly increased serum FSH and Prolactin levels without producing changes in plasma LH and testosterone concentrations. Similar increase in the FSH levels were found in androgenized female rats although plasma FSH concentrations were lower than in the male groups. These results obtained in male rats give an additional evidence that androgens acting in the first days of life are responsible of the higher levels of FSH and Prolactin that characterize the male or tonic pattern of gonadotrophin secretion. 相似文献
5.
The effectiveness of androgens in suppressing gonadotropin secretion declines with time following orchidectomy; however, the mechanism for this acquired resistance to androgen action is unknown. The role of the pituitary was studied by use of perifused rat pituitary cells and cells in monolayer culture. Pituitary cells from 7-wk-old intact male rats and rats that had been castrated 2 wk previously were treated with 10 nM testosterone (T) for 24 h; cells were then packed into perifusion chambers and stimulated with 2.5 nM GnRH for 2 min every hour for 8 h during which time T treatment was continued. T suppressed GnRH-stimulated LH secretion and LH pulse amplitude equally in both groups to approximately 60% of control values. Interpulse LH secretion was unchanged by T in either group. GnRH-stimulated FSH release was suppressed more (p less than 0.05) by T with cells from castrated rats than with cells from intact rats (76 +/- 4% vs. 90 +/- 2% of control; mean +/- SEM). By contrast, the action of T to increase interpulse basal FSH secretion was less (p less than 0.05) with cells from castrated rats (115 +/- 10% of control) than with cells from intact rats (146 +/- 6% of control). T treatment for 72 h also increased basal FSH secretion by pituitary cells in monolayer culture to a lesser extent with cells from castrated rats than with cells from intact rats (151 +/- 14% vs. 191 +/- 16% of control, p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
G R Foxcroft H J Shaw M G Hunter P J Booth R T Lancaster 《Biology of reproduction》1987,36(1):175-191
Folliculogenesis was studied by assessing development of the largest 10 follicles obtained from 10 sows 48 h after weaning and by analyzing changes in plasma luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL) for 24 h before weaning until 48 h after weaning. Follicular diameter, follicular fluid volume, and concentrations of estradiol and testosterone and granulosa cell numbers were determined in all follicles, and 125I-hCG binding to theca and granulosa and maximal aromatase activity in vitro was determined in five follicles/sow. Overall, a significant rise in LH, but not in FSH, occurred at weaning, although in individual sows an increase in LH was not necessarily related to subsequent estrogenic activity of follicles. In 9/10 sows, PRL fell precipitously after weaning. In lactation, LH was negatively, and after weaning, positively, correlated with FSH and PRL. Marked variability in follicular development existed within and between sows. Overall, most follicular characteristics were positively correlated to follicular diameter; however, in larger follicles the number of granulosa cells was variable and unrelated to estrogenic activity, which--together with theca and granulosa binding of hCG--increased abruptly at particular stages of follicular development. Differences in maturation of similarly sized follicles from different sows were related to estrogenic activity of the dominant follicles but not to consistent differences in LH, FSH or PRL secretion. Both the dynamics and the control of folliculogenesis in the sow, therefore, appear to be complex. 相似文献
7.
During the breeding season, five groups of three ewes were implanted at ovariectomy with 0.36, 0.5, 1.0 and 6.0 cm oestradiol implants or implants containing no steroid. Eleven days after receiving implants, blood samples were taken every 10 min for 6 h; implants were then removed. Treatments were repeated three times during each of two consecutive breeding seasons and four times during the intervening anoestrus. In ovariectomized ewes without steroid treatment, luteinizing hormone (LH) pulse frequency increased from early to mid-breeding season, decreased to a minimum at mid-anoestrus and increased to reach a maximum at the mid-point of the second breeding season, subsequently declining. LH pulse amplitude was inversely related to frequency. Basal serum LH concentrations decreased gradually from the first breeding season to reach a minimum at mid-anoestrus and gradually increased to reach a maximum at the end of the second breeding season. Mean serum LH and follicle-stimulating hormone (FSH) concentrations were higher at the end of the second breeding season compared with the beginning of the first breeding season. All parameters of gonadotrophin secretion were decreased much more by oestradiol during the anoestrus than during the breeding season. LH pulse frequency was decreased during anoestrus and at high oestradiol concentrations during the first breeding season. Apart from LH pulse amplitude, the decreases in all parameters of gonadotrophin secretion were less during the second compared with the first breeding season. The minimum effective dose of oestradiol required to decrease mean and basal serum concentrations of LH during anoestrus was lower than in the breeding season. The minimum effective dose of oestradiol required to decrease mean serum concentrations of FSH was lower in the first compared with the second breeding season. Oestradiol depression of LH pulse amplitude and mean serum concentrations of LH and FSH showed a dose dependency during the breeding season. During anoestrus dose dependency was seen for basal concentrations of LH and mean serum concentrations of LH and FSH. We conclude that significant chronic changes in gonadotrophin secretion occur in the ewe with time after ovariectomy. Sensitivity to oestradiol also changes, and the effects of oestradiol are not always dose dependent. We suggest that the circannual pattern of LH pulse frequency and basal LH secretion are directly linked to the circannual cycle of photoperiod.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
8.
