首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ku B  Liang C  Jung JU  Oh BH 《Cell research》2011,21(4):627-641
Interactions between the BCL-2 family proteins determine the cell's fate to live or die. How they interact with each other to regulate apoptosis remains as an unsettled central issue. So far, the antiapoptotic BCL-2 proteins are thought to interact with BAX weakly, but the physiological significance of this interaction has been vague. Herein, we show that recombinant BCL-2 and BCL-w interact potently with a BCL-2 homology (BH) 3 domain-containing peptide derived from BAX, exhibiting the dissociation constants of 15 and 23 nM, respectively. To clarify the basis for this strong interaction, we determined the three-dimensional structure of a complex of BCL-2 with a BAX peptide spanning its BH3 domain. It revealed that their interactions extended beyond the canonical BH3 domain and involved three nonconserved charged residues of BAX. A novel BAX variant, containing the alanine substitution of these three residues, had greatly impaired affinity for BCL-2 and BCL-w, but was otherwise indistinguishable from wild-type BAX. Critically, the apoptotic activity of the BAX variant could not be restrained by BCL-2 and BCL-w, pointing that the observed tight interactions are critical for regulating BAX activation. We also comprehensively quantified the binding affinities between the three BCL-2 subfamily proteins. Collectively, the data show that due to the high affinity of BAX for BCL-2, BCL-w and A1, and of BAK for BCL-X(L), MCL-1 and A1, only a subset of BH3-only proteins, commonly including BIM, BID and PUMA, could be expected to free BAX or BAK from the antiapoptotic BCL-2 proteins to elicit apoptosis.  相似文献   

2.
BCL-2 family proteins are key regulators of the apoptotic pathway. Antiapoptotic members sequester the BCL-2 homology 3 (BH3) death domains of proapoptotic members such as BAX to maintain cell survival. The antiapoptotic BH3-binding groove has been successfully targeted to reactivate apoptosis in cancer. We recently identified a geographically distinct BH3-binding groove that mediates direct BAX activation, suggesting a new strategy for inducing apoptosis by flipping BAX's 'on switch'. Here we applied computational screening to identify a BAX activator molecule that directly and selectively activates BAX. We demonstrate by NMR and biochemical analyses that the molecule engages the BAX trigger site and promotes the functional oligomerization of BAX. The molecule does not interact with the BH3-binding pocket of antiapoptotic proteins or proapoptotic BAK and induces cell death in a BAX-dependent fashion. To our knowledge, we report the first gain-of-function molecular modulator of a BCL-2 family protein and demonstrate a new paradigm for pharmacologic induction of apoptosis.  相似文献   

3.
4.
BIM and tBID are two BCL-2 homology 3 (BH3)-only proteins with a particularly strong capacity to trigger BAX-driven mitochondrial outer membrane permeabilization, a crucial event in mammalian apoptosis. However, the means whereby BIM and tBID fulfill this task is controversial. Here, we used a reconstituted liposomal system bearing physiological relevance to explore systematically how the BAX-permeabilizing function is influenced by interactions of BIM/BID-derived proteins and BH3 motifs with multidomain BCL-2 family members and with membrane lipids. We found that nanomolar dosing of BIM proteins sufficed to reverse completely the inhibition of BAX permeabilizing activity exerted by all antiapoptotic proteins tested (BCL-2, BCL-X(L), BCL-W, MCL-1, and A1). This effect was reproducible by a peptide representing the BH3 motif of BIM, whereas an equivalent BID BH3 peptide was less potent and more selective, reversing antiapoptotic inhibition. On the other hand, in the absence of BCL-2-type proteins, BIM proteins and the BIM BH3 peptide were inefficient, directly triggering the BAX-permeabilizing function. In contrast, tBID alone potently assisted BAX to permeabilize membranes at least in part by producing a structural distortion in the lipid bilayer via BH3-independent interaction of tBID with cardiolipin. Together, these results support the notion that BIM and tBID follow different strategies to trigger BAX-driven mitochondrial outer membrane permeabilization with strong potency.  相似文献   

