首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 712 毫秒
1.
We recently reported that a DNA catalyst (deoxyribozyme) can site-specifically hydrolyze DNA on the minutes time scale. Sequence specificity is provided by Watson-Crick base pairing between the DNA substrate and two oligonucleotide binding arms that flank the 40-nt catalytic region of the deoxyribozyme. The DNA catalyst from our recent in vitro selection effort, 10MD5, can cleave a single-stranded DNA substrate sequence with the aid of Zn(2+) and Mn(2+) cofactors, as long as the substrate cleavage site encompasses the four particular nucleotides ATG^T. Thus, 10MD5 can cleave only 1 out of every 256 (4(4)) arbitrarily chosen DNA sites, which is rather poor substrate sequence tolerance. In this study, we demonstrated substantially broader generality of deoxyribozymes for site-specific DNA hydrolysis. New selection experiments were performed, revealing the optimality of presenting only one or two unpaired DNA substrate nucleotides to the N(40) DNA catalytic region. Comprehensive selections were then performed, including in some cases a key selection pressure to cleave the substrate at a predetermined site. These efforts led to identification of numerous new DNA-hydrolyzing deoxyribozymes, many of which require merely two particular nucleotide identities at the cleavage site (e.g. T^G), while retaining Watson-Crick sequence generality beyond those nucleotides along with useful cleavage rates. These findings establish experimentally that broadly sequence-tolerant and site-specific deoxyribozymes are readily identified for hydrolysis of single-stranded DNA.  相似文献   

2.
Nucleic acid mutation analysis using catalytic DNA   总被引:3,自引:0,他引:3       下载免费PDF全文
The sequence specificity of the ‘10–23’ RNA-cleaving DNA enzyme (deoxyribozyme) was utilised to discriminate between subtle differences in nucleic acid sequence in a relatively conserved segment of the L1 gene from a number of different human papilloma virus (HPV) genotypes. DNA enzymes specific for the different HPV types were found to cleave their respective target oligoribonucleotide substrates with high efficiency compared with their unmatched counterparts, which were usually not cleaved or cleaved with very low efficiency. This specificity was achieved despite the existence of only very small differences in the sequence of one binding arm. As an example of how this methodology may be applied to mutation analysis of tissue samples, type-specific deoxyribozyme cleavable substrates were generated by genomic PCR using a chimeric primer containing three bases of RNA. The RNA component enabled each amplicon to be cleavable in the presence of its matching deoxyribozyme. In this format, the specificity of deoxyribozyme cleavage is defined by Watson–Crick interactions between one substrate-binding domain (arm I) and the polymorphic sequence which is amplified during PCR. Deoxyribozyme-mediated cleavage of amplicons generated by this method was used to examine the HPV status of genomic DNA derived from Caski cells, which are known to be positive for HPV16. This method is applicable to many types of nucleic acid sequence variation, including single nucleotide polymorphisms.  相似文献   

3.
Two modified 2′-deoxynucleoside 5′-triphosphates have been used for the in vitro selection of a modified deoxyribozyme (DNAzyme) capable of the sequence-specific cleavage of a 12 nt RNA target in the absence of divalent metal ions. The modified nucleotides, a C5-imidazolyl-modified dUTP and 3-(aminopropynyl)-7-deaza-dATP were used in place of TTP and dATP during the selection and incorporate two extra protein-like functionalities, namely, imidazolyl (histidine analogue) and primary amino (lysine analogue) into the DNAzyme. The functional groups are analogous to the catalytic Lys and His residues employed during the metal-independent cleavage of RNA by the protein enzyme RNaseA. The DNAzyme requires no divalent metal ions or other cofactors for catalysis, remains active at physiological pH and ionic strength and can recognize and cleave a 12 nt RNA substrate with sequence specificity. This is the first example of a functionalized, metal-independent DNAzyme that recognizes and cleaves an all-RNA target in a sequence-specific manner. The selected DNAzyme is two orders of magnitude more efficient in its cleavage of RNA than an unmodified DNAzyme in the absence of metal ions and represents a rate enhancement of 105 compared with the uncatalysed hydrolysis of RNA.  相似文献   

