首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An oligochaete annelid species, Enchytraeus japonensis, reproduces not only asexually but also sexually. It has been reported that putative mesodermal stem cells called neoblasts contribute to blastema formation and that Ej-piwi(+) germline stem cells participate in gonadal regeneration. To delineate the origin and formation of both of these stem cells, we isolated two vasa-related genes (Ej-vlg1 and Ej-vlg2) and analyzed the expression of each along with that of germline marker gene Ej-piwi. In adults, Ej-vlg1 and Ej-vlg2 were expressed in Ej-piwi(+) germline stem cells and germ cells in gonads, while only Ej-vlg2 mRNAs were detected in neoblasts. Expression analysis during embryogenesis indicated that clusters of Ej-vlg1(+)/Ej-vlg2(+) cells, located at the posterior ventral region in late embryos, became Ej-vlg1(+)/Ej-vlg2(+)/Ej-piwi(+) germline stem cells just after embryogenesis. On the other hand, Ej-vlg2 single positive cells with morphological characteristics of neoblasts became detectable much later after embryogenesis at the ventral position on each septum where adult neoblasts exist, although these early detected cells were much smaller in size than adult neoblasts. The present results suggest that (1) germline stem cells specified just after embryogenesis are derived from Ej-vlg1(+)/Ej-vlg2(+) cells which appear at the posterior ventral region in late embryos, and that (2) neoblasts appear much later in development.  相似文献   

2.
On the origin of neoblasts in freshwater planarians (Turbellaria)   总被引:2,自引:2,他引:0  
Experiments on 1) regeneration of the cave-adapted planarian, Sphalloplana zeschi, 2) induction of sexuality in an asexual strain of Dugesia japonica japonica by feeding, and 3) culture of dissociated planarian cells, show that neoblasts originate from intestinal cells, i.e. phagocytic cells and granular clubs.  相似文献   

3.
Enchytraeus japonensis is a small terrestrial oligochaete which primarily reproduces asexually by fragmentation and regeneration. In order to introduce a molecular approach to the study of regeneration we developed a whole-mount immunostaining procedure for the worm. Using an antibody directed against acetylated tubulin in conjunction with confocal laser-scanning microscopy, we succeeded in clarifying the three- dimensional structure of the entire nervous system in the full-grown worm and its dynamics during the fragmentation and regeneration process. In addition, we examined the expression of neurotransmitters and neuropeptides in the worm using a fluorescently-labeled antagonist and various antibodies. In particular, we found two circumferential structures in the body wall muscle of each segment that react strongly with α-bungarotoxin, an antagonist of nicotinic acetylcholine receptors, and detected nerve fibers just underneath these structures. During the fragmentation process, the circular body wall muscles contract near one of these circumferential structures in the middle of the segment, which causes constriction and results in fission of the body. This α-bungarotoxin-positive structure was designated the neuromuscular junction of the circular muscle. During the regeneration process nerve fibers grow from the remaining ventral nerve cord and gradually form networks in both the anterior and posterior regeneration buds. The growing fibers extend to the prostomium (a sensory organ) at the anterior end prior to connecting to the presumptive brain rudiment. A neural network appears around the pygidium, and this is followed by growth of the body at the posterior end. The nervous system appears to play an important role in both anterior and posterior regeneration. Received: 9 June 1999 / Accepted: 30 December 1999  相似文献   

4.
The Enchytraeida Oligochaeta Enchytraeus japonensis propagates asexually by spontaneous autotomy. Normally, each of the 5-10 fragments derived from a single worm regenerates a head anteriorly and a tail posteriorly. Occasionally, however, a head is formed posteriorly in addition to the normal anterior head, resulting in a bipolar worm. This phenomenon prompted us to conduct a series of experiments to clarify how the head and the tail are determined during regeneration in this species. The results showed that (1) bipolar head regeneration occurred only after artificial amputation, and not by spontaneous autotomy, (2) anesthesia before amputation raised the frequency of bipolar head regeneration, and (3) an extraordinarily high proportion of artificially amputated head fragments regenerated posterior heads. Close microscopic observation of body segments showed that each trunk segment has one specific autotomic position, while the head segments anterior to the VIIth segment do not. Only the most posterior segment VII in the head has an autotomic position. Examination just after amputation found that the artificial cutting plane did not correspond to the normal autotomic position in most cases. As time passed, however, the proportion of worms whose cutting planes corresponded to the autotomic position increased. It was suspected that the fragments autotomized after the artificial amputation (corrective autotomy). This post-amputation autotomy was probably inhibited by anesthesia. The rate at which amputated fragments did not autotomize corresponded roughly to the rate of bipolar regeneration. It was hypothesized then that the head regenerated posteriorly if a fragment was not amputated at the precise autotomic position from which it regenerated without succeeding in corrective autotomy.  相似文献   

