首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic stress, as a risk factor for cardiovascular diseases, has been reported to result in elevated plasma neuropeptide Y (NPY) and be highly associated with abnormal cardiac autonomic function. This study aimed to explore the effect of NPY on the chronic stress-induced abnormal baroreceptor reflex sensitivity (BRS). Seven types of recognized stressors were used to develop chronic stress rat model. Subcutaneously implanting ALZET mini-osmotic pumps containing NPY were used to evaluate the action of NPY on the stressed male rats. We found that chronic stress showed no influence on baseline systolic blood pressure (SBP) and heart rate (HR), whereas NPY (85 μg for 30 days) could elevate baseline SBP and induce bradycardia in rats intervened by various stimuli. NPY pretreatment could preserve chronic stress-induced decreases in left ventricular systolic pressure (LVSP) and the maximum rate of change in left ventricular pressure in the isovolumic contraction period (+dp/dt(max)) but has shown no effect on left ventricular end diastolic pressure (LVEDP) and the maximum rate of change in left ventricular pressure in the isovolumic relaxation period (-dp/dt(max)). Notably, chronic stress led to baroreflex oversensitivity indicated by the elevated ratio of Δheart rate (HR)/ Δmean arterial blood pressure (MABP) in rats followed by vasoconstrictor (phenylephrine, PE) or vasodilator (sodium nitroprusside, SNP) administration, which was almost completely reversed by NPY pretreatment. The expressions of substance P (SP) and gamma aminobutyric acid A receptor (GABA(A)R) in nucleus tractus solitarius were increased in chronic stress rats, which were counteracted by NPY pretreatment. We conclude that chronic stress-induced baroreflex hypersensitivity could be blocked by NPY pretreatment. Furthermore, the altered expressions of neurotransmitters and receptors in the brainstem might contribute to this process.  相似文献   

2.
Otsuka Long-Evans Tokushima Fatty (OLETF) rats lacking CCK-A receptors are hyperphagic, obese, and diabetic. We have previously demonstrated that these rats have a peripheral satiety deficit resulting in increased meal size. To examine the potential role of hypothalamic pathways in the hyperphagia and obesity of OLETF rats, we compared patterns of hypothalamic neuropeptide Y (NPY), proopiomelanocortin (POMC), and leptin receptor mRNA expression in ad libitum-fed Long-Evans Tokushima (LETO) and OLETF rats and food-restricted OLETF rats that were pair-fed to the intake of LETO controls. Pair feeding OLETF rats prevented their increased body weight and elevated levels of plasma insulin and leptin and normalized their elevated POMC and decreased NPY mRNA expression in the arcuate nucleus. In contrast, NPY expression was upregulated in the dorsomedial hypothalamus (DMH) in pair-fed OLETF rats. A similar DMH NPY overexpression was evident in 5-wk-old preobese OLETF rats. These findings suggest a role for DMH NPY upregulation in the etiology of OLETF hyperphagia and obesity.  相似文献   