García-Bonacho M Esquifino AI Castrillón PO Toso CR Cardinali DP 《Life sciences》2000,66(20):1969-1977
The effect of Freund's adjuvant administration on 24-hour changes of plasma prolactin, growth hormone (GH), thyrotropin (TSH), insulin, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone were studied in young (2 months) and aged (18 months) male Wistar rats. Rats were injected s.c. with Freund's adjuvant or adjuvant's vehicle and, 18 days later, they were killed at 6 different time intervals throughout a 24-hour cycle to measure circulating hormone levels by specific RIAs. Young rats receiving adjuvant's vehicle exhibited significant time-of-day-dependent variations in plasma TSH, LH and testosterone, with maximal levels at 1300 h, 0100 h and 1700 h, respectively. Prolactin and insulin levels, analyzed globally in a factorial ANOVA, showed significant time-of-day changes with maximal levels at 1300 - 1700 h and 2100 h, respectively. The daily rhythms in plasma LH and testosterone found in young rats were not longer observed in Freund's adjuvant-injected rats, while as far as TSH, a second peak was observed at 0100 h after Freund's adjuvant administration. Twenty-four hour rhythms in circulating TSH, LH and testosterone were blunted in old rats receiving either Freund's adjuvant or its vehicle. Aged rats exhibited significantly higher circulating levels of prolactin, and lower levels of GH, TSH, FSH and testosterone. The results indicate that secretion of prolactin, GH, TSH, FSH and testosterone are age-dependent, as are the responses of TSH, LH and testosterone to Freund's adjuvant administration. 相似文献
9.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model. 相似文献
10.
Previous work has indicated that in long-term ovariectomized rats a potent antagonist to gonadotropin-releasing hormone (GnRH) suppressed serum luteinizing hormone (LH) more successfully than follicle-stimulating hormone (FSH). The present studies examined whether the rise in serum FSH which occurs acutely after ovariectomy, or during the proestrous secondary surge, depends on GnRH. In Experiment A, rats were ovariectomized at 0800 h of metestrus and injected with (Ac-dehydro-Pro1, pCl-D-Phe2, D-Trp3,6, NaMeLeu7)-GnRH (Antag-I) at 1200 h of the same day, or 2 or 5 days later. Antag-I blocked the LH response completely, but only partially suppressed serum FSH levels. Experiment B tested a higher dose of a more potent antagonist [( Ac-3-Pro1, pF-D-Phe2, D-Trp3,6]-GnRH; Antag-II) injected at the time of ovariectomy. The analog suppressed serum LH by 79% and FSH by 30%. Experiment C examined the effect of Antag-II on the day of proestrus on the spontaneous secondary surge of FSH, as well as on a secondary FSH surge which can be induced by exogenous LH. Antag-II, given at 1200 h proestrus, blocked ovulation and the LH surge expected at 1830 h, as well as increases in serum FSH which occur at 1830 h and at 0400 h. Exogenous LH triggered a rise in FSH in rats suppressed by Antag-II. In Experiment D proestrous rats were injected with Antag-II at 1200 h and ovariectomized at 1530 h. By 0400 h the antag had suppressed FSH in controls, but in the ovariectomized rats, a vigorous FSH response occurred.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
12.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion. 相似文献
13.
