首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Locked nucleic acid (LNA) is an RNA derivative that when introduced into oligodeoxynucleotides (ODN), mediates high efficacy and stability. CpG ODNs are potent immune stimulators and are recognized by toll-like receptor-9 (TLR9). Some phosphorothioate antisense ODNs bearing CpG dinucleotides have been shown to possess immune modulatory capacities. We investigated the effects of LNA substitutions on immune stimulation mediated by antisense ODN G3139 or CpG ODN 2006. LNA ODNs were tested for their ability to stimulate cytokine secretion from human immune cells or TLR9-dependent signaling. Phosphorothioate chimeric LNA/DNA antisense ODNs with phosphodiester-linked LNA nucleobases at both ends showed a marked decrease of immune modulation with an increasing number of 3' and 5' LNA bases. In addition, guanosine-LNA and cytosine-LNA or simply cytosine-LNA substitutions in the CpG dinucleotides of ODN 2006 led to strong decrease or near complete loss of immune modulation. TLR9-mediated signaling was similarly affected. These data indicate that increasing amounts of LNA residues in the flanks or substitutions of CpG nucleobases with LNA reduce or eliminate the immune stimulatory effects of CpG-containing phosphorothioate ODN.  相似文献   

2.
3.
Mechanisms and applications of immune stimulatory CpG oligodeoxynucleotides   总被引:11,自引:0,他引:11  
Immune stimulation has been widely recognized as an undesirable side effect of certain antisense oligodeoxynucleotides (ODN) which can interfere with their therapeutic application. It is now clear that these dose-dependent immune stimulatory effects primarily result from the presence of an unmethylated CpG dinucleotide in particular base contexts ('CpG motif). The sequence-specific immune activation is not just an experimental artifact, but is actually a highly evolved immune defense mechanism whose actual 'goal' is the detection of microbial nucleic acids. In contrast to vertebrate DNA, in which CpG dinucleotides are 'suppressed' and are highly methylated, microbial genomes do not generally feature CpG suppression or methylation [1]. Immune effector cells such as B cells, macrophages, dendritic cells, and natural killer cells appear to have evolved pattern recognition receptors (PRR) that by binding the microbe-restricted structure of CpG motifs, trigger protective immune responses. Although the specific immune activation appears to have a variety of potential therapeutic applications, it is generally undesirable in antisense ODN. Immune stimulation may be avoided in antisense oligos by the selection of CpG-free target sequences, by the use of ODN backbones that do not support immune stimulation, or by selective modifications of the cytosine in any CpG dinucleotides.  相似文献   

4.
Oligodeoxynucleotides containing CpG dinucleotides in specific sequence contexts activate the vertebrate immune system. Our previous studies showed that the 5(')-end of a CpG oligonucleotide should be accessible for receptor recognition and subsequent immune stimulation. Activity is abrogated if this end is blocked by joining two CpG oligos through 5(')-5(') linkage. It was not known whether a similar effect would arise from secondary structures at either end of a CpG oligo, such as hairpin loops or terminal dimers. In the present study we found that 5(')-terminal secondary structures affect activity significantly more than those at the 3(')-end. The need for an open 5(')-end suggests that the receptor responsible for immune stimulation reads the DNA sequence from this end. These results may also provide insights to place CpG motifs appropriately in DNA vaccines to induce additional Th1 type responses.  相似文献   

5.
Oligodeoxynucleotides (ODN) containing unmethylated CpG dinucleotides within specific sequence contexts (CpG motifs) are detected, like bacterial or viral DNA, as a danger signal by the vertebrate immune system. CpG ODN synthesized with a nuclease-resistant phosphorothioate backbone have been shown to be potent Th1-directed adjuvants in mice, but these motifs have been relatively inactive on primate leukocytes in vitro. Moreover, in vitro assays that predict in vivo adjuvant activity for primates have not been reported. In the present study we tested a panel of CpG ODN for their in vitro and in vivo immune effects in mice and identified in vitro activation of B and NK cells as excellent predictors of in vivo adjuvant activity. Therefore, we tested >250 phosphorothioate ODN for their capacity to stimulate proliferation and CD86 expression of human B cells and to induce lytic activity and CD69 expression of human NK cells. These studies revealed that the sequence, number, and spacing of individual CpG motifs contribute to the immunostimulatory activity of a CpG phosphorothioate ODN. An ODN with a TpC dinucleotide at the 5' end followed by three 6 mer CpG motifs (5'-GTCGTT-3') separated by TpT dinucleotides consistently showed the highest activity for human, chimpanzee, and rhesus monkey leukocytes. Chimpanzees or monkeys vaccinated once against hepatitis B with this CpG ODN adjuvant developed 15 times higher anti-hepatitis B Ab titers than those receiving vaccine alone. In conclusion, we report an optimal human CpG motif for phosphorothioate ODN that is a candidate human vaccine adjuvant.  相似文献   