3.
The brain-gut peptide cholecystokinin (CCK) inhibits food intake following peripheral or site directed central administration. Peripheral exogenous CCK inhibits food intake by reducing the size and duration of a meal. Antagonist studies have demonstrated that the actions of the exogenous peptide mimic those of endogenous CCK. Antagonist administration results in increased meal size and meal duration. The feeding inhibitory actions of CCK are mediated through interactions with CCK-1 receptors. The recent identification of the Otsuka-Long-Evans-Tokushima Fatty (OLETF) rat as a spontaneous CCK-1 receptor knockout model has allowed a more comprehensive evaluation of the feeding actions of CCK. OLETF rats become obese and develop non-insulin dependent diabetes mellitus (NIDDM). Consistent with the absence of CCK-1 receptors, OLETF rats do not respond to exogenous CCK. OLETF rats are hyperphagic and their increased food intake is characterized by a large increase in meal size with a decrease in meal frequency that is not sufficient to compensate for the meal size increase. Deficits in meal size control are evident in OLETF rats as young as 2 days of age. OLETF obesity is secondary to the increased food intake. Pair feeding to amounts consumed by intact control rats normalizes body weight, body fat and elevated insulin and glucose levels. Hypothalamic arcuate nucleus peptide mRNA expression in OLETF rats is appropriate to their obesity and is normalized by pair feeding. In contrast, pair fed and young pre-obese OLETF rats have greatly elevated dorsomedial hypothalamic (DMH) neuropeptide Y (NPY) mRNA expression. Elevated DMH NPY in OLETF rats appears to be a consequence of the absence of CCK-1 receptors. In intact rats NPY and CCK-1 receptors colocalize to neurons within the compact subregion of the DMH and local CCK administration reduces food intake and decreases DMH NPY mRNA expression. We have proposed that the absence of DMH CCK-1 receptors significantly contributes to the OLETF's inability to compensate for their meal size control deficit leading to their overall hyperphagia. Access to a running wheel and the resulting exercise normalizes food intake and body weight in OLETF rats. When given access to running wheels for 6 weeks shortly after weaning, OLETF rats do not gain weight to the same degree as sedentary OLETF rats and do not develop NIDDM. Exercise also prevents elevated levels of DMH NPY mRNA expression, suggesting that exercise exerts an alternative, non-CCK mediated, control on DMH NPY. The OLETF rat is a valuable model for characterizing actions of CCK in energy balance and has provided novel insights into interactions between exercise and food intake.  相似文献   

4.
A special herbal tea has been used to treat clomiphene-resistant anovulatory disease and obesity effectively, especially in polycystic ovary syndrome (PCOS) cases with hyperinsulinemia. The effect of the herbal tea on obesity and anovulation was investigated in androgen-sterilized rats (ASR). The ASR model was established by subcutaneous injection of 1.25 mg testosterone propionate to Sprague-Dawley female rats at the age of 9 days. Rats were sacrificed around 112 days of age. ASR manifested with PCO, anovulation, high food intake, elevated body weight, and obesity. Immunocytochemistry demonstrated that estrogen receptors (ER) were predominantly distributed in the cytoplasm of neuropeptide Y (NPY)-containing neurons in the preoptic area (POA), and the coexpression was also found in the nuclei and fibers of NPY-synthesizing neurons in the arcuate nucleus (ARC). Compared with that in normal control rats, NPY expression was increased, the numbers of ER in hypothalamic ARC-median eminence (ME) decreased, gonadotropin-releasing hormone (GnRH) levels in ME was decreased, serum estrogen (E2) and leptin were elevated, and follicular stimulating hormone (FSH) and luteinizing hormone (LH) levels were reduced significantly in ASR. Significantly negative correlations between NPY and ER or GnRH, and between leptin and FSH or LH were observed. A positive correlation existed between serum leptin and body weight. These metabolic-endocrine changes in ASR were normalized after feeding the herbal tea. Both obesity and hypogonadotropin were expressed in ASR. The abnormal ovarian hormone milieu (elevated E2 levels) may have enhanced NPY expression and resulted in less GnRH and gonadotropin secretion. The herbal tea reduced body weight and induced ovulation in ASR.  相似文献   

5.
The relationship between stress and obesity remains elusive. In response to stress, some people lose weight, whereas others gain. Here we report that stress exaggerates diet-induced obesity through a peripheral mechanism in the abdominal white adipose tissue that is mediated by neuropeptide Y (NPY). Stressors such as exposure to cold or aggression lead to the release of NPY from sympathetic nerves, which in turn upregulates NPY and its Y2 receptors (NPY2R) in a glucocorticoid-dependent manner in the abdominal fat. This positive feedback response by NPY leads to the growth of abdominal fat. Release of NPY and activation of NPY2R stimulates fat angiogenesis, macrophage infiltration, and the proliferation and differentiation of new adipocytes, resulting in abdominal obesity and a metabolic syndrome-like condition. NPY, like stress, stimulates mouse and human fat growth, whereas pharmacological inhibition or fat-targeted knockdown of NPY2R is anti-angiogenic and anti-adipogenic, while reducing abdominal obesity and metabolic abnormalities. Thus, manipulations of NPY2R activity within fat tissue offer new ways to remodel fat and treat obesity and metabolic syndrome.  相似文献   