The effect of cyclosporin A (CsA) treatment on LH and prolactin was investigated. Chronic daily administration of an immunosuppressive dose of CsA (1.5 mg/100g bw) increased serum LH concentrations and pituitary gland LH content. CsA treatment also resulted in increased serum testosterone. Immunosuppressive doses of CsA had no effect on serum prolactin or pituitary gland prolactin content. Acute administration of low doses of 0.12, 1.2, 12 and 120ug CsA/100g bw had no effect on serum LH or prolactin. These results suggest that administration of immunosuppressive doses of CsA alters serum and pituitary LH and serum testosterone but not prolactin. 相似文献
14.
It is known that opioids stimulate prolactin (PRL) secretion by an action on hypothalamic neurons, but in vitro studies have suggested a direct action on the lactotrophs. The present study was performed on male rats known to have little or no PRL response to TRH. A beta-endorphin (beta EP) injection in the third ventricle stimulated PRL secretion and induced furthermore a PRL secretory reaction to TRH injected intravenously 20 min later. Pretreatment with naloxone 10 min before beta EP injection abolished not only the PRL response to beta EP but also the conjugated effect of beta EP and TRH. Pretreatment with naloxone methyl bromide (Br-naloxone), a quaternary naloxone derivative, which does not cross the blood-brain barrier, had no effect on the PRL response to beta EP but prevented the conjugated effect of beta EP and TRH on PRL secretion. Pretreatment of the animals with -methyl-parathyrosine resulting in a dopamine depletion or with haloperidol, a dopamine antagonist, could not induce lactotroph responsiveness to TRH. These results suggest that beta EP in male rat sensitizes the PRL cell to TRH by a direct effect and not through an inhibition of the dopaminergic tone. 相似文献
15.
The effect of exogenous dehydroepiandrosterone-sulfate (DHAS) on luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL) and thyroid-stimulating hormone (TSH) pituitary secretion was studied in 8 normal women during the early follicular phase. The plasma levels of these hormones were evaluated after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing hormone (TRH) stimulation performed after placebo or after 30 mg DHAS i.v. administration. The half-life of DHAS was also calculated on two subjects; two main components of decay were detected with half-times of 0.73-1.08 and 23.1-28.8 h. The results show an adequate response of all hormones to GnRH or TRH tests which was not significantly modified, in the case of LH, FSH and PRL, when performed in the presence of high levels of DHAS. However, the TSH response to TRH was significantly less suppressed (p less than 0.05) (39%) after DHAS administration than during repeated TRH stimulation without DHAS (51%). The data support the hypothesis that DHAS does not affect LH, FSH and PRL secretion, while TSH seemed to be partially influenced. 相似文献
16.
Rat testis tissue receptor assays were utilized to study the kinetics of dissociation of human follicle-stimulating hormone (hFSH) and luteinizing hormone (hLH) under varying conditions of urea concentration and pH. In these competitive protein binding assays, 125I-hFSH and 125I-hLH were the radioligands and hormone dissociation was followed by a decrease in the ability of the dissociating hormone to inhibit uptake of the radioligand by tissue receptors. Rate data for dissociation of the gonadotropins were analyzed for quality of fit to first or second order integrated rate equations by nonlinear regression analysis. Treatment of hFSH with 4 M urea at pH 8 and 25 degrees for 22 hours did not result in significant dissociation, whereas in 8 M urea, over 90% dissociation was observed. The rate of dissociation of hFSH in 8 M urea was increased approximately 4-fold by raising the temperature from 25 to 37 degrees. Similar results were obtained when dissociation of hFSH was followed through use of an accepted whole animal bioassay for FSH, thus confirming the reliability of the tissue receptor assay for such dissociation studies. Kinetic studies showed that hFSH was undissociated by incubation in 6 M urea of pH 8 after 4 hours at 25 degrees. In contrast, hLH was 90% dissociated under similar conditions. This differential rate of inactivation of hLH allowed preparation of hFSH having significant reduced levels of contaminating LH activity, as determined by tissue receptor assays and by whole animal bioassays. Marked differences were noted in the rate of dissociation of hFSH and hLH under acid conditions. hFSH completely dissociated after approximately 2 min of incubation of pH 2 (25 degrees), and over 90% dissociated after 15 min of incubation at pH 3. In contrast, hLH was dissociated 60% after 20 min of incubation at pH 2 (25 degrees) and 40% dissociated after 60 min at pH 3. Neither hormone was significantly dissociated at pH 4.4 after 60 min, but hFSH showed a slightly greater rate of dissociation than did LH in the period between 1 and 23 hours of incubation at that pH. hFSH and hLH were relatively resistant to dissociation after incubation at pH 12 for 1 hour, bu;t dissociated significantly after incubation for 22 hours at that pH. The time course for dissociation of hFSH or hLH under the various conditions described above did not conform clearly to either first or second order kinetics, indicating that the over-all dissociation process represents a mixed order reaction. It appears that urea or acid-induced denaturation of one or both subunits of hLH and hFSH may occur prior to their dissociation. The very rapid rate of dissociation at acid pH values, particularly of hFSH, indicate that ionic interactions contribute importantly to the subunit association phenomenon. 相似文献
17.