6.
The DNA of bacteria and many viruses contain unmethylated CpG dinucleotides in particular sequence contexts that activate vertebrate immune cells. A subset of these CpG motifs was previously found to oppose the effects of immunostimulatory (CpG-S) motifs and has been termed neutralizing (CpG-N) motifs. Here we show that oligodeoxynucleotides (ODNs) composed of clusters of CpG-N motifs could partially inhibit the induction of interleukin-12 (IK-12) from mouse spleen cells by ODN containing CpG-S motifs. However, non-CpG-containing ODN were also inhibitory, suggesting that neutralization of CpG-S ODNs by CpG-N ODNs in trans was nonspecific. Neutralization of CpG-S motifs by CpG-N motifs in cis was specific, but the degree of inhibition was strongly dependent on the particular CpG-S motif being neutralized, with motifs having an A residue 5' to the CG being much more resistant to inhibition than motifs having a T residue 5' to the CG. The degree of inhibition was dependent on the spacing between the CpG-S and CpG-N motifs, with the ability to neutralize inversely correlating with distance. In addition, whereas ODNs containing extended clusters of CpG-N motifs were nonstimulatory, isolated CpG-N motifs remained stimulatory in most sequence contexts. Finally, CpG-N ODNs were shown to be nonstimulatory when instilled into the lungs of BALB/c mice, but the ability of CpG-N motifs to neutralize CpG-S motifs in cis was not observed. These results show that there are precise and fairly complex interactions between immunostimulatory and inhibitory sequence motifs that govern whether a given DNA is able to activate the vertebrate immune system.  相似文献   

7.
胡伟  毕永春  方莉 《生物磁学》2011,(23):4583-4585
DNA对于机体免疫系统具有很多复杂的作用。存在于细菌DNA中的刺激性CpG基序能够促进机体免疫细胞分泌多种细胞因子,使机体产生偏向Th1方向的免疫应答,而抑制性寡脱氧核苷酸(oligodeoxynucleotide,ODN)可以选择性阻断刺激性CpG诱导的免疫激活作用。抑制性ODN按其结构不同大致分为三类,它可能通过影响细胞对CpG-S的结合及摄取、降低CpG-S特异性受体TLR9的表达发挥抑制作用。本综述主要介绍抑制性ODN的结构特征、作用机制和它在一些疾病中发挥的作用。  相似文献   

8.
Stimulation of the innate immune system is potentially very important in neonates who have an immature adaptive immune system and vaccination cannot be used to reduce the risk of infection. CpG oligodeoxynucleotide (ODN) can stimulate innate immune responses in newborn chickens and mice, but similar studies are lacking in other mammalian species. We have shown previously that CpG ODN can both stimulate an acute-phase immune response and induce the antiviral effector molecule, 2'5'-A synthetase, in adult sheep. Therefore, the immunostimulatory activity of A class and B class CpG ODN was evaluated in newborn lambs, and the capacity of CpG ODN-induced responses to reduce viral shedding was evaluated following aerosol challenge with the respiratory pathogen, bovine herpesvirus-1 (BHV-1). In vitro CpG ODN stimulation of peripheral blood mononuclear cells (PBMC) isolated from newborn lambs (3-5 days old) and adult sheep induced equivalent CpG-specific proliferative responses and interferon-alpha (IFN-alpha) secretion. CpG ODN-induced IFN-alpha secretion by neonatal PBMCs was, however, significantly (p < 0.01) enhanced 6 days after subcutaneous (s.c.) injection of 100 microg/kg CpG ODN 2007. Newborn lambs injected s.c. with B class CpG ODN 2007 or the inverted GpC control ODN formulated in 30% Emulsigen (MVP Laboratories, Ralston, NE) displayed CpG ODN-specific increases in body temperature (p < 0.0001), serum 2'5'-A synthetase activity (p = 0.0015), and serum haptoglobin (p = 0.07). CpG ODN-treated lambs also displayed a transient reduction in viral shedding on day 2 postinfection (p < 0.05), which correlated (p < 0.03) with serum 2'5'-A synthetase levels on the day of viral challenge. These observations confirmed that CpG ODNs effectively activate innate immune responses in newborn lambs and CpG ODN-induced antiviral responses correlated with a reduction in viral shedding.  相似文献   