6.
The cardiovascular actions of centrally administered neuropeptide Y   总被引:1,自引:1,他引:0  
The cardiovascular actions of intracerebroventricular (i.c.v.) administration of neuropeptide Y (NPY) were examined in conscious, unrestrained rats. A prolonged decrease in heart rate (HR) and a fall in mean arterial pressure (MAP) were obtained following i.c.v. administration of NPY (1 and 10 micrograms). Passive immunization with an antiserum directed against NPY confirmed that the slowing of HR following i.c.v. administration of NPY was mediated via a central nervous mechanism and not from leakage of NPY out of the brain. Administration of NPY into different brain parenchymal regions identified a putative site of action in the rostral region of the solitary tract. The mechanism of the decrease in HR caused by centrally administered NPY was investigated by i.c.v. administration of NPY to animals that were pretreated with agents that altered autonomic tone. Administration of NPY to atropine-treated animals produced a reversal of the atropine-induced tachycardia, suggesting that the NPY-induced decrease in HR was not due to augmented vagal tone. However, administration of NPY to animals pretreated with propranolol did not significantly lower HR below that obtained with propranolol alone. These data suggest that i.c.v. administration of NPY may cause a decrease in cardiac sympathetic outflow. The effects of centrally administered NPY on baroreflex function were studied. The changes in HR caused by NPY did not significantly alter baroreflex set-point or gain. These studies provide evidence that NPY acted within a brainstem region to decrease sympathetic nervous outflow, resulting in a decrease in HR and MAP.  相似文献   

7.
Prenatal stress, psychologically and metabolically, increases the risk of obesity and diabetes in the progeny. However, the mechanisms of the pathogenesis remain unknown. In adult mice, stress activates NPY and its Y2R in a glucocorticoid-dependent manner in the abdominal fat. This increased adipogenesis and angiogenesis, leading to abdominal obesity and metabolic syndrome which were inhibited by intra-fat Y2R inactivation. To determine whether stress elevates NPY system and accelerates adipogenic potential of embryo, here we "stressed" murine embryonic stem cells (mESCs) in vitro with epinephrine (EPI) during their adipogenic differentiation. EPI was added during the commitment stage together with insulin, and followed by dexamethasone in the standard adipogenic differentiation medium. Undifferentiated embryonic bodies (EBs) showed no detectable expression of NPY. EPI markedly up-regulated the expression NPY and the Y1R at the commitment stage, followed by increased Y2R mRNA at the late of the commitment stage and the differentiation stage. EPI significantly increased EB cells proliferation and expression of the preadipocyte marker Pref-1 at the commitment stage. EPI also accelerated and amplified adipogenic differentiation detected by increasing the adipocyte markers FABP4 and PPARγ mRNAs and Oil-red O-staining at the end of the differentiation stage. EPI-induced adipogenesis was completely prevented by antagonists of the NPY receptors (Y1R+Y2R+Y5R), indicating that it was mediated by the NPY system in mESC's. Taken together, these data suggest that stress may play an important role in programming ESCs for accelerated adipogenesis by altering the stress induced hormonal regulation of the NPY system.  相似文献   

8.
The neurosteroid allopregnanolone, a reduced metabolite of progesterone, induces anxiolytic effects by enhancing GABA(A) receptor function. Neuropeptide Y (NPY) and GABA are thought to interact functionally in the amygdala, and this interaction may be important in the regulation of anxiety. By using Y(1)R/LacZ transgenic mice, which harbour a fusion construct comprising the promoter of the mouse gene for the Y(1) receptor for NPY linked to the lacZ gene, we previously showed that long-term treatment with benzodiazepine receptor ligands modulates Y(1) receptor gene expression in the medial amygdala. We have now investigated the effects of prolonged treatment with progesterone or allopregnanolone on Y(1)R/LacZ transgene expression, as determined by quantitative histochemical analysis of beta-galactosidase activity. Progesterone increased both the cerebrocortical concentration of allopregnanolone and beta-galactosidase expression in the medial amygdala. Finasteride, a 5alpha-reductase inhibitor, prevented both of these effects. Long-term administration of allopregnanolone also increased both the cortical concentration of this neurosteroid and transgene expression in the medial amygdala. Treatment with neither progesterone nor allopregnanolone affected beta-galactosidase activity in the medial habenula. These data suggest that allopregnanolone regulates Y(1) receptor gene expression through modulation of GABA(A) receptor function, and they provide further support for a functional interaction between GABA and neuropeptide Y in the amygdala.  相似文献   