4.
5.
We develop a novel functional biosensor on a deoxyribozyme. A 5'-end-immobilized short Ca(2+)-dependent deoxyribozyme (dCGCTGGCAGGCTACAACGAGTCTTC) binds to a target RNA substrate (rGAAGACA decrease UGCCAGCG; decrease denotes an RNA cleavage site), and acts as an enzyme in the presence of Ca2+. It cleaves the target RNA substrate at one site of rAp decrease U in the asymmetric internal loop.  相似文献   

6.
Recent structures of DNA polymerase complexes with dGMPCPP/dT and dCTP/dA mispairs at the insertion site have shown that they adopt Watson‐Crick geometry in the presence of Mn2+ indicating that the tautomeric or ionization state of the base has changed. To see whether the tautomeric or ionization state of base‐pair could be affected by its microenvironment, we determined 10 structures of an RB69 DNA polymerase quadruple mutant with dG/dT or dT/dG mispairs at position n‐1 to n‐5 of the Primer/Template duplex. Different shapes of the mispairs, including Watson‐Crick geometry, have been observed, strongly suggesting that the local environment of base‐pairs plays an important role in their tautomeric or ionization states.  相似文献   

7.
DNA has proved to be a successful material for creation of nanoscale structures because of its inherent programmability and predictable structural features. However, the assembly of periodic three-dimensional (3D) DNA crystals is hampered by the junctions needed to connect the inherently linear Watson–Crick duplexes. Here, we examine how predictable noncanonical base pairing motifs can be used in conjunction with Watson–Crick duplexes to assemble macroscopic 3D crystals with useful nanoscale features. Parallel-stranded homopurine 5′-GGA base pairs serve as a junction region in a continuously base paired 13-mer DNA crystal (Paukstelis et al., 2004). This motif is predictable and has been used in different sequence contexts to rationally design DNA crystals with different lattice dimensions. These designed crystals have been utilized as macromolecular sieves for capturing or excluding proteins (Paukstelis, 2006). Further, we have demonstrated that a protein enzyme encapsulated in the crystal solvent channels is capable of performing catalysis. Enzyme-infused DNA crystals are capable of multiple cycles of catalysis following removal of substrate and products, and may offer potential new routes for enzyme replacement therapies or the creation of new biodegradable solid-state catalysts and sensors. A structurally similar homoparallel region, 5′-CGAA, has also been used to generate crystals that are capable of making concerted in crystallo structural transitions in response to pH perturbations (Muser & Paukstelis, 2012). These studies highlight potential uses of DNA crystals as stimuli-responsive biomaterials. Despite these successes, the ability to use noncanonical DNA motifs in crystal design is limited by both the number of available noncanonical DNA structures, and our understanding of how these structures self-assemble. To address this we have initiated a high-throughput crystallization screen of short DNA oligonucleotides to identify new noncanonical base pairing motifs and to address the broad question: How structurally diverse is DNA?  相似文献   

8.
The specific nucleotide recognition and sequence-specific cleavage of DNA by bleomycin (BLM) antibiotics are a typical example of macromolecular receptor-drug interaction in the field of chemotherapy. The present results demonstrate that ethidium bromide, distamycin A, and actinomycin D evidently altered the nucleotide sequence-specific mode of DNA breakage by the iron-BLM system, which cleaves isolated DNA preferentially at G-C (5' leads to 3') and G-T (5' leads to 3') sequences. In the presence of ethidium bromide, the most preferred cleavage site was the sequence G-T at position 52 to 53. Of special interest is marked alteration of the nucleotide sequence-specific mode by distamycin A. This intercalator masked the cleavages at G-T and G-A sequences, and produced higher specificity for G-C sequences than that of iron-BLM only. In the case of actinomycin D, the preferred sequence groups of DNA breakage were shifted from G-C sequences to G-A (43 to 44) and G-T (52 to 53) sequences. Certain intercalating agents are very available for the investigations of site-specific recognition and cleavage of DNA by DNA-cleaving drugs such as BLM.  相似文献   