5.
MCL-1 inhibits BAX in the absence of MCL-1/BAX Interaction   总被引:1,自引:0,他引:1  
The BCL-2 family of proteins plays a major role in the control of apoptosis as the primary regulator of mitochondrial permeability. The pro-apoptotic BCL-2 homologues BAX and BAK are activated following the induction of apoptosis and induce cytochrome c release from mitochondria. A second class of BCL-2 homologues, the BH3-only proteins, is required for the activation of BAX and BAK. The activity of both BAX/BAK and BH3-only proteins is opposed by anti-apoptotic BCL-2 homologues such as BCL-2 and MCL-1. Here we show that anti-apoptotic MCL-1 inhibits the function of BAX downstream of its initial activation and translocation to mitochondria. Although MCL-1 interacted with BAK and inhibited its activation, the activity of MCL-1 against BAX was independent of an interaction between the two proteins. However, the anti-apoptotic function of MCL-1 required the presence of BAX. These results suggest that the pro-survival activity of MCL-1 proceeds via inhibition of BAX function at mitochondria, downstream of its activation and translocation to this organelle.  相似文献   

6.
Mitochondrial outer membrane permeabilization is a watershed event in the process of apoptosis, which is tightly regulated by a series of pro- and anti-apoptotic proteins belonging to the BCL-2 family, each characteristically possessing a BCL-2 homology domain 3 (BH3). Here, we identify a yeast protein (Ybh3p) that interacts with BCL-X(L) and harbours a functional BH3 domain. Upon lethal insult, Ybh3p translocates to mitochondria and triggers BH3 domain-dependent apoptosis. Ybh3p induces cell death and disruption of the mitochondrial transmembrane potential via the mitochondrial phosphate carrier Mir1p. Deletion of Mir1p and depletion of its human orthologue (SLC25A3/PHC) abolish stress-induced mitochondrial targeting of Ybh3p in yeast and that of BAX in human cells, respectively. Yeast cells lacking YBH3 display prolonged chronological and replicative lifespans and resistance to apoptosis induction. Thus, the yeast genome encodes a functional BH3 domain that induces cell death through phylogenetically conserved mechanisms.  相似文献   

7.
The structure of human BCL-w, an anti-apoptotic member of the BCL-2 family, was determined by triple-resonance NMR spectroscopy and molecular modeling. Introduction of a single amino acid substitution (P117V) significantly improved the quality of the NMR spectra obtained. The cytosolic domain of BCL-w consists of 8 alpha-helices, which adopt a fold similar to that of BCL-xL, BCL-2, and BAX proteins. Pairwise root meant square deviation values were less than 3 A for backbone atoms of structurally equivalent regions. Interestingly, the C-terminal helix alpha8 of BCL-w folds into the BH3-binding hydrophobic cleft of the protein, in a fashion similar to the C-terminal transmembrane helix of BAX. A peptide corresponding to the BH3 region of the pro-apoptotic protein, BID, could displace helix alpha8 from the BCL-w cleft, resulting in helix unfolding. Deletion of helix alpha8 increased binding affinities of BCL-w for BAK and BID BH3-peptides, indicating that this helix competes for peptide binding to the hydrophobic cleft. These results suggest that although the cytosolic domain of BCL-w exhibits an overall structure similar to that of BCL-xL and BCL-2, the unique organization of its C-terminal helix may modulate BCL-w interactions with pro-apoptotic binding partners.  相似文献   

8.
During apoptosis, the BCL-2 protein family controls mitochondrial outer membrane permeabilization (MOMP), but the dynamics of this regulation remain controversial. We employed chimeric proteins composed of exogenous BH3 domains inserted into a tBID backbone that can activate the proapoptotic effectors BAX and BAK to permeabilize membranes without being universally sequestered by all antiapoptotic BCL-2 proteins. We thus identified two "modes" whereby prosurvival BCL-2 proteins can block MOMP, by sequestering direct-activator BH3-only proteins ("MODE 1") or by binding active BAX?and BAK ("MODE 2"). Notably, we found that MODE 1 sequestration is less efficient and more easily derepressed to promote MOMP than MODE 2. Further, MODE 2 sequestration prevents mitochondrial fusion. We provide a unified model of BCL-2 family function that helps to explain otherwise paradoxical observations relating to MOMP, apoptosis, and mitochondrial dynamics.  相似文献   

