首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Data from several experimental approaches strongly suggest that Sertoli cells exert a paracrine control of the two main testicular functions, androgen secretion and spermatogenesis. Further evidence supporting this role of Sertoli cells was obtained by coculture of Sertoli cells with other testicular cells. Coculture of pig or rat Sertoli cells with pig Leydig cells produces an increase in the hCG receptor number and an increase in the steroidogenic activity of Leydig cells. Pretreatment with FSH further increases the values of these two parameters. These biochemical changes were associated with ultrastructural changes in Leydig cells. The effects of Sertoli cells on Leydig cells depend upon the ratio of the two cells and on the substrate in which the cells are cultured. Moreover, Leydig cells produce an increase in the FSH receptor number and in the FSH stimulation of plasminogen activator production by Sertoli cells. Coculture of rat or pig Sertoli cells with rat germ cells, induces an increase in the RNA and DNA biosynthetic activities of germ cells. Most of the stimulatory effects seemed to be mediated by diffusible factors, secreted by Sertoli cells, but full expression of the stimulatory action was observed when germ cells were in contact with other cells. In this coculture system, a fraction of rat germ cells containing mainly mature forms of spermatocytes inhibited rat Sertoli cell RNA and DNA synthesis, but had no effect on pig Sertoli cells. On the contrary, a fraction of rat germ cells richer in spermatogonias and preleptotene spermatocytes, stimulated rat Sertoli cell DNA synthesis but was without effect on pig Sertoli cells. These results clearly show that the stimulatory effects of Sertoli cells on Leydig and on germ cells which are not species specific are mediated mainly by diffusible factors, the secretion of which is regulates by FSH.  相似文献   

2.
Summary Interactions between Leydig and Sertoli cells, as well as a stimulatory effect of FSH on Leydig cell activity, have been reported in many studies. In order to investigate these interactions, the ultrastructure of immature pig Leydig cells under different culture conditions has been studied. When cultured alone in a chemically defined medium, there is a marked regression of the Leydig cell smooth endoplasmic reticulum and a swelling of the mitochondria. Addition of FSH or hCG does not prevent these phenomena. Co-culturing of Leydig cells with Sertoli cells from the same animal maintains the smooth endoplasmic reticulum at the level seen in vivo and in freshly isolated Leydig cells. The addition of FSH to the co-culture stimulates its development and increases Leydig cell activity, as assessed by an increase in hCG binding sites and an increased steroidogenic response to hCG. These results suggest that Sertoli cells exert a trophic effect on Leydig cells, and that the stimulatory effect of FSH on Leydig cell function is mediated via the Sertoli cells. These results reinforce the concept of a local regulatory control of Leydig cell steroidogenesis.Post-Doctoral fellow supported by CIRIT, Generalitat de Catalunya, Spain  相似文献   

3.
By using a model of immature porcine Leydig and Sertoli cells cultured in serum free defined medium, we evidenced a paracrine control of Leydig cell steroidogenic activity by Sertoli cells via a secreted inhibiting protein(s). This protein(s), partially purified using gel filtration (M.W. 20,000-30,000) suppresses the steroidogenic responsiveness to LH/hCG by decreasing the specific LH/hCG binding (52% decrease) and hormone steroid biosynthesis (73% decrease) at a level(s) located between cAMP production and pregnenolone formation. The suppression of this inhibitor(s) by FSH, in a dose dependent manner, is one mechanism by which FSH "sensitizes" Leydig cell response to LH/hCG stimulation.  相似文献   