9.
Okumoto Y  Tanabe Y  Sugimoto N 《Biochemistry》2003,42(7):2158-2165
Recently, we found a small Ca(2+)-dependent deoxyribozyme (unmodified), d(GCCTGGCAG(1)G(2)C(3)T(4)A(5)C(6)A(7)A(8)C(9)G(10)A(11)GTCCCT), with cleavage activity for its RNA substrate, r(AGGGACA downward arrow UGCCAGGC) ( downward arrow denotes the RNA cleavage site), in the presence of Ca(2+) and developed a functional SPR sensor chip with this deoxyribozyme [Okumoto, Y., Ohmichi, T., and Sugimoto, N. (2002) Biochemistry 41, 2769-2773]. In the study presented here, to clarify the factors contributing to the efficient catalytic activity of the unmodified deoxyribozyme, RNA cleavage reactions were carried out using 24 mutant deoxyribozymes containing one unnatural DNA nucleotide, such as dI (2'-deoxyinosine), 7-deaza-dG, 2-aminopurine, 7-deaza-dA, 2-amino-dA, dm(5)C (5-methyl-2'-deoxycytosine), or d(P)C (5-propynyl-2'-deoxycytosine). The K(m) values (Michaelis constants) with the mutants that lacked N7 and O6 of G(1) and O6 of G(2) were 4.5 and 6.6 times that of the unmodified one, respectively. The k(cat) value (cleavage rate constant) with the mutants that lacked O6 of G(10) was 0.025 times that of the unmodified one. The results of UV melting curves, SPR kinetics, and CD spectra supported the quantitative idea that the catalytic activity of the unmodified form was achieved using Ca(2+). On the basis of these results, a preliminary model for two G(1) x A(8) and G(2) x A(7) mismatched base pairs such as G(anti) x A(anti) formed in the catalytic loop is proposed. The factor of 10 increase in the k(cat)/K(m) value of the mutant deoxyribozyme, which has C(9) substituted with d(P)C, suggests that the base stacking interaction between the substituted propynyl group in dC and the nearest-neighbor base grew stronger. Thus, substituting d(P)C for dC in the catalytic loop would be one of the best ways to increase the catalytic activity of the deoxyribozyme.  相似文献   

10.
We describe a rapid and inexpensive method to monitor the kinetics of small RNA-cleaving deoxyribozymes, based on the exogenous fluorophore ethidium bromide. Ethidium binds preferentially to double-stranded nucleic acids, and its fluorescence emission increases dramatically upon intercalation. Thus, ethidium can be used in single-turnover experiments to measure both annealing of the deoxyribozyme to its substrate and release of the products. Under conditions in which dissociation of the product is fast compared with cleavage, the apparent rate of product release reflects the cleavage step. The method was developed for characterizing the so-called 8-17 catalytic DNA, but its general applicability in the deoxyribozyme field was verified using the 10-23 RNA-cleaving construct. Catalysis by both deoxyribozymes was not inhibited in the presence of substoichiometric amounts of ethidium, and the rates obtained through the ethidium assay were virtually identical to the rates determined using radiolabeled substrates. In contrast, the assay cannot be applied to the large, structured ribozymes, and its use to study the kinetics of the small hammerhead ribozyme was hampered by the presence on the catalyst of at least one high-affinity ethidium binding site.  相似文献   

11.
12.
Erwin Chargaff was one of the more interesting and colourful figures of the historic decade that heralded the proposal of the double helical structure of DNA by Watson and Crick in 1953. In describing Chargaff's important contribution to the study of DNA, particularly its base composition, this article seeks to suggest why, despite his substantial achievements, he failed to anticipate some of the key features of the Watson-Crick model, particularly complementarity between bases--a failure that left him deeply embittered for the rest of his life.  相似文献   

13.
A covalently branched nucleic acid can be synthesized by joining the 2′-hydroxyl of the branch-site ribonucleotide of a DNA or RNA strand to the activated 5′-phosphorus of a separate DNA or RNA strand. We have previously used deoxyribozymes to synthesize several types of branched nucleic acids for experiments in biotechnology and biochemistry. Here, we report in vitro selection experiments to identify improved deoxyribozymes for synthesis of branched DNA and RNA. Each of the new deoxyribozymes requires Mn2+ as a cofactor, rather than Mg2+ as used by our previous branch-forming deoxyribozymes, and each has an initially random region of 40 rather than 22 or fewer combined nucleotides. The deoxyribozymes all function by forming a three-helix-junction (3HJ) complex with their two oligonucleotide substrates. For synthesis of branched DNA, the best new deoxyribozyme, 8LV13, has kobs on the order of 0.1 min−1, which is about two orders of magnitude faster than our previously identified 15HA9 deoxyribozyme. 8LV13 also functions at closer-to-neutral pH than does 15HA9 (pH 7.5 versus 9.0) and has useful tolerance for many DNA substrate sequences. For synthesis of branched RNA, two new deoxyribozymes, 8LX1 and 8LX6, were identified with broad sequence tolerances and substantial activity at pH 7.5, versus pH 9.0 for many of our previous deoxyribozymes that form branched RNA. These experiments provide new, and in key aspects improved, practical catalysts for preparation of synthetic branched DNA and RNA.  相似文献   