9.
10.
Different DNA motifs are required for optimal stimulation of mouse and human immune cells by CpG oligodeoxynucleotides (ODN). These species differences presumably reflect sequence differences in TLR9, the CpG DNA receptor. In this study, we show that this sequence specificity is restricted to phosphorothioate (PS)-modified ODN and is not observed when a natural phosphodiester backbone is used. Thus, human and mouse cells have not evolved to recognize different CpG motifs in natural DNA. Nonoptimal PS-ODN (i.e., mouse CpG motif on human cells and vice versa) gave delayed and less sustained phosphorylation of p38 MAPK than optimal motifs. When the CpG dinucleotide was inverted to GC in each ODN, some residual activity of the PS-ODN was retained in a species-specific, TLR-9-dependent manner. Thus, TLR9 may be responsible for mediating many published CpG-independent responses to PS-ODN.  相似文献   

11.
Immune stimulatory oligodeoxynucleotides (ODN) with unmethylated CpG motifs are potent inducers of both innate and adaptive immunity. It initially appeared that a single type of optimal CpG motif would work in all applications. We now report that specific motifs of CpG ODN can vary dramatically in their ability to induce individual immune effects and that these differences impact on their antitumor activity in different tumor models. In particular, a distinct type of CpG motif, which has a chimeric backbone in combination with poly(G) tails, is a potent inducer of NK lytic activity but has little effect on cytokine secretion or B cell proliferation. One such NK-optimized CpG ODN (1585) can induce regression of established melanomas in mice. Surprisingly, no such therapeutic effects were seen with CpG ODN optimized for activation of B cells and Th1-like cytokine expression (ODN 1826). The therapeutic effects of CpG 1585 in melanoma required the presence of NK but not T or B cells and were not associated with the induction of a tumor-specific memory response. In contrast, CpG 1826, but not CpG 1585, was effective at inducing regression of the EL4 murine lymphoma; this rejection was associated with the induction of a memory response and although NK cells were necessary, they were not sufficient. These results demonstrate that selection of optimal CpG ODN for cancer immunotherapy depends upon a careful analysis of the cellular specificities of various CpG motifs and an understanding of the cellular mechanisms responsible for the antitumor activity in a particular tumor.  相似文献   

12.
Bacterial DNA containing unmethylated CpG motifs is a pathogen-associated molecular pattern (PAMP) that interacts with host immune cells via a toll-like receptor (TLR) to induce immune responses. DNA binding and internalization into cells is independent of TLR expression, receptor-mediated, and required for cell activation. The objective of this study was to determine whether exposure of immune cells to bacterial DNA affects DNA binding and internalization. Treatment of RAW264.7 cells with CpG oligodeoxynucleotide (ODN) for both 18 and 42 h resulted in a significant increase in DNA binding, whereas non-CpG ODN had no effect on DNA binding. Enhanced DNA binding was non-sequence-specific, inhibited by unlabeled DNA, showed saturation, was consistent with increased cell surface DNA receptors, and resulted in enhanced internalization of DNA. Treatment with Escherichia coli DNA or lipopolysaccharide (LPS) also resulted in a significant increase in DNA binding, but treatment with interleukin-1alpha, tumor necrosis factor-alpha, or phorbol 12-myristate 13-acetate had no effect on DNA binding. Soluble factors produced in response to treatment with CpG ODN or LPS did not affect DNA binding. These studies demonstrate that one consequence of activating the host innate immune response by bacterial infection is enhanced binding and internalization of DNA. During this period of increased DNA internalization, RAW264.7 cells were hypo-responsive to continued stimulation by CpG ODN, as assessed by tumor necrosis factor-alpha activity. We speculate the biological significance of increasing DNA binding and internalization following interaction with bacterial PAMPs may provide a mechanism to limit an ongoing immune inflammatory response by enhancing clearance of bacterial DNA from the extracellular environment.  相似文献   