9.
The BCL-2 (B cell CLL/Lymphoma) family is comprised of approximately twenty proteins that collaborate to either maintain cell survival or initiate apoptosis1. Following cellular stress (e.g., DNA damage), the pro-apoptotic BCL-2 family effectors BAK (BCL-2 antagonistic killer 1) and/or BAX (BCL-2 associated X protein) become activated and compromise the integrity of the outer mitochondrial membrane (OMM), though the process referred to as mitochondrial outer membrane permeabilization (MOMP)1. After MOMP occurs, pro-apoptotic proteins (e.g., cytochrome c) gain access to the cytoplasm, promote caspase activation, and apoptosis rapidly ensues2.In order for BAK/BAX to induce MOMP, they require transient interactions with members of another pro-apoptotic subset of the BCL-2 family, the BCL-2 homology domain 3 (BH3)-only proteins, such as BID (BH3-interacting domain agonist)3-6. Anti-apoptotic BCL-2 family proteins (e.g., BCL-2 related gene, long isoform, BCL-xL; myeloid cell leukemia 1, MCL-1) regulate cellular survival by tightly controlling the interactions between BAK/BAX and the BH3-only proteins capable of directly inducing BAK/BAX activation7,8. In addition, anti-apoptotic BCL-2 protein availability is also dictated by sensitizer/de-repressor BH3-only proteins, such as BAD (BCL-2 antagonist of cell death) or PUMA (p53 upregulated modulator of apoptosis), which bind and inhibit anti-apoptotic members7,9. As most of the anti-apoptotic BCL-2 repertoire is localized to the OMM, the cellular decision to maintain survival or induce MOMP is dictated by multiple BCL-2 family interactions at this membrane. Large unilamellar vesicles (LUVs) are a biochemical model to explore relationships between BCL-2 family interactions and membrane permeabilization10. LUVs are comprised of defined lipids that are assembled in ratios identified in lipid composition studies from solvent extracted Xenopus mitochondria (46.5% phosphatidylcholine, 28.5% phosphatidylethanoloamine, 9% phosphatidylinositol, 9% phosphatidylserine, and 7% cardiolipin)10. This is a convenient model system to directly explore BCL-2 family function because the protein and lipid components are completely defined and tractable, which is not always the case with primary mitochondria. While cardiolipin is not usually this high throughout the OMM, this model does faithfully mimic the OMM to promote BCL-2 family function. Furthermore, a more recent modification of the above protocol allows for kinetic analyses of protein interactions and real-time measurements of membrane permeabilization, which is based on LUVs containing a polyanionic dye (ANTS: 8-aminonaphthalene-1,3,6-trisulfonic acid) and cationic quencher (DPX: p-xylene-bis-pyridinium bromide)11. As the LUVs permeabilize, ANTS and DPX diffuse apart, and a gain in fluorescence is detected. Here, commonly used recombinant BCL-2 family protein combinations and controls using the LUVs containing ANTS/DPX are described.  相似文献   

10.
BCL-2 homology 3 (BH3)-only proteins of the BCL-2 family such as tBID and BIM(EL) assist BAX-type proteins to breach the permeability barrier of the outer mitochondrial membrane, thereby allowing cytoplasmic release of cytochrome c and other active inducers of cell death normally confined to the mitochondrial inter-membrane space. However, the exact mechanism by which tBID and BIM(EL) aid BAX and its close homologues in this mitochondrial protein release remains enigmatic. Here, using pure lipid vesicles, we provide evidence that tBID acts in concert with BAX to 1) form large membrane openings through both BH3-dependent and BH3-independent mechanisms, 2) cause lipid transbilayer movement concomitant with membrane permeabilization, and 3) disrupt the lipid bilayer structure of the membrane by promoting positive monolayer curvature stress. None of these effects were observed with BAX when BIM(EL) was substituted for tBID. Based on these data, we propose a novel model in which tBID assists BAX not only via protein-protein but also via protein-lipid interactions to form lipidic pore-type non-bilayer structures in the outer mitochondrial membrane through which intermembrane prodeath molecules exit mitochondria during apoptosis.  相似文献   