Anestrous lighthorse mares were treated in December with dihydrotestosterone (DHT; 150 micrograms/kg of body weight), progesterone (P; 164 micrograms/kg), both DHT and P (DHT+P), testosterone (T; 150 micrograms/kg), or vehicle (n = 4/group). Daily blood sampling was started on Day 1, and on Day 4 all mares were administered a pretreatment injection of gonadotropin-releasing hormone (GnRH) and were bled frequently to characterize the responses of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations. Treatment injections were given on Day 4 and then daily through Day 17. On Day 18, all mares were again administered GnRH and were bled frequently. Treatment of mares with DHT, P, or T increased (p less than 0.01) plasma concentrations of these steroids to approximately 1.5 ng/ml during the last 10 days of treatment. There was no effect (p greater than 0.10) of treatment on LH or FSH concentrations in daily blood samples. Relative to the pretreatment GnRH injection, mares treated with T or DHT+P secreted approximately 65% more (p less than 0.01) FSH in response to the post-treatment GnRH injection; FSH response to the second GnRH injection was not altered (p greater than 0.10) in control mares or in DHT- or P-treated mares. There was no effect of any steroid treatment on LH secretion after administration of GnRH (p greater than 0.10). Averaged over all mares, approximately 94 times more FSH than LH was secreted in response to injection of GnRH.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
18.
Interleukin-1 beta (IL-1 beta) at doses of 0.15 and 1.5 nM significantly inhibited FSH secretion and stimulated LH secretion by cultured rat pituitary cells after 24-72 hr incubation whereas 15 pM of IL-1 beta was not effective. Treatment with IL-1 beta for 12-48 hr did not affect intracellular content of FSH. However, treatment with 0.15 and 1.5 nM of IL-1 beta for 72 hr significantly suppressed intracellular content of FSH whereas various doses of IL-1 beta incubated with the cells for 12-72 hr showed no effect on the intracellular content of LH. Pretreatment with IL-1 beta for 48 hr inhibited both GnRH-mediated LH and FSH secretions by the pituitary. The secretion of FSH and LH mediated by an activator of protein kinase C, phorbol 12-myristate 13-acetate, was also significantly suppressed by pretreatment with IL-1 beta for 48 hr. These results suggest that (a) IL-1 beta has opposite effects on the secretion of LH and FSH and (b) pretreatment with IL-1 beta suppresses GnRH-mediated stimulation of LH and FSH by the pituitary and this suppressive effect of IL-1 beta may involve the suppression of a protein kinase C-dependent mechanism. 相似文献
19.
20.
T. W. Melnyk I. W. Richardson A. A. Simpson William R. Smith 《Bulletin of mathematical biology》1976,38(4):387-400
Luteinizing hormone (LH) is secreted continuously from the anterior pituitary gland. The concentration in the blood of this
gonadotropic hormone plays a regulatory role in the development of puberty in both sexes, in the induction of ovulation in
females, and in the production of testosterone in males. The secretion of LH is in turn controlled by luteinizing hormone
releasing hormone (LHRH) secreted by the hypothalamus. LH and LHRH are removed from the blood by degradation and excretion.
This hormonal system is modelled by a system of ordinary differential equations based upon specific physiological and biochemical
assumptions current among experimentalists in this field. The one exception is the assumption that LHRH may bind reversibly
to a serum protein; an analysis of the data shows that this or a similar mechanism is a crucial specification. Data on the
serum levels of LH and LHRH in two human subjects were fitted using the model. The data consist of the transients and subsequent
decays created by a bolus intravenous injection of LHRH.
Primary appointment: Chemistry Dept., Dalhousie University.
Primary appointment: Mathematics Dept., Dalhousie University. 相似文献