4.
The regulating effect of follicle-stimulating hormone (FSH) on Leydig cell function was studied using a model of immature porcine Leydig and Sertoli cells cultured in a hormone supplemented defined medium. FSH pretreatment for 2 days of Leydig cells cultured alone was with no effect. FSH pretreatment of Leydig cells cocultured with Sertoli cells increases Leydig cell activity in an FSH dose-dependent manner with a maximal effect observed at 50 ng/ml porcine FSH (pFSH). Leydig cells cultured for 2 days in conditioned medium (CM) by FSH stimulated (FSH-CM) Sertoli cells, as compared to CM by unstimulated (control) (C-CM) Sertoli cells show an increase of their activity with a maximal effect observed at 50 ng/ml pFSH. Leydig cells cultured in CM as compared to non CM, show a marked development of organelles (smooth endoplasmic reticulum and mitochondria) involved in the steroidogenic activity. The activity of FSH-CM as compared to C-CM on Leydig cell function was non dialyzable and trypsin sensitive. These data suggest that Sertoli cells exert a regulatory action on Leydig cell steroidogenic activity via FSH dependent secreted proteins.  相似文献   

5.
The effects of follicular stimulating hormone (FSH) on testicular steroidogenic activity has been studied by testing the capacity of conditioned medium (CM) by both unstimulated (control) Sertoli cells (C-CM) and FSH stimulated Sertoli cells (FSH-CM) to influence porcine cultured Leydig cell activity. Leydig cells cultured in FSH-CM for 48 hrs, as compared to C-CM, show a significant (P less than 0.05) increase in [125I]-hCG binding (150% +/- 4) and hCG-stimulated testosterone (T) secretion (266% +/- 42). In addition, the stimulating effect of FSH-CM on Leydig cell function as compared to C-CM, is trypsin sensitive, non dialyzable, heat stable, acid resistant and is chromatographed following gel filtration (Sephadex G 100) into two different peaks of activity. These data suggest that FSH regulates Leydig cell function via (at least two types of) Sertoli cell secreted proteins.  相似文献   

6.
One single injection of ethylene dimethane sulfonate (EDS) to mature rats causes specific degeneration of testicular Leydig cells which is complete after 3 days. At this time no steroidogenic activities can be detected, indicating that Leydig cells are the source of steroids. The mechanism of this cytotoxic effect of EDS has been investigated with isolated cells. Extensive protein alkylation has been shown to occur in Leydig cells, Sertoli cells and hepatocytes. Steroid production by Leydig cells is always inhibited by EDS, but cytotoxic effects of EDS could only be demonstrated in Leydig cells from mature rats or tumour tissue and not in Leydig cells from immature rats. A new population of Leydig cells develops during the next 2-5 weeks after EDS treatment. In hypophysectomized rats this repopulation only occurs when hCG is given daily. FSH has no effects. The proliferative activity in the interstitial tissue increases within 2 days after administration of hCG or EDS and there are indications that LH and locally produced factors are involved in the proliferation of Leydig cells or Leydig cell precursor cells. Inhibition of cAMP production with inhibitors of adenylate cyclase results in an enhancement of the LH-stimulated steroid production similar to that observed with an LHRH agonist and phospholipase C (PLC). Since the effects of LHRH and PLC on protein phosphorylation and steroid production are similar and different from LH or active phorbol esters, it is proposed that LHRH and PLC may stimulate steroid production via liberation of calcium from a specific intracellular pool. Sterol carrier protein2 (SCP2) which is specifically localized in Leydig cells and regulated by LH probably plays a role in the delivery of cholesterol to the mitochondria although the mechanism of this carrier function is not clear. The results indicate that regulation of Leydig cell development and the steroidogenic activities by gonadotrophins and locally produced factors occur via different transducing systems and regulatory pathways.  相似文献   

7.
Both the cell and the species specificities of the steroidogenic potentiating activity (SPA) of Sertoli cells on Leydig cells were studied using a coculture system. Coculture of purified pig Leydig cells with rat or pig Sertoli cells in the presence of FSH led in both cases, to a significant increase in hCG receptor number and in hCG-stimulated testosterone production. Similarly, coculture of bovine adrenal cells with rat or pig Sertoli cells enhanced the steroidogenic response of adrenal cells to ACTH and angiotensin II. Such effects were not observed when pig Leydig cells or bovine adrenal cells were cocultured with bovine aortic endothelial cells. Coculture of Sertoli and Leydig cells in the presence of hCG, resulted in a significant increase in FSH receptor number and in FSH-induced plasminogen activator activity. Such effects did not occur when Sertoli cells were cocultured with either adrenal or aortic endothelial cells.  相似文献   