11.
The B cell lymphoma-2 (BCL-2) family is the key mediator of cellular sensitivity to apoptosis during pharmacological interventions for numerous human pathologies, including cancer. There is tremendous interest to understand how the proapoptotic BCL-2 effector members (e.g. BCL-2-associated X protein, BAX) cooperate with the BCL-2 homology domain only (BH3-only) subclass (e.g. BCL-2 interacting mediator of death, BIM; BCL-2 interacting-domain death agonist, BID) to induce mitochondrial outer membrane permeabilization (MOMP) and apoptosis and whether these mechanisms may be pharmacologically exploited to enhance the killing of cancer cells. Indeed, small molecule inhibitors of the anti-apoptotic BCL-2 family members have been designed rationally. However, the success of these “BH3 mimetics” in the clinic has been limited, likely due to an incomplete understanding of how these drugs function in the presence of multiple BCL-2 family members. To increase our mechanistic understanding of how BH3 mimetics cooperate with multiple BCL-2 family members in vitro, we directly compared the activity of several BH3-mimetic compounds (i.e. ABT-263, ABT-737, GX15-070, HA14.1, TW-37) in biochemically defined large unilamellar vesicle model systems that faithfully recapitulate BAX-dependent mitochondrial outer membrane permeabilization. Our investigations revealed that the presence of BAX, BID, and BIM differentially regulated the ability of BH3 mimetics to derepress proapoptotic molecules from anti-apoptotic proteins. Using mitochondria loaded with fluorescent BH3 peptides and cells treated with inducers of cell death, these differences were supported. Together, these data suggest that although the presence of anti-apoptotic BCL-2 proteins primarily dictates cellular sensitivity to BH3 mimetics, additional specificity is conferred by proapoptotic BCL-2 proteins.  相似文献   

12.
Ku B  Woo JS  Liang C  Lee KH  Hong HS  E X  Kim KS  Jung JU  Oh BH 《PLoS pathogens》2008,4(2):e25
All gammaherpesviruses express homologues of antiapoptotic B-cell lymphoma-2 (BCL-2) to counter the clearance of infected cells by host antiviral defense machineries. To gain insights into the action mechanisms of these viral BCL-2 proteins, we carried out structural and biochemical analyses on the interactions of M11, a viral BCL-2 of murine gamma-herpesvirus 68, with a fragment of proautophagic Beclin1 and BCL-2 homology 3 (BH3) domain-containing peptides derived from an array of proapoptotic BCL-2 family proteins. Mainly through hydrophobic interactions, M11 bound the BH3-like domain of Beclin1 with a dissociation constant of 40 nanomole, a markedly tighter affinity compared to the 1.7 micromolar binding affinity between cellular BCL-2 and Beclin1. Consistently, M11 inhibited autophagy more efficiently than BCL-2 in NIH3T3 cells. M11 also interacted tightly with a BH3 domain peptide of BAK and those of the upstream BH3-only proteins BIM, BID, BMF, PUMA, and Noxa, but weakly with that of BAX. These results collectively suggest that M11 potently inhibits Beclin1 in addition to broadly neutralizing the proapoptotic BCL-2 family in a similar but distinctive way from cellular BCL-2, and that the Beclin1-mediated autophagy may be a main target of the virus.  相似文献   

13.
MCL-1 (myeloid cell leukemia-1) is an antiapoptotic BCL-2 family protein discovered as an early induction gene during myeloblastic leukemia cell differentiation. This survival protein has the BCL-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region. We identified a short splicing variant of the MCL-1 mRNA in the human placenta encoding a protein, termed MCL-1 short (MCL-1S), with an altered C terminus as compared with the full-length MCL-1 long (MCL-1L), leading to the loss of BH1, BH2, and the transmembrane domains. Analysis of the human MCL-1 gene indicated that MCL-1S results from the splicing out of exon 2 during mRNA processing. MCL-1S, unlike MCL-1L, does not interact with diverse proapoptotic BCL-2-related proteins in the yeast two-hybrid system. In contrast, MCL-1S dimerizes with MCL-1L in the yeast assay and coprecipitates with MCL-1L in transfected mammalian cells. Overexpression of MCL-1S induces apoptosis in transfected Chinese hamster ovary cells, and the MCL-1S action was antagonized by the antiapoptotic MCL-1L. Thus, the naturally occurring MCL-1S variant represents a new proapoptotic BH3 domain-only protein capable of dimerizing with the antiapoptotic MCL-1L. The fate of MCL-1-expressing cells could be regulated through alternative splicing mechanisms and interactions of the resulting anti- and proapoptotic gene products.  相似文献   