14.
Nucleic acid crystallography: current progress   总被引:1,自引:0,他引:1  
Fifty years after the publication of the DNA double helix model by Watson and Crick, new nucleic acid structures keep emerging at an ever-increasing rate. The past three years have brought a flurry of new oligonucleotide structures, including those of a Hoogsteen-paired DNA duplex, Holliday junctions, DNA-drug complexes, quadruplexes, a host of RNA motifs and various nucleic acid analogues. Major advances were also made in terms of the structure and function of catalytic RNAs. These range from improved models of the phosphodiester cleavage reactions catalyzed by the hairpin and hepatitis delta virus ribozymes to the visualization of a complete active site of a group I self-splicing intron with bound 5'- and 3'-exons. These triumphs are complemented by a refined understanding of cation-nucleic-acid interactions and new routes to the generation of derivatives for phasing of DNA and RNA structures.  相似文献   

15.
We investigated topoisomerase I activity at a specific camptothecin-enhanced cleavage site by use of a partly double-stranded DNA substrate. The cleavage site belongs to a group of DNA topoisomerase I sites which is only efficiently cleaved by wild-type topoisomerase I (topo I-wt) in the presence of camptothecin. With a mutated camptothecin-resistant form of topoisomerase I (topo I-K5) previous attempts to reveal cleavage activity at this site have failed. On this basis it was questioned whether the mutant enzyme has an altered DNA sequence recognition or a changed rate of catalysis at the site. Utilizing a newly developed assay system we demonstrate that topo I-K5 not only recognizes and binds to the strongly camptothecin-enhanced cleavage site but also has considerable cleavage/religation activity at this particular DNA site. Thus, topo I-K5 has a 10-fold higher rate of catalysis and a 10-fold higher affinity for DNA relative to topo I-wt. Our data indicate that the higher cleavage/religation activity of topo I-K5 is a result of improved DNA binding and a concomitant shift in the equilibrium between cleavage and religation towards the religation step. Thus, a recently identified point mutation which characterizes the camptothecin-resistant topo I-K5 has altered the enzymatic catalysis without disturbing the DNA sequence specificity of the enzyme.  相似文献   

16.
Cytosine-rich DNA at low pH adopts an antiparallel tetraplex structure via the intercalation of two partially protonated, parallel stranded duplexes. This intriguing structural motif has been named i-DNA. We have used a combination of spectroscopic and calorimetric techniques to characterize the properties of an intermolecular i-DNA formed by d(TC(5)) and an intramolecular i-DNA formed by d[(C(5)T(3))(3)C(5)]. Our measurements reveal that both i-DNA complexes are enthalpically stabilized by 6.5-7.0 kcal/mol(base) and entropically destabilized by 20 cal/mol(base)/K. These values are about 50% larger than the corresponding enthalpy and entropy values per base for Watson and Crick duplexes and for Hoogsteen triplexes, while being similar to per base enthalpy and entropy values reported for G-quadruplexes. Our data also reveal a positive heat capacity change between 20 and 30 cal/mol(base)/K, values similar to that reported for polymeric Watson & Crick DNA duplexes. Solution-dependent studies reveal the overall thermal and thermodynamic stability of i-DNA complexes to be dictated by an interplay between pH and ionic strength. Based on the thermodynamic data measured, we discuss the feasibility of i-DNA formation in the context of conventional DNA sequences, while commenting on potential roles for this structural motif in biological regulatory mechanisms.  相似文献   