8.
9.
The effect of transforming growth factor beta on testicular steroidogenesis was studied by using a model of immature porcine Leydig cells cultured in a chemically defined medium. Leydig cells were cultured in the presence of human or porcine purified TGF beta and the following parameters were measured: cell proliferation, LH/hCG binding, and hCG-stimulated steroid hormone productions (DHEA, DHEAS and testosterone). Whereas TGF beta from the two sources had no effect on Leydig cell multiplication, it markedly inhibited LH/hCG-stimulated DHEA and DHEAS in a time- and dose-dependent manner. The maximal inhibitory effect of this peptide on LH/hCG binding (65% decrease), hCG-stimulated DHEA (77% decrease) and DHEAS (92% decrease) productions was observed with 2 ng/ml for 48 h of treatment. In contrast, TGF beta exerted a biphasic effect on hCG-stimulated testosterone production: stimulating (110% increase) until 2 ng/ml and inhibiting (35% decrease) for higher concentrations. [125I]TGF beta was cross-linked to Leydig cells using disuccinimidyl suberate; cells affinity labelled with [125I]TGF beta exhibit a major labelled band of approx 280 kDa, which has the properties expected from a TGF beta receptor. These data demonstrate that TGF beta is a direct potent regulator of Leydig cell steroidogenic function and its effects are probably mediated via a specific receptor.  相似文献   

10.
Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH) acts through receptors (FSHR) on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR) on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice) and/or ARs ubiquitously (ARKO mice) or specifically on the Sertoli cells (SCARKO mice). Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control). Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.  相似文献   

11.
In this paper the effects of growth factors on the differentiated function of pig Leydig cells and other steroidogenic cells are reviewed. Two types of action have been observed, i.e. positive or negative acute effects on testosterone secretion, and long-term trophic effects of hCG receptor and responsiveness to hCG. Among the growth factors, insulin-like growth factor I (IGF-I) and transforming growth factor beta (TGF beta-1) are of particular interest. IGF-I is required for the maintenance and probably the expression of differentiated functions of several steroidogenic cells, including the Leydig cells. TGF beta-1 has effects opposite to IGF-I on Leydig cell functions. When considering effects of growth factors on Leydig cells, caution should be taken in extrapolating results obtained in one species to another.  相似文献   

12.
Ovine LH is needed for differentiation of juvenile Leydig cells and for their maintenance and steroidogenic potential, while FSH is necessary for Sertoli cell activity and spermatogonial multiplication suggesting that LH is steroidogenic hormone and FSH is gametogenic in the developing pigeon, C. livia. Homoplastic pituitary extract is more potent than ovine LH + FSH in stimulating gametogenic and endocrine components of the developing testis.  相似文献   