14.
BAX is a multidomain proapoptotic BCL-2 family protein that resides in the cytosol until activated by an incompletely understood trigger mechanism, which facilitates BAX translocation to mitochondria and downstream death events. Whether BAX is activated by direct contact with select BH3-only members of the BCL-2 family is highly debated. Here we detect and quantify a direct binding interaction between BAX and a hydrocarbon-stapled BID BH3 domain, which triggers the functional activation of BAX at nanomolar doses in vitro. Chemical reinforcement of BID BH3 alpha helicity was required to reveal the direct BID BH3-BAX association. We confirm the specificity of this BH3 interaction by characterizing a stapled BAD BH3 peptide that interacts with antiapoptotic BCL-X(L) but does not bind or activate BAX. We further demonstrate that membrane targeting of stapled BID BH3 optimizes its ability to activate BAX, supporting a model in which BID directly engages BAX to trigger mitochondrial apoptosis.  相似文献   

15.
Abstract: Expression of the BCL-2 protein family members, BAX, BAK, BAD, BCL-xL, BCL-xS, and BCL-2, was measured (by western blotting using specific antibodies) in PC12 cells before and during apoptosis induced by either H2O2 treatment or by serum deprivation and during rescue from apoptosis by nerve growth factor (NGF). H2O2-induced apoptosis, as measured by DNA fragmentation, caused: (a) a dose-dependent increase in BAX, (b) a dose-independent increase in BAK, and (c) a dose-dependent inhibition of BAD expression. By comparison, apoptosis induced by serum deprivation resulted in a time-dependent decrease in both BAX and BAK, along with a dramatic and sudden decrease in BAD expression. However, when PC12 cells were incubated in an apoptosis-sparing medium (i.e., NGF-supplemented serum-free medium), both BAX and BAK were increased significantly, whereas BAD expression remained inhibited. BCL-xL expression was increased by H2O2 but unaffected by serum deprivation or long-term NGF treatment. Neither BCL-2 nor BCL-xS expression could be detected in PC12 cells under the experimental conditions tested. Our results show that the expression of BAX, BAK, BAD, and BCL-xL is altered in a stimulus-dependent manner but cannot be used to define whether a cell will undergo or survive apoptosis. The similarity between changes in expression of BCL-2-related proteins induced by H2O2 exposure and NGF rescue could reflect activation in part of a common antioxidant pathway.  相似文献   

16.
All gammaherpesviruses express homologues of antiapoptotic B-cell lymphoma-2 (BCL-2) to counter the clearance of infected cells by host antiviral defense machineries. To gain insights into the action mechanisms of these viral BCL-2 proteins, we carried out structural and biochemical analyses on the interactions of M11, a viral BCL-2 of murine γ-herpesvirus 68, with a fragment of proautophagic Beclin1 and BCL-2 homology 3 (BH3) domain-containing peptides derived from an array of proapoptotic BCL-2 family proteins. Mainly through hydrophobic interactions, M11 bound the BH3-like domain of Beclin1 with a dissociation constant of 40 nanomole, a markedly tighter affinity compared to the 1.7 micromolar binding affinity between cellular BCL-2 and Beclin1. Consistently, M11 inhibited autophagy more efficiently than BCL-2 in NIH3T3 cells. M11 also interacted tightly with a BH3 domain peptide of BAK and those of the upstream BH3-only proteins BIM, BID, BMF, PUMA, and Noxa, but weakly with that of BAX. These results collectively suggest that M11 potently inhibits Beclin1 in addition to broadly neutralizing the proapoptotic BCL-2 family in a similar but distinctive way from cellular BCL-2, and that the Beclin1-mediated autophagy may be a main target of the virus.  相似文献   