13.
Vertebrate immune systems have evolved the ability to detect and be activated by most microbial and viral DNAs by virtue of their content of unmethylated 'CpG motifs', which are selectively suppressed in vertebrate DNA. Because their CpGs are also unmethylated, the DNA in gene therapy vectors routinely induces direct immune stimulation through activating this host defense mechanism. Administration of such 'CpG DNA' by injection or inhalation triggers rapid activation of B cells, monocytes, macrophages, dendritic cells, and natural killer cells, along with the release of pro-inflammatory cytokines. These immune stimulatory effects can be prevented by chloroquine and other drugs that interfere with endosomal maturation or by the presence of certain neutralizing DNA sequences, which block the immune stimulatory CpG motifs. Aside from serving as the genetic code, DNA can have direct immune activities. Vertebrate immune systems have evolved a defense mechanism that is able to broadly detect most microbial and viral DNAs because of differences in the frequency and methylation of CpG dinucleotides in particular base contexts. B cells, monocytes, macrophages, and dendritic cells spontaneously take up DNA of any type. If the DNA contains these immune stimulatory 'CpG-S motifs', the cells become activated within minutes and begin producing pro-inflammatory cytokines such as IL-6 and IL-12 and upregulate expression of co-stimulatory molecules. This results in the activation of both innate and acquired immune responses. The pro-inflammatory effects of CpG-S motifs are opposed by CpG dinucleotides in certain distinct base contexts, termed neutralizing or CpG-N motifs. Increasing the ratio of CpG-S to CpG-N motifs enhances the immune stimulatory effects of DNA, even if the total level of CpGs in the DNA is not altered. While this is useful in generating enhanced genetic vaccines, the opposite strategy is likely to become useful for the generation of gene therapy vectors with reduced inflammatory effects.  相似文献   

14.
Plasmacytoid dendritic cells (PDC) represent a highly specialized immune cell subset that produces large quantities of the anti-viral cytokines type I interferons (IFN-alpha and IFN-beta) upon viral infection. PDC employ a member of the family of toll-like receptors, TLR9, to detect CpG motifs (unmethylated CG dinucleotides in certain base context) present in viral DNA. A certain group of CpG motif-containing oligodeoxynucleotides (CpG ODN), CpG-A, was the first synthetic stimulus available that induced large amounts of interferon-alpha (IFN-alpha) in PDC. However, the mechanism responsible for this activity remained elusive. CpG-A is characterized by a central palindrome and poly(G) at the 5' and 3' end. Here we demonstrate that CpG-A self-assembles to higher order tertiary structures via G-tetrad formation of their poly(G) motifs. Spontaneous G-tetrad formation of CpG-A required the palindrome sequence allowing structure formation in a physiological environment. Once formed, G-tetrad-linked structures were stable even under denaturing conditions. Atomic force microscopy revealed that the tertiary structures formed by CpG-A represent nucleic acid-based nanoparticles in the size range of viruses. Similarly sized preformed polystyrene nanoparticles loaded with a CpG ODN that is otherwise weak at inducing IFN-alpha (CpG-B) gained the potency of CpG-A to induce IFN-alpha. Higher ODN uptake in PDC was not responsible for the higher IFN-alpha-inducing activity of CpG-A or of CpG-B-coated nanoparticles as compared with CpG-B. Based on these results we propose a model in which the spatial configuration of CpG motifs as particle is responsible for the virus-like potency of CpG-A to induce IFN-alpha in PDC.  相似文献   