17.
Side-by-side pairs of three five-membered rings, N-methylpyrrole (Py), N-methylimidazole (Im), and N-methylhydroxy-pyrrole (Hp), have been demonstrated to distinguish each of the four Watson Crick base pairs in the minor groove of DNA. However, not all DNA sequences targeted by these pairing rules achieve affinities and specificities comparable to DNA binding proteins. We have initiated a search for new heterocycles which can expand the sequence repetoire currently available. Two heterocyclic aromatic amino acids. N-methylpyrazole (Pz) and 4-methylthiazole (Th), were incorporated into a single position of an eight-ring polyamide of sequence ImImXPy-gamma-lmPyPyPy-beta-Dp to examine the modulation of affinity and specificity for DNA binding by a Pz/Py pair and or a Th/Py pair. The X/Py pairings Pz/Py and Th/Py were evaluated by quantitative DNase I footprint titrations on a DNA fragment with the four sites 5'-TGGNCA-3' (N=T, A, G, C). The Pz/Py pair binds T.A and A.T with similar affinity to a Py/Py pair but with improved specificity. disfavoring both G.C and C.G by about 100-fold. The Th/Py pair binds poorly to all four Watson Crick base pairs. These results demonstrate that in some instances new heterocyclic aromatic amino acid pairs can be incorporated into imidazole-pyrrole polyamides to mimic the DNA specificity of Py/Py pairs which may be relevant as biological criteria in animal studies become important.  相似文献   

18.
A eukaryotic sequence-specific endonuclease, Endo.SceI, causes sequence-specific double-stranded scission of double-stranded DNA to produce cohesive ends with four bases protruding at the 3' termini. Unlike in the case of restriction enzymes, an asymmetric 26-base pair consensus sequence was found around the cleavage site for Endo.SceI instead of a common sequence. We analyzed the base pairs that interacted with Endo.SceI on the recognition of its cleavage sites. A region comprising -10 through +16 base pairs from the center of the cleavage site was shown to be essential and sufficient for the sequence-specific cutting with Endo.SceI by experiments involving synthesized DNAs. Methylation interference experiments indicate that bases in the region comprising the +7 through +14 base pairs is involved in close contact with Endo.SceI in its recognition of the cleavage site. This +7 through +14-base pair region overlaps the most stringently conserved sequence in the consensus sequence for the cleavage site, suggesting that this region constitutes the core for the recognition by Endo.SceI.  相似文献   

19.
The 8-17 deoxyribozyme is a small DNA catalyst of significant applicative interest. We have analyzed the kinetic features of a well behaved 8-17 construct and determined the influence of several reaction conditions on such features, providing a basis for further exploration of the deoxyribozyme mechanism. The 8-17 bound its substrate with a rate constant ~10-fold lower than those typical for the annealing of short complementary oligonucleotides. The observed free energy of substrate binding indicates that an energetic penalty near to +7 kcal/mol is attributable to the deoxyribozyme core. Substrate cleavage required divalent metal ion cofactors, and the dependence of activity on the concentration of Mg2+, Ca2+ or Mn2+ suggests the occurrence of a single, low-specificity binding site for activating ions. The efficiency of activation correlated with the Lewis acidity of the ion cofactor, compatible with a metal-assisted deprotonation of the reactive 2′-hydroxyl group. However, alternative roles of the metal ions cannot be excluded, because those ions that are stronger Lewis acids are also capable of forming stronger interactions with ligands such as the phosphate oxygens. The apparent enthalpy of activation for the 8-17 reaction was close to the values observed for hydroxide-catalyzed and hammerhead ribozyme-catalyzed RNA cleavage.  相似文献   

20.
Three peptide amides, HPRK(Py)(4)HPRK-NH(2) (PyH-12), HPRK(Py)(3)HPRK-NH(2) (PyH-11) and HPRK(Py)(2)HPRK-NH(2) (PyH-10), incorporating two HPRK motifs and various 4-amino-1-methylpyrrole-2-carboxylic acid residues (Py) were synthesized by solid-phase peptide methodology. The binding of these three peptides to a 5'-32P-labeled 158-mer DNA duplex (Watson fragment) and to a 5'-32P-labeled 135-mer DNA duplex (complementary Crick fragment) was investigated by quantitative DNase I footprinting. On the 158-mer Watson strand, the most distinctive DNase I blockages seen with all three peptides occur around positions 105-112 and 76-79, corresponding to the sequences 5'-GAGAAAAT-3' and 5'-CGGT-3', respectively. However, on the complementary Crick strand, only PyH-12 strongly discriminates the 5'-TTT-3' site around positions 108-110 whereas both PyH-11 and PyH-10 have moderate binding around positions 102-112 comprising the sequence 5'-ATTTTCTCCTT-3'. Possible bidentate and single interactions of the side-chain functions and alpha-amino protons of the peptides with DNA bases are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号