9.
Neuropeptide Y (NPY) produced by arcuate nucleus (ARC) neurons has a strong orexigenic effect on target neurons. Hypothalamic NPY levels undergo wide-ranging oscillations during the circadian cycle and in response to fasting and peripheral hormones (from 0.25 to 10-fold change). The aim of the present study was to evaluate the impact of a moderate long-term modulation of NPY within the ARC neurons on food consumption, body weight gain and hypothalamic neuropeptides. We achieved a physiological overexpression (3.6-fold increase) and down-regulation (0.5-fold decrease) of NPY in the rat ARC by injection of AAV vectors expressing NPY and synthetic microRNA that target the NPY, respectively. Our work shows that a moderate overexpression of NPY was sufficient to induce diurnal over-feeding, sustained body weight gain and severe obesity in adult rats. Additionally, the circulating levels of leptin were elevated but the immunoreactivity (ir) of ARC neuropeptides was not in accordance (POMC-ir was unchanged and AGRP-ir increased), suggesting a disruption in the ability of ARC neurons to response to peripheral metabolic alterations. Furthermore, a dysfunction in adipocytes phenotype was observed in these obese rats. In addition, moderate down-regulation of NPY did not affect basal feeding or normal body weight gain but the response to food deprivation was compromised since fasting-induced hyperphagia was inhibited and fasting-induced decrease in locomotor activity was absent.These results highlight the importance of the physiological ARC NPY levels oscillations on feeding regulation, fasting response and body weight preservation, and are important for the design of therapeutic interventions for obesity that include the NPY.  相似文献   

10.
It is well established that GABAergic inputs to the paraventricular nucleus of the hypothalamus (PVN) tonically suppress heart rate and the activity of several sympathetic nerves. However, whether GABA similarly inhibits PVN control of baroreflex function has not been previously investigated. To test this hypothesis, it was determined whether microinjection of the GABA(A) antagonist, bicuculline, into the PVN enhances the baroreflex in anesthetized female virgin rats. In addition, because GABAergic inhibition of PVN preautonomic neurons is decreased during pregnancy, it was also determined whether the effects of PVN bicuculline administration on baroreflex function were less in pregnant animals. In virgin rats, PVN microinjection of bicuculline increased (P < 0.05) baroreflex gain and maximum levels of heart rate (gain, from 1.6 ± 0.6 to 3.8 ± 1.3 bpm/mmHg; maximum, from 406 ± 18 to 475 ± 14 bpm) and of lumbar sympathetic nerve activity (gain from 2.6 ± 0.7 to 4.8 ± 1.6%/mmHg; maximum, 149 ± 32 to 273 ± 48%), indicating that PVN GABA normally suppresses baroreflex function. Pregnancy decreased heart rate baroreflex gain (pregnant, 0.9 ± 0.3 bpm/mmHg; virgin, 1.9 ± 0.2 bpm/mmHg; P < 0.05). Following PVN bicuculline administration in pregnant rats, smaller (P < 0.01) increments in baroreflex gain (pregnant, 0.6 ± 0.1 bpm/mmHg; virgin, 2.4 ± 0.9 bpm/mmHg) and maximum (pregnant, 33 ± 7 bpm; virgin, 75 ± 12 bpm; P < 0.05) were produced. Collectively, these data suggest that the PVN normally inhibits the baroreflex via tonic GABAergic inputs and that this inhibition is less during pregnancy.  相似文献   