13.
The present work was done to investigate the cell localization of testicular aromatase activity and its regulation in immature pig testis using an in vitro model. Leydig cells and Sertoli cells were isolated from immature pig testes and cultured alone or together in the absence or presence of human chorionic gonadotropin (hCG) or porcine follicle-stimulating hormone (pFSH) for 2 days. At the end of incubation, the amounts of testosterone (T), estrone sulfate (E1S) and estradiol (E2) were measured. Then the cells were incubated for 4 h in the presence of saturating concentrations of delta 4-androstenedione (3 microM) and the amounts of E1S and E2 were measured again (aromatase activity). The ability of Sertoli cells to produce estrogens was very low and neither hCG nor pFSH had any significant effect. hCG stimulated, in a dose-dependent manner, the secretion of T and E1S by Leydig cells cultured alone as well as the aromatase activity of these cells. The main estrogen produced by Leydig cells was E1S. pFSH also stimulated the above parameters of Leydig cell function; this may have been due to the contamination of this hormone with luteinizing hormone (LH). Coculture of Leydig cells with Sertoli cells without gonadotropins had very small effects on T and E1S production and on aromatase activity. However, treatment of coculture with increasing concentrations of hCG had a dramatic effect on Leydig cell functions. For each hCG concentration, the amounts of T and E1S secreted, as well as the aromatase activity of the coculture, were 2- to 3-fold higher than those of Leydig cells cultured alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Testosterone (T) is an absolute requirement for spermatogenesis and is supplied by mature Leydig cells stimulated by LH. We previously showed in gonadotropin-deficient hpg mice that T alone initiates qualitatively complete spermatogenesis bypassing LH-dependent Leydig cell maturation and steroidogenesis. However, because maximal T effects do not restore testis weight or germ cell number to wild-type control levels, additional Leydig cell factors may be involved. We therefore examined 1). whether chronic hCG administration to restore Leydig cell maturation and steroidogenesis can restore quantitatively normal spermatogenesis and testis development and 2). whether nonandrogenic Leydig cell products are required to initiate spermatogenesis. Weanling hpg mice were administered hCG (0.1-100 IU i.p. injection three times weekly) or T (1-cm subdermal Silastic implant) for 6 weeks, after which stereological estimates of germinal cell populations, serum and testicular T content, and testis weight were evaluated. Human CG stimulated Leydig cell maturation and normalized testicular T content compared with T treatment where Leydig cells remained immature and inactive. The maximal hCG-induced increases in testis weight and serum T concentrations were similar to those for T treatment and produced complete spermatogenesis characterized by mature, basally located Sertoli cells (SCs) with tripartite nucleoli, condensed haploid sperm, and lumen development. Compared with T treatment, hCG increased spermatogonial numbers, but both hCG and T had similar effects on numbers of spermatocytes and round and elongated spermatids per testis as well as per SC. Nevertheless, testis weight and germ cell numbers per testis and per SC remained well below phenotypically normal controls, confirming the involvement of non-Leydig cell factors such as FSH for quantitative normalization of spermatogenesis. We conclude that hCG stimulation of Leydig cell maturation and steroidogenesis is not required, and that T alone mostly replicates the effects of hCG, to initiate spermatogenesis. Because T is both necessary and sufficient for initiation of spermatogenesis, it is likely that T is the main Leydig cell secretory product involved and that additional LH-dependent Leydig cell factors are not essential for induction of murine spermatogenesis.  相似文献   

15.
This review centers around studies which have used ethane dimethane sulphonate (EDS) selectively to destroy all of the Leydig cells in the adult rat testis. With additional manipulations such as testosterone replacement and/or experimental induction of severe seminiferous tubule damage in EDS-injected rats, the following questions have been addressed: 1) What are the roles and relative importance of testosterone and other non-androgenic Leydig cell products in normal spermatogenesis and testicular function in general? 2) What are the factors controlling Leydig cell proliferation and maturation? 3) Is it the Leydig cells or the seminiferous tubules (or both) which control the testicular vasculature? The findings emphasize that in the normal adult rat testis there is a complex interaction between the Leydig cells, the Sertoli (and/or peritubular) cells, the germ cells, and the vasculature, and that testosterone, but not other Leydig cell products, plays a central role in many of these interactions. The Leydig cells drive spermatogenesis via the secretion of testosterone which acts on the Sertoli and/or peritubular cells to create an environment which enables normal progression of germ cells through stage VII of the spermatogenic cycle. In addition, testosterone is involved in the control of the vasculature, and hence the formation of testicular interstitial fluid, presumably again via effects on the Sertoli and/or peritubular cells. When Leydig cells regenerate and mature after their destruction by EDS, it can be shown that both the rate and the location of regenerating Leydig cells is determined by an interplay between endocrine (LH and perhaps FSH) and paracrine factors; the latter emanate from the seminiferous tubules and are determined by the germ cell complement. Taken together with other data on the paracrine control of Leydig cell testosterone secretion by the seminiferous tubules, these findings demonstrate that the functions of all of the cell types in the testis are interwoven in a highly organized manner. This has considerable implications with regard to the concentration of research effort on in vitro studies of the testis, and is discussed together with the need for a multidisciplinary approach if the complex control of spermatogenesis is ever to be properly understood.  相似文献   