15.
DNA is a complex macromolecule the immunological properties of which depend on short sequence motifs called CpG motifs or immunostimulatory sequences (ISS). These sequences are mitogenic for B cells and can stimulate macrophage cytokine production. While these sequences do not directly activate T cells, they can augment effects of stimulation via the TCR. Furthermore, ISS can affect T cells because of macrophage production of IL-12 and IFN-alpha/beta. In these studies, we further evaluated the immune effects of DNA on T cells, testing the possibility that certain T cell populations can respond directly to this stimulus. We therefore tested the in vitro responses of thymocytes to a series of phosphodiester (Po) and phosphorothioate (Ps) oligonucleotides (ODNs) varying in sequence. In in vitro cultures, phosphorothioate ODNs (sODNs) containing CpG motifs induced significant proliferation of murine thymocytes, although phosphodiester compounds lacked activity. The magnitude of stimulation varied with sequences flanking the CpG motifs, as both dA and dT sequences enhanced the stimulatory capacity of the CpG motif. Furthermore, CpG sODNs were strong costimulators of anti-CD3-mediated thymocyte activation, increasing proliferation compared to anti-CD3 in the absence of DNA. This activation was only partially inhibited by cyclosporine A and was not dependent on a calcium influx. Together, these results indicate that phosphorothioate oligonucleotides containing CpG motifs can directly induce thymocyte proliferation as well as augment TCR activation. These observations thus extend the range of actions of CpG DNA and suggest additional mechanisms for its function as an immunomodulatory agent or adjuvant.  相似文献   

16.
Bacterial DNA and immunostimulatory CpG oligodeoxynucleotides (ODNs) activate the innate immune system to produce proinflammatory cytokines. Shown to be potent Th1-like adjuvants, stimulatory CpG motifs are currently used as effective therapeutic vaccines for various animal models of infectious diseases, tumors, allergies, and autoimmune diseases. In this study, we show that the application of an immunomodulatory GpG ODN, with a single base switch from CpG to GpG, can effectively inhibit the activation of Th1 T cells associated with autoimmune disease. Moreover, this immunomodulatory GpG ODN suppresses the severity of experimental autoimmune encephalomyelitis in mice, a prototypic Th1-mediated animal disease model for multiple sclerosis.  相似文献   

17.
CpG oligodeoxynucleotide induction of antiviral effector molecules in sheep   总被引:3,自引:0,他引:3  
Immunostimulatory CpG oligodeoxynucleotide (ODN) can protect mice against infection by many pathogens but the mechanisms mediating disease protection are not well defined. Furthermore, the mechanisms of CpG ODN induced disease protection in vivo have not been investigated in other species. We investigated the induction of antiviral effector molecules in sheep treated with a class B CpG ODN (2007). Subcutaneous injection of ODN 2007 induced a dose-dependent increase in serum levels of the antiviral effector molecule, 2'5'-A synthetase. Peak levels of enzyme were observed 4 days following ODN injection and enzyme levels remained elevated for the following 3-5 days. Repeated ODN injections induced a more sustained elevation of serum 2'5'-A synthetase activity. Finally, formulation of ODN 2007 in emulsigen increased the level of serum 2'5'-A synthetase activity and this response was CpG-specific. Elevated serum 2'5'-A synthetase activity suggested that CpG ODN acted through the induction of either interferon (IFN)-alpha or IFN-gamma. ODN 2007 did not induce detectable levels of IFN-alpha or IFN-gamma when incubated with peripheral blood mononuclear cells, but both IFN-alpha and IFN-gamma were detected following stimulation of lymph node cells with ODN 2007. CpG ODN induction of 2'5'-A synthetase in vitro correlated with the secretion of both IFN-alpha and IFN-gamma. Furthermore, immunohistochemical staining of skin revealed a marked cellular infiltration at the site of ODN 2007 injection. This cellular infiltration was CpG-specific and consisted of primarily CD172(+) myeloid cells. Many of the cells recruited to the site of ODN 2007 injection expressed IFN-alpha and some IFN-gamma. These observations support the conclusion that localized cell recruitment and activation contribute to CpG ODN induction of antiviral effector molecules, such as interferon and 2'5'-A synthetase.  相似文献   