11.
L Huffman  G A Hedge 《Life sciences》1986,39(22):2143-2150
The effects of peptide HI (PHI), neuropeptide Y (NPY), and substance P (SP) on thyroid blood flow and hormone levels were studied in anesthetized rats. Regional blood flows were determined using radioactive microspheres. No change in heart rate or mean left ventricular pressure occurred during these neuropeptide infusions (0.625 micrograms iv over 2 min). PHI treatment resulted in a four-fold increase in thyroid blood flow. Blood flows to the pancreas and salivary gland also increased during PHI treatment. Infusions of NPY or SP did not significantly alter thyroid blood flow. However, SP decreased blood flow to the spleen and small intestine. These neuropeptides had no effect on blood flows to the adrenal, kidney, brain, heart, and adipose tissues. Following PHI, NPY, and SP infusions, plasma triiodothyronine and thyroxine levels were not different from values in saline-treated rats. This study demonstrates that PHI, like vasoactive intestinal peptide, is a potent thyroidal vasodilator at a dose that does not affect circulating thyroid hormone secretion.  相似文献   

12.
Chance WT  Xiao C  Dayal R  Sheriff S 《Peptides》2007,28(2):295-301
Although previous studies have implicated NPY in the etiology of experimental cancer anorexia, the results have been difficult to interpret. Studies have suggested that although NPY level and message were decreased in the dorsomedial hypothalamic area (DMA), they were elevated in the ventromedial hypothalamic area (VMA). To better assess specific intra-area alterations of NPY, Y(1) receptor (Y(1) R), and agouti-related peptide (AgRP) in TB rats, we used radioimmunoassay, quantitative real-time RT-PCR, and immunohistochemistry. We found that NPY and AgRP mRNA were elevated significantly in whole hypothalamus of anorectic TB rats, while Y(1) R mRNA was decreased. Based on two replicates of four pooled samples each, both NPY and AgRP mRNA appeared to be elevated in the VMA of anorectic TB rats, while only AgRP exhibited a similar increase in the DMA. Levels of NPY were elevated in the VMA of both TB and pair-fed (PF) rats, but in the DMA only PF rats exhibited a significant NPY increase. NPY and Y(1) R immunohistochemistry revealed reduced NPY staining in PVN and ARC nucleus of TB and PF rats. Y(1) R immunostaining was also reduced in the ARC and PVN of TB rats, while PF rats exhibited elevated immunostaining in the PVN. These results continue to implicate dysfunction of NPY feeding systems in experimental cancer anorexia and suggest down-regulation of Y(1) R receptors as well as possible problems in NPY translation.  相似文献   

13.

Background/Aim

Second generation antipsychotics (SGAs) are used to treat schizophrenia but can cause serious metabolic side-effects, such as obesity and diabetes. This study examined the effects of low to high doses of olanzapine on appetite/metabolic regulatory signals in the hypothalamus and brainstem to elucidate the mechanisms underlying olanzapine-induced obesity.

Methodology/Results

Levels of pro-opiomelanocortin (POMC), neuropeptide Y (NPY) and glutamic acid decarboxylase (GAD65, enzyme for GABA synthesis) mRNA expression, and cannabinoid CB1 receptor (CB1R) binding density (using [3H]SR-141716A) were examined in the arcuate nucleus (Arc) and dorsal vagal complex (DVC) of female Sprague Dawley rats following 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (3×/day, 14-days). Consistent with its weight gain liability, olanzapine significantly decreased anorexigenic POMC and increased orexigenic NPY mRNA expression in a dose-sensitive manner in the Arc. GAD65 mRNA expression increased and CB1R binding density decreased in the Arc and DVC. Alterations to neurotransmission signals in the brain significantly correlated with body weight and adiposity. The minimum dosage threshold required to induce weight gain in the rat was 0.5 mg/kg olanzapine.