17.
Cells of the vasculature, including macrophages, smooth muscle cells, and endothelial cells, exhibit apoptosis in culture upon treatment with oxidized low density lipoprotein, as do vascular cells of atherosclerotic plaque. Several lines of evidence support the hypothesis that the apoptotic component of oxidized low density lipoprotein is one or more oxysterols, which have been shown to induce apoptosis through the mitochondrial pathway. Activation of the mitochondrial pathway of apoptosis is regulated by members of the BCL family of proteins. In this study, we demonstrate that, in the murine macrophage-like cell line P388D1, oxysterols (25-hydroxycholesterol and 7-ketocholesterol) induced the degradation of the prosurvival protein kinase AKT (protein kinase B). This led, in turn, to the activation of the BCL-2 homology-3 domain-only proteins BIM and BAD and down-regulation of the anti-apoptotic multi-BCL homology domain protein BCL-xL. These responses would be expected to activate the pro-apoptotic multi-BCL homology domain proteins BAX and BAK, leading to the previously reported release of cytochrome c observed during oxysterol-induced apoptosis. Somewhat surprisingly, small interfering RNA knockdown of BAX resulted in a complete block of the induction of apoptosis by 25-hydroxycholesterol.  相似文献   

18.
MCL-1 (myeloid cell leukemia-1), a member of the BCL-2 family, has three splicing variants, antiapoptotic MCL-1L, proapoptotic MCL-1S, and MCL-1ES. We previously reported cloning MCL-1ES and characterizing it as an apoptotic molecule. Here, we investigated the molecular mechanism by which MCL-1ES promotes cell death. MCL-1ES was distinct from other proapoptotic BCL-2 members that induce apoptosis by promoting BAX or BAK oligomerization, leading to mitochondrial outer membrane permeabilization (MOMP), in that MCL-1ES promoted mitochondrial apoptosis independently of both BAX and BAK. Instead, MCL-1L was crucial for the apoptotic activity of MCL-1ES by facilitating its proper localization to the mitochondria. MCL-1ES did not interact with any BCL-2 family proteins except for MCL-1L, and antiapoptotic BCL-2 members failed to inhibit apoptosis induced by MCL-1ES. The BCL-2 homology 3 (BH3) domain of MCL-1ES was critical for both MCL-1ES association with MCL-1L and apoptotic activity. MCL-1ES formed mitochondrial oligomers, and this process was followed by MOMP and cytochrome c release in a MCL-1L-dependent manner. These findings indicate that MCL-1ES, as a distinct proapoptotic BCL-2 family protein, may be useful for intervening in diseases that involve uncontrolled MCL-1L.  相似文献   

19.
The BCL-2 family of proteins is comprised of proapoptotic as well as antiapoptotic members (S. N. Farrow and R. Brown, Curr. Opin. Genet. Dev. 6:45–49, 1996). A prominent death agonist, BAX, forms homodimers and heterodimerizes with multiple antiapoptotic members. Death agonists have an amphipathic α helix, called BH3; however, the initial assessment of BH3 in BAX has yielded conflicting results. Our BAX deletion constructs and minimal domain constructs indicated that the BH3 domain was required for BAX homodimerization and heterodimerization with BCL-2, BCL-XL, and MCL-1. An extensive site-directed mutagenesis of BH3 revealed that substitutions along the hydrophobic face of BH3, especially charged substitutions, had the greatest affects on dimerization patterns and death agonist activity. Particularly instructive was the BAX mutant mIII-1 (L63A, G67A, L70A, and M74A), which replaced the hydrophobic face of BH3 with alanines, preserving its amphipathic nature. BAXmIII-1 failed to form heterodimers or homodimers by yeast two-hybrid or immunoprecipitation analysis yet retained proapoptotic activity. This suggests that BAX’s killing function reflects mechanisms beyond its binding to BCL-2 or BCL-XL to inhibit them or simply displace other protein partners. Notably, BAXmIII-1 was found predominantly in mitochondrial membranes, where it was homodimerized as assessed by homobifunctional cross-linkers. This characteristic of BAXmIII-1 correlates with its capacity to induce mitochondrial dysfunction, caspase activation, and apoptosis. These data are consistent with a model in which BAX death agonist activity may require an intramembranous conformation of this molecule that is not assessed accurately by classic binding assays.