16.
Cryptorchidism for 28 or 10 days resulted in a severe disruption of spermatogenesis (assessed histologically or by fertility tests), Sertoli cell function (assessed by seminiferous tubule fluid production after efferent duct ligation, ABP levels, binding of 125I-labelled FSH to testis homogenates and serum FSH levels) and Leydig cell function (assessed by serum LH and testosterone levels, in-vitro testosterone production, binding of 125I-labelled hCG). Orchidopexy after 28 days of cryptorchidism resulted in a poor recovery of spermatogenesis since the majority of tubules were lined by Sertoli cells and a few spermatogonia. No recovery occurred in the indicators of Sertoli and Leydig cell function. Orchidopexy after 10 days of cryptorchidism also resulted in a poor recovery of spermatogenesis, with a few animals showing partial recovery after 6 months. No recovery occurred in seminiferous tubule fluid production but partial recovery occurred in ABP content and production rate. Serum FSH, LH levels and in-vitro testosterone production by the testis remained elevated and did not change from the values found during cryptorchidism. Fertility testing at 6 months revealed a small number of rats in which fertility was restored although the number of embryos was lower than in controls. In this group of animals there was a significant improvement in a number of indicators of Sertoli cell and Leydig cell function. These data provide further evidence to link the changes in Sertoli cell and Leydig cell function to the germ cell complement present in the testis.  相似文献   

17.
FSH mediates its testicular actions via a specific Sertoli cell G protein-coupled receptor. We created a novel transgenic model to investigate a mutant human FSH receptor (FSHR(+)) containing a single amino acid substitution (Asp567Gly) equivalent to activating mutations in related glycoprotein hormone receptors. To examine the ligand-independent gonadal actions of FSHR(+), the rat androgen-binding protein gene promoter was used to direct FSHR(+) transgene expression to Sertoli cells of gonadotropin-deficient hypogonadal (hpg) mice. Both normal and hpg mouse testes expressed FSHR(+) mRNA. Testis weights of transgenic FSHR(+) hpg mice were increased approximately 2-fold relative to hpg controls (P < 0.02) and contained mature Sertoli cells and postmeiotic germ cells absent in controls, revealing FSHR(+)-initiated autonomous FSH-like testicular activity. Isolated transgenic Sertoli cells had significantly higher basal ( approximately 2-fold) and FSH-stimulated ( approximately 50%) cAMP levels compared with controls, demonstrating constitutive signaling and cell-surface expression of FSHR(+), respectively. Transgenic FSHR(+) also elevated testosterone production in hpg testes, in the absence of circulating LH (or FSH), and it was not expressed functionally on steroidogenic cells, suggesting a paracrine effect mediated by Sertoli cells. The FSHR(+) response was additive with a maximal testosterone dose on hpg testicular development, demonstrating FSHR(+) activity independent of androgen-specific actions. The FSHR(+) response was male specific as ovarian expression of FSHR(+) had no effect on hpg ovary size. These findings reveal transgenic FSHR(+) stimulated a constitutive FSH-like Sertoli cell response in gonadotropin-deficient testes, and pathways that induced LH-independent testicular steroidogenesis. This novel transgenic paradigm provides a unique approach to investigate the in vivo actions of mutated activating gonadotropin receptors.  相似文献   