Conclusions

Olanzapine-induced weight gain is associated with reduced appetite-inhibiting POMC and increased NPY. This study also supports a role for the CB1R and GABA in the mechanisms underlying weight gain side-effects, possibly by altering POMC transmission. Metabolic dysfunction can be modelled in the female rat using low, clinically-comparable olanzapine doses when administered in-line with the half-life of the drug.  相似文献   

14.
Horvath TL  Pu S  Dube MG  Diano S  Kalra SP 《Peptides》2001,22(3):473-481
Neuropeptide Y (NPY) stimulates and gamma-amino butyric acid (GABA) inhibits LH release in the rat. Since a sub-population of NPY-producing neurons in the arcuate nucleus (ARC) of the hypothalamus co-express GABA, the possibility of an interplay between NPY and GABA in the release of LH was investigated in two ways. First by employing light and electron microscopic double staining for NPY and GABA, using pre and post-immunolabeling on rat brain sections, we detected GABA in NPY immunoreactive axon terminals in the MPOA, one of the primary sites of action of these neurotransmitters/neuromodulators in the regulation of LH release. These morphological findings raised the possibility that inhibitory GABA co-released with NPY may act to restrain the excitatory effects of NPY on LH release. Muscimol (MUS, 0.44 or 1.76 nmol/rat), a GABA(A) receptor agonist, administered intracerebroventricularly (icv), alone failed to affect LH release, but NPY (0.47 nmol/rat icv) alone stimulated LH release in ovarian steroid-primed ovariectomized rats. On the other hand, administration of MUS blocked the NPY-induced stimulation of LH release in a dose-dependent manner. Similarly, administration of MUS abolished the excitatory effects on LH release of 1229U91, a selective NPY Y4 receptor agonist. These results support the possibility that in the event of co-release of these neurotransmitters/neuromodulators, GABA may act to restrain stimulation of LH release by NPY during the basal episodic and cyclic release of LH in vivo.  相似文献   

15.
Reduced central leptin sensitivity in rats with diet-induced obesity   总被引:1,自引:0,他引:1  
On low-fat chow diet, rats prone to diet-induced obesity (DIO) have increased arcuate nucleus neuropeptide Y (NPY) expression but similar leptin levels compared with diet-resistant (DR) rats (19). Here, body weight and leptin levels rose in DIO rats, and they defended their higher body weight after only 1 wk on a 31% fat high-energy (HE) diet. However, DIO NPY expression did not fall to DR levels until 4 wk when plasma leptin was 168% of DR levels. When switched to chow, DIO rats lost carcass fat (18). By 10 wk, leptin levels fell to 148% and NPY expression again rose to 150% of DR levels. During 4 wk of food restriction, DIO leptin fell by approximately 50% while NPY increased by 30%. While both returned to control levels by 8 wk, DIO rats still regained all lost weight when fed ad libitum. Finally, the anorexic effect of intracerebroventricular leptin (10 microg) was inversely correlated with subsequent 3-wk weight gain on HE diet. Thus NPY expression and food intake are less sensitive to the leptin's suppressive effects in DIO rats. While this may predispose them to develop DIO, it does not fully explain their defense of a higher body weight on HE diet.  相似文献   

16.
Prior data demonstrated differential roles for cholecystokinin (CCK)1 receptors in maintaining energy balance in rats and mice. CCK1 receptor deficiency results in hyperphagia and obesity of Otsuka Long-Evans Tokushima Fatty (OLETF) rats but not in mice. To ascertain the role of CCK1 receptors in high-fat-diet (HFD)-induced obesity, we compared alterations in food intake, body weight, fat mass, plasma glucose, and leptin levels, and patterns of hypothalamic gene expression in OLETF rats and mice lacking CCK1 receptors in response to a 10-wk exposure to HFD. Compared with Long-Evans Tokushima Otsuka (LETO) control rats, OLETF rats on HFD had sustained overconsumption over the 10-wk period. High fat feeding resulted in greater increases in body weight and plasma leptin levels in OLETF than in LETO rats. In situ hybridization determinations revealed that, while HFD reduced neuropeptide Y (NPY) mRNA expression in both the arcuate nucleus (Arc) and the dorsomedial hypothalamus (DMH) of LETO rats, HFD resulted in decreased NPY expression in the Arc but not in the DMH of OLETF rats. In contrast to these results in OLETF rats, HFD increased food intake and induced obesity to an equal degree in both wild-type and CCK1 receptor(-/-) mice. NPY gene expression was decreased in the Arc in response to HFD, but was not detectable in the DMH in both wild-type and CCK1 receptor(-/-) mice. Together, these data provide further evidence for differential roles of CCK1 receptors in the controls of food intake and body weight in rats and mice.  相似文献   