5.
In spite of the extensive potential of human mesenchymal stem cells (hMSCs) in cell therapy, little is known about the molecular mechanisms that regulate their therapeutic properties. We aimed to identify microRNAs (miRNAs) involved in controlling the transition between the resting and reparative phenotypes of hMSCs, hypothesizing that these miRNAs must be present in the undifferentiated cells and downregulated to allow initiation of distinct activation/differentiation programs. Differential miRNA expression analyses revealed that miR-335 is significantly downregulated upon hMSC differentiation. In addition, hMSCs derived from a variety of tissues express miR-335 at a higher level than human skin fibroblasts, and overexpression of miR-335 in hMSCs inhibited their proliferation and migration, as well as their osteogenic and adipogenic potential. Expression of miR-335 in hMSCs was upregulated by the canonical Wnt signaling pathway, a positive regulator of MSC self-renewal, and downregulated by interferon-γ (IFN-γ), a pro-inflammatory cytokine that has an important role in activating the immunomodulatory properties of hMSCs. Differential gene expression analyses, in combination with computational searches, defined a cluster of 62 putative target genes for miR-335 in hMSCs. Western blot and 3'UTR reporter assays confirmed RUNX2 as a direct target of miR-335 in hMSCs. These results strongly suggest that miR-335 downregulation is critical for the acquisition of reparative MSC phenotypes.  相似文献   

6.
Enchytraeus fragmentosus (Enchytraeidae) and Stylaria lacustris (Naididae) are small terrestrial and limnetic oligochaetes that exclusively or seasonally reproduce by fragmentation and regeneration, respectively. We traced the neuronal development and differentiation during regeneration in order to gain information on the basic organization and evolution of the oligochaete nervous system. Subsequent to artificial amputation, the nervous systems have been stained with antibodies directed against acetylated alpha-tubulin. The staining was analyzed by indirect fluorescence in combination with confocal laser scanning microscopy. Both species show unique oligochaete neuronal regeneration patterns: (i) numerous fibers branch off from segmental nerves near the wound site and innervate the blastema; and (ii) the ventral cord is partly reestablished before the circumesophageal connectives develop. In the investigated 'Oligochaeta' the outgrowing fibers of the ventral nerve cord are soon bundled into at least two distinct connective pairs, which prolong into dorsal and ventral roots next to the mouth. Subsequent complete fusion of the doubled roots forms simple connectives. Thus, dorsal roots are not a unique feature for 'Polychaeta'. They occur as a transient structure in 'Oligochaeta' and might be part of the neuronal ground pattern of Annelida. The initially tetra or even pentaneuronal ventral nerve cord also differentiates into an unineuronal one by fusion.  相似文献   

7.
8.
9.
10.
Bruns  Eric  Egeler  Philipp  Roembke  Joerg  Scheffczyk  Adam  Spoerlein  Peter 《Hydrobiologia》2001,463(1-3):185-196
The uptake of chemicals in soil organisms, especially earthworms, has been studied many times. However, in Europe no internationally accepted standardised test guideline for the assessment of bioaccumulation in the soil ecosystem exists. Therefore, the German Federal Environmental Agency recently funded a project in which a standardisable test method for measuring bioaccumulation of chemicals using earthworms and enchytraeids is being developed. In this contribution, initial results with the new method are presented, using two model chemicals (the insecticide lindane and the fungicide hexachlorobenzene). Two enchytraeid species (Enchytraeus luxuriosus and Enchytraeus albidus) were selected as test organisms due to their easy handling and their important ecological role in the soil compartment. Artificial soil and a natural standard soil were used as test substrates. Test concentrations were based on previous results of acute and reproduction toxicity tests performed with the same species. Uptake as well as the elimination of the test substances were examined under standardised conditions in a closed test system. The first results show that both chemicals were accumulated considerably by both enchytraeid species. The bioaccumulation factors (BAFs) of lindane and hexachlorobenzene found for enchytraeids are significantly higher compared to those for lumbricid earthworms. Evaluation of the preliminary data suggests that the smaller species E. luxuriosus accumulated the two chemicals to a greater extent than E. albidus. In most cases, both chemicals were eliminated completely. The use of this new test method appears suitable for the ecotoxicological risk assessment of bioaccumulative chemicals.  相似文献   