18.
We evaluated the innate immune response to various synthetic CpG-containing oligodeoxynucleotides (CpG ODNs) by measuring nitric oxide production in the peripheral blood monocytes from turkey poults. The results indicate that the presence of the CpG dinucleotide in ODNs was a prerequisite for activation of turkey monocytes and induction of nitric oxide (NO) synthesis. CpG motifs and sequence structure of the ODNs were also found to influence stimulatory activity greatly. The most potent CpG ODN to induce NO synthesis in turkey monocytes was human-specific CpG ODN M362, followed by CpG ODN 2006 (human), CpG ODN#17 (chicken) and CpG ODN 1826 (mouse). The optimal CpG motif for NO induction was GTCGTT. Phosphorothioate modification of CpG ODNs also significantly increased stimulatory activity. Compared with chicken monocytes, turkey monocytes appeared to be less sensitive to CpG motif variation, whereas chicken monocytes were found to respond more strictly to human-specific CpG ODNs or ODNs that contain GTCGTT motifs.  相似文献   

19.
DNA sequences containing CpG motifs are recognized as immunomodulators in several species. Phosphodiester oligodeoxyribonucleotides (ODNs) representing sequences from the genome of porcine circovirus type 2 (PCV2) have been identified as potent inducers (ODN PCV2/5) or inhibitors (ODN PCV2/1) of alpha interferon (IFN-alpha) production by porcine peripheral blood mononuclear cells (poPBMCs) in vitro. In this study, the IFN-alpha-inducing or -inhibitory activities of specific phosphodiester ODNs were demonstrated to be dependent on their ability to form secondary structures. When a poly(G) sequence was added to a stimulatory self-complementary ODN, high levels of IFN-alpha were elicited, and the induction was not dependent on pretreatment with the transfecting agent Lipofectin. In addition, the IFN-alpha-inducing ODN required the presence of an intact CpG dinucleotide, whereas the inhibitory activity of ODN PCV2/1 was not affected by methylation or removal of the central CpG dinucleotide. Of particular significance, the IFN-alpha inhibition elicited by ODN PCV2/1 was only effective against induction stimulated by DNA control inducers and not RNA control inducers, indicating activity directed to TLR9 signaling. The PCV2 genome as a whole was demonstrated to induce IFN-alpha in cultures of poPBMCs, and the presence of immune modulatory sequences within the genome of PCV2 may, therefore, have implications with regard to the immune evasion mechanisms utilized by PCV2.  相似文献   

20.
Unmethylated CpG dinucleotide motifs in bacterial DNA, as well as oligodeoxynucleotides (ODN) containing these motifs, are potent stimuli for many host immunological responses. These CpG motifs may enhance host responses to bacterial infection and are being examined as immune activators for therapeutic applications in cancer, allergy/asthma, and infectious diseases. However, little attention has been given to processes that down-modulate this response. The iron-binding protein lactoferrin is present at mucosal surfaces and at sites of infection. Since lactoferrin is known to bind DNA, we tested the hypothesis that lactoferrin will bind CpG-containing ODN and modulate their biological activity. Physiological concentrations of lactoferrin (regardless of iron content) rapidly bound CpG ODN. The related iron-binding protein transferrin lacked this capacity. ODN binding by lactoferrin did not require the presence of CpG motifs and was calcium independent. The process was inhibited by high salt, and the highly cationic N-terminal sequence of lactoferrin (lactoferricin B) was equivalent to lactoferrin in its ODN-binding ability, suggesting that ODN binding by lactoferrin occurs via charge-charge interaction. Heparin and bacterial LPS, known to bind to the lactoferricin component of lactoferrin, also inhibited ODN binding. Lactoferrin and lactoferricin B, but not transferrin, inhibited CpG ODN stimulation of CD86 expression in the human Ramos B cell line and decreased cellular uptake of ODN, a process required for CpG bioactivity. Lactoferrin binding of CpG-containing ODN may serve to modulate and terminate host response to these potent immunostimulatory molecules at mucosal surfaces and sites of bacterial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号