17.
The objectives of the present study were to examine the effects of intermittent hypoxia (IH) on arterial baroreflex function and assess the underlying mechanism(s). Experiments were performed on adult male rats treated with 14 days of IH (15 s of hypoxia, 5 min of normoxia; 8 h/day) or normoxia (control). Arterial blood pressures were elevated in IH-treated rats, and this effect was associated with attenuated heart rate and splanchnic sympathetic nerve responses to arterial baroreflex activation. In IH-treated rats, carotid baroreceptor responses to elevated sinus pressures were attenuated. Endothelin-1 (ET-1) levels were elevated in the carotid sinus region of IH-treated rats, and this effect was associated with increased endothelin converting enzyme (ECE) activity, which generates biologically active ET-1. ET(A) receptor antagonist prevented the effects of IH on carotid baroreceptor activity. In IH-treated rats, reactive oxygen species (ROS) levels were elevated in the carotid sinus region, and antioxidant treatment prevented the effects of IH on ET-1 levels, ECE activity, carotid baroreceptor activity, and baroreflex function. These results demonstrate that 1) IH attenuates arterial baroreflex function, which is in part due to reduced carotid baroreceptor responses to elevated carotid sinus pressure, and 2) IH-induced carotid baroreceptor dysfunction involves reactive oxygen species-dependent upregulation of ET-1 signaling in the carotid sinus region.  相似文献   

18.
In mammals and birds, neuropeptide Y (NPY) and gamma-aminobutyric acid (GABA) are found in brain areas known to be involved in the control of ingestive behavior and act to increase voluntary food intake. In rats, significant evidence suggest a functional and behavioral interaction between NPY and GABA mediated transmission in various brain regions, including the arcuate and paraventricular nuclei of the hypothalamus which can be important in the regulation of feeding behavior. In the present study, the effect of intracerebroventricular (ICV) administration of NPY and GABA receptor antagonists on food intake was examined in neonatal chicks. The ICV injection of NPY strongly stimulated food intake while co-administration of NPY and picrotoxin, a GABAA antagonist, (but not CGP54626, a GABAB antagonist) weakened food intake induced by NPY. These results suggest that central NPY stimulates food intake in neonatal chicks by interaction with the GABAergic system via GABAA receptors.  相似文献   

19.
Some animals and humans fed a high-energy diet (HED) are diet-resistant (DR), remaining as lean as individuals who were naïve to HED. Other individuals become obese during HED exposure and subsequently defend the obese weight (Diet-Induced Obesity- Defenders, DIO-D) even when subsequently maintained on a low-energy diet. We hypothesized that the body weight setpoint of the DIO-D phenotype resides in the hypothalamic paraventricular nucleus (PVN), where anorexigenic melanocortins, including melanotan II (MTII), increase presynaptic GABA release, and the orexigenic neuropeptide Y (NPY) inhibits it. After prolonged return to low-energy diet, GABA inputs to PVN neurons from DIO-D rats exhibited highly attenuated responses to MTII compared with those from DR and HED-naïve rats. In DIO-D rats, melanocortin-4 receptor expression was significantly reduced in dorsomedial hypothalamus, a major source of GABA input to PVN. Unlike melanocortin responses, NPY actions in PVN of DIO-D rats were unchanged, but were reduced in neurons of the ventromedial hypothalamic nucleus; in PVN of DR rats, NPY responses were paradoxically increased. MTII-sensitivity was restored in DIO-D rats by several weeks’ refeeding with HED. The loss of melanocortin sensitivity restricted to PVN of DIO-D animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint.  相似文献   

20.
Stimulation of either GABA(A) or GABA(B) receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A) receptor agonist muscimol and GABA(B) receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol) stimulated responding but a higher dose (660 pmol) induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol) also stimulated intake of freely available chow. Muscimol (220-660 pmol) was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol) induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A) or GABA(B) receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号