11.
Periodontitis is one of the main causes of tooth loss and has been confirmed as the sixth complication of diabetes. Metformin promotes the osteogenic differentiation of stem cells. Periodontal ligament stem cells (PDLSCs) are the best candidate stem cells for periodontal tissue regeneration. Herein, we aimed to identify the effects of metformin on the proliferation, migration, and osteogenic differentiation of PDLSCs in vitro. PDLSCs were isolated by limiting dilution, and their characteristics were assessed by colony formation assay and flow cytometry. Cell counting and migration assays were used to investigate the effects of metformin on proliferation and migration. The osteogenic differentiation ability of PDLSCs was detected by alkaline phosphatase (ALP) activity and Alizarin Red S staining. Gene and protein levels of osteogenesis‐related markers were determined by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot analysis, respectively. Metformin treatment at 10 μM did not affect PDLSC proliferation, while at 50 and 100 μM, metformin time‐dependently enhanced PDLSC proliferation and significantly increased cell numbers after 5 and 7 days of stimulation (P < 0.05). In addition, 50 μM metformin exhibited a maximal effect on migration, ALP activity, and mineral deposition (P < 0.05). Furthermore, 50 μM metformin significantly upregulated the gene expression levels of ALP, BSP, OPN, OCN, and Runx2 and the protein expression of ALP and Runx2 (P < 0.05). In summary, our study confirms that metformin facilitates the proliferation, migration, and osteogenic differentiation of PDLSCs in vitro and could be used as a new strategy for periodontal tissue regeneration.  相似文献   

12.
13.
14.
15.
辜玉萍  陈蕾  李千音 《生物工程学报》2020,36(10):2151-2161
肾脏是人体重要器官,肾脏发育对肾脏的形成和功能至关重要,其中后肾间充质细胞 (Metanephric mesenchyme,MM) 间质-上皮转化 (Mesenchymal-epithelial transition,MET) 是肾单位形成的关键环节。qRT-PCR和Western blotting实验检测蛋白质磷酸酶3催化亚基α (Protein phosphatase 3 catalytic subunit alpha,PPP3CA) 在不同状态MM细胞株mK3、mK4中的表达谱及对MET标志蛋白调控作用;采用慢病毒包装方式构建稳定敲低PPP3CA的mK4细胞株;采用CCK-8、EdU实验、细胞划痕实验、流式细胞技术分别检测PPP3CA对上皮样后肾间充质细胞株mK4细胞生长、迁移、凋亡的调控作用。PPP3CA在mK4细胞中表达量较间质样后肾间充质细胞mK3更高,敲低PPP3CA后,检测MET标志物及细胞生物学行为,结果显示敲低PPP3CA显著上调上皮细胞标志物E-cadherin表达,促进MET过程,且促进细胞凋亡,抑制细胞增殖和迁移。此外,敲低PPP3CA促进ERK1/2磷酸化,提示PPP3CA生物学功能的调控机制可能与其去磷酸化ERK1/2蛋白相关。以上结果提示PPP3CA在MM细胞MET转化和生物学行为调节中发挥重要功能,为发现和解析肾发育过程中潜在的关键调节因子提供了新的理论基础。  相似文献   

16.
The present report is an extension of our preceding publication in Biomaterials (2013) entitled “Effect of RGD nanospacing on differentiation of stem cells.” Cell-adhesive peptide arginine-glycine-aspartate (RGD) was nanopatterned on a non-fouling poly(ethylene glycol) (PEG) hydrogel, and mesenchymal stem cells (MSCs) derived from rat bone marrow were cultured on the patterned surfaces at nanospacings from 37 to 124 nm. Cell adhesion parameters such as spreading areas varied with RGD nanospacings significantly. The differences were well observed at both the first and eighth days, which confirmed the persistence of this nanospacing effect on our nanopatterns. The proliferation rate also varied with the nanospacings. Osteogenic and adipogenic inductions were undertaken, and a significant influence of RGD nanospacing on stem cell differentiation was found. The effect on differentiation cannot be simply interpreted by differences in cell adhesion and proliferation. We further calculated the fractions of single, coupled, and multiple cells on those nanopatterns, and ruled out the possibility that the extent of cell-cell contact determined the different differentiation fractions. Accordingly, we reinforced the idea that RGD nanospacing might directly influence stem cell differentiation.  相似文献   