18.
We report the immortalization, using the SV40 large T antigen, of all the cell types contributing to a developing seminiferous tubule in the mouse testis. Sixteen peritubular, 22 Leydig, 8 Sertoli, and 1 germ cell line have been established and cultured successfully for 90 generations in a period of 2.5 years. Immortalized peritubular cells were identified by their spindle-like appearance, their high expression of alkaline phosphatase, and their expression of the intermediary filament desmin. They also produce high amounts of collagen. Immortalized Leydig cells are easily identifiable by the accumulation of lipid droplets in their cytoplasm and the production of the enzyme 3-beta-hydroxysteroid dehydrogenase. Some Leydig cell lines also express LH receptors. The immortalized Sertoli cells are able to adopt their typical in vivo columnar appearance when cultured at high density. They exhibit a typical indented nucleus and cytoplasmic phagosomes. Some Sertoli cell lines also express FSH receptors. A germ cell line (GC-1spg) was established that corresponds to a stage between spermatogonia type B and primary spermatocyte, based on its characteristics in phase contrast and electron microscopy. This cell line expresses the testicular cytochrome ct and lactate dehydrogenase-C4 isozyme. These four immortalized cell types, when plated together, are able to reaggregate and form structures resembling two-dimensional spermatogenic tubules in vitro. When only the immortalized somatic cells are cocultured, the peritubular and Sertoli cells form cord-like structures in the presence of Leydig cells. Fresh pachytene spermatocytes cocultured with the immortalized somatic cells integrate within the cords and are able to survive for at least 7 days. The ability to perform coculture experiments with immortalized testicular cell lines represents an important advancement in our ability to study the nature of cell-cell and cell-matrix interactions during spermatogenesis and testis morphogenesis.  相似文献   

19.
The effects of interleukin on testicular steroidogenesis have been studied in several laboratories, most often by using cultured rat Leydig cells. Several reports have indicated that interleukin-1 beta (IL-1 beta), but not interleukin-1 alpha (IL-1 alpha), exert a potent effect on gonadotropin action in rat Leydig cells. By using cultured porcine Leydig cells as a model, we found that IL-1 alpha (and to a lesser extent IL-1 beta), contrary to previous reports, is a potent inhibitor of LH/hCG steroidogenic action; and we further localized the steroidogenic biochemical step(s) affected by IL-1 alpha. IL-1 alpha inhibited hCG-induced testosterone secretion (about 67%) in a dose- and time-dependent manner. Half maximal and maximal effects were obtained with 4 U/ml (approximately 0.4 ng/ml, 0.3 x 10(-10) M) and 20 U/ml (approximately 2 ng/ml, 1.4 x 10(-10) M) of IL-1 alpha, respectively. The inhibitory effect of IL-1 alpha on gonadotropin action was detected at 6 h and was maximal after 24 h of treatment with the cytokine. The IL-1 alpha inhibitory effect was more potent than that of IL-1 beta: the maximal inhibitory effect of IL-1 beta was obtained with 400 U/ml. Subsequent investigations indicated that IL-1 alpha inhibited different biochemical steps involved in gonadotropin-induced testicular steroidogenesis. In this context, although IL-1 alpha appears to inhibit Leydig cell membrane functions (through a decrease in LH/hCG binding and gonadotropin-induced cAMP production), the antigonadotropin action of the cytokine is probably exerted predominantly at a step(s) located beyond cAMP formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Treatment of immature, hypophysectomized male rats with 50 micrograms ovine FSH (NIH-FSH-S12) twice a day for 5 days stimulated the maximum quantity of 17 beta-hydroxyandrogen produced by isolated Leydig cells in response to hCG. Pretreatment of the FSH preparation with an LH antiserum in one study markedly reduced and in another study completely abolished this stimulatory effect of FSH, but only slightly impaired the capacity of the hormone to stimulate the Sertoli cell in vivo (epididymal androgen-binding protein). Administration of another highly potent FSH preparation (LER-1881) had no discernible effects on the dose-response characteristics of the Leydig cells but was superior to the NIH-FSH-S12 in its capacity for stimulating the Sertoli cell. When all hormone preparations were tested for their ability to stimulate steroid secretion from normal Leydig cells in vitro, a close correlation was obtained between their Leydig cell-stimulating activity (a measure of LH contamination) and their capacity to alter Leydig cell responsiveness after in-vivo treatment. FSH treatment had no effects on specific LH binding per 10(6) Leydig cells. It is concluded that the stimulatory influence of FSH on rat Leydig cells may to some extent be a result of the LH contaminating the hormone preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号