Programmed cell death and its morphologic equivalent, apoptosis, are orchestrated by a distinct genetic pathway that is apparently possessed by all multicellular organisms (22). Moreover, the biochemical details of how encoded proteins function are beginning to emerge. The BCL-2 family of proteins constitutes a central decisional point within the common portion of the apoptotic pathway. This family possesses both proapoptotic (BAX, BAK, BCL-XS, BAD, BIK, BID, HRK, and BIM) and antiapoptotic (BCL-2, BCL-XL, MCL-1, and A1) molecules (5, 11). The ratio of antiapoptotic to proapoptotic molecules such as BCL-2/BAX determines the response to a proximal apoptotic signal (14). A striking characteristic of many family members is their propensity to form homo- and heterodimers (16, 19). The BCL-2 family has homology clustered principally within four conserved domains called BH1, BH2, BH3, and BH4 (5, 11). The multidimensional nuclear magnetic resonance (NMR) and X-ray crystallographic structure of a BCL-XL monomer indicates that the BH1-4 domains correspond to α helices 1 to 7. Notably, the BH1, -2, and -3 domains are in close proximity and create a hydrophobic pocket presumably involved in interactions with other BCL-2 family members (13). The NMR analysis of a BCL-XL-BAK BH3 peptide complex revealed both hydrophobic and electrostatic interactions between the BCL-XL pocket and a BH3 amphipathic α-helical peptide from BAK (17).Prior mutagenesis studies of BCL-2 and BCL-XL revealed the importance of BH1 and BH2 domains for both their antiapoptotic function and the capacity to heterodimerize with proapoptotic molecules like BAX or BAK (2, 19, 26). In general, most mutations that disrupt heterodimerization with BAX also lose their death repressor function. However, exceptions do exist; some mutants of BCL-XL fail to bind BAX or BAK but still repress cell death, suggesting that these functions can be separated for antiapoptotic molecules (2). Moreover, a genetic approach with Bcl-2-deficient and Bax-deficient mice also suggested that BCL-2 and BAX could function independently of one another (10).Deletion studies of the death agonist BAK first implicated the BH3 domain as having the capacity to bind BCL-XL and promote apoptosis (3). However, the functional significance of BH3 in BAX is uncertain as indicated in the literature. Three deletion analyses indicated the necessity of the BH3 domain in BAX to promote cell death as well as to heterodimerize with BCL-2 (3, 9, 28). Yet, two recent studies reported that BAX functions as a death activator independent of its heterodimerization (21, 27). Moreover, substitution mutants within the BH3 domain showed conflicting specificities of heterodimerization (20, 21, 27).Our initial screen of yeast two-hybrid libraries with BCL-2 as bait yielded multiple clones that possess only the NH2 terminus of BAX, bearing the BH3 but not the BH1 or the BH2 domains. A similar set of isolates was obtained when BCL-2 (G145A) was used as bait (15). We also noted by deletion analysis and assessment of minimal domains of BAX that the BH3 domain was required for both homodimerization and heterodimerization. Consequently, we undertook an extensive site-directed mutagenesis of the BH3 domain of BAX. These studies demonstrate the importance of the hydrophobic face of the amphipathic α helix of BH3 for the dimerization and cell death activities of BAX. Furthermore, analysis of a BAX mutant indicates that its retained conformation as a cross-linkable dimer at mitochondrial membranes correlates with its intact apoptotic function.  相似文献   

20.
The multidomain pro-apoptotic proteins BAX and BAK constitute an essential gateway to mitochondrial dysfunction and programmed cell death. Among the "BCL-2 homology (BH) 3-only" members of pro-apoptotic proteins, truncated BID (tBID) has been implicated in direct BAX activation, although an explicit molecular mechanism remains elusive. We find that BID BH3 peptide alone at submicromolar concentrations cannot activate BAX or complement BID BH3 mutant-tBID in mitochondrial and liposomal release assays. Because tBID contains structurally defined membrane association domains, we investigated whether membrane targeting of BID BH3 peptide would be sufficient to restore its pro-apoptotic activity. We developed a Ni(2+)-nitrilotriacetic acid liposomal assay system that efficiently conjugates histidine-tagged peptides to a simulated outer mitochondrial membrane surface. Strikingly, nanomolar concentrations of a synthetic BID BH3 peptide that is chemically tethered to the liposomal membrane activated BAX almost as efficiently as tBID itself. These results highlight the importance of membrane targeting of the BID BH3 domain in tBID-mediated BAX activation and support a model in which tBID engages BAX to trigger its pro-apoptotic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号