17.
In equine medicine, stem cell therapies for orthopaedic diseases are routinely accompanied by application of NSAIDs (non-steroidal anti-inflammatory drugs). Thus, it has to be analysed how NSAIDs actually affect the growth and differentiation potential of MSCs (mesenchymal stem cells) in vitro in order to predict the influence of NSAIDs such as phenylbutazone, meloxicam, celecoxib and flunixin on MSCs after grafting in vivo. The effects of NSAIDs were evaluated regarding cell viability and proliferation. Additionally, the multilineage differentiation capacity and cell migration was analysed. NSAIDs at lower concentrations (0.1-1 μM for celecoxib and meloxicam and 10-50 μM for flunixin) exert a positive effect on cell proliferation and migration, while at higher concentrations (10-200 μM for celecoxib and meloxicam and 100-1000 μM for flunixin and phenylbutazone), there is rather a negative influence. While there is hardly any influence on the adipogenic as well as on the chondrogenic MSC differentiation, the osteogenic differentiation potential, as demonstrated with the von Kossa staining, is significantly disturbed. Thus, it can be concluded that the effects of NSAIDs on MSCs are largely dependent on the concentrations used. Additionally, for some differentiation lineages, also the choice of NSAID is critical.  相似文献   

18.
Executioner caspases such as Caspase-3 and Caspase-7 have long been recognised as the key proteases involved in cell demolition during apoptosis. Caspase activation also modulates signal transduction inside cells, through activation or inactivation of kinases, phosphatases and other signalling molecules. Interestingly, a series of recent studies have demonstrated that caspase activation may also influence signal transduction and gene expression changes in neighbouring cells that themselves did not activate caspases. This review describes the physiological relevance of paracrine Caspase-3 signalling for developmental processes, tissue homeostasis and tissue regeneration, and discusses the role of soluble factors and microparticles in mediating these paracrine activities. While non-cell autonomous control of tissue regeneration by Caspase-3 may represent an important process for maintaining tissue homeostasis, it may limit the efficiency of current cancer therapy by promoting cell proliferation in those cancer cells resistant to radio- or chemotherapy. We discuss recent evidence in support of such a role for Caspase-3, and discuss its therapeutic implication.  相似文献   

19.
The aim of this study was to examine the effects of glafenine hydrochloride (a nonsteroidal anti-inflammatory drug) on proliferation, clonogenic activity, cell-cycle, migration, and the extracellular matrix protein tenascin of human aortic smooth muscle cells (haSMCs) and human endothelial cells (ECs) in vitro.HaSMCs and ECs were seeded in tissue culture flasks. The cells were treated for 4 days with glafenine hydrochloride (10 microM, 50 microM, 100 microM). Half of the treated groups were incubated again with glafenine hydrochloride, the other half received medium free of glafenine hydrochloride every 4 days until day 20. The growth kinetics and clonogenic activity were assessed. Cell cycle distribution was investigated by FACS, migratory ability was evaluated, and effects on extracellular matrix synthesis were assessed by immunofluorescence.Glafenine hydrochloride inhibited the proliferation and clonogenic activity of haSMCs and ECs in a dose-dependent manner. A block in the G2/M phase and a reduction in the G1 phase occurred. The migratory ability of haSMCs was impaired in a dose-dependent manner and the extracellular matrix protein tenascin was reduced. As glafenine hydrochloride has the ability to fully inhibit proliferation and to partially inhibit migration in haSMCs, it could be an interesting substance for further research in the field of restenosis therapy.  相似文献   

20.
The cellular and molecular features of multipotent epithelial cells during regeneration and asexual reproduction in colonial tunicates are described in the present study. The epicardium has been regarded as the endodermal tissue-forming epithelium in the order Enterogona, because only body fragments having the epicardium exhibit the regenerative potential. Epicardial cells in Polycitor proliferus have two peculiar features; they always accompany coelomic undifferentiated cells, and they contain various kinds of organelles in the cytoplasm. During strobilation a large amount of organelles are discarded in the lumen, and then, each tissue-forming cell takes an undifferentiated configuration. Septum cells in the stolon are also multipotent in Enterogona. Free cells with a similar configuration to the septum inhabit the hemocoel. They may provide a pool for epithelial septum cells. At the distal tip of the stolon, septum cells are columnar in shape and apparently undifferentiated. They are the precursor of the stolonial bud. In Pleurogona, the atrial epithelium of endodermal origin is multipotent. In Polyandrocarpa misakiensis, it consists of pigmented squamous cells. The cells have ultrastructurally fine granules in the cytoplasm. During budding, coelomic cells with similar morphology become associated with the atrial epithelium. Then, cells of organ placodes undergo dedifferentiation, enter a cell division cycle, and commence morphogenesis. Retinoic acid-related molecules are involved in this dedifferentiation process of multipotent cells. We conclude that in colonial tunicates two systems support the flexibility of tissue remodeling during regeneration and asexual reproduction; dedifferentiation of epithelial cells and epithelial transformation of coelomic free cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号