首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoarthritis (OA) and degenerative disc disease (DDD) are similar diseases involving the breakdown of cartilage tissue, and a better understanding of the underlying biochemical processes involved in cartilage degeneration may allow for the development of novel biologic therapies aimed at slowing the disease process. Three members of the fibroblast growth factor (FGF) family, FGF‐2, FGF‐18, and FGF‐8, have been implicated as contributing factors in cartilage homeostasis. The role of FGF‐2 is controversial in both articular and intervertebral disc (IVD) cartilage as it has been associated with species‐ and age‐dependent anabolic or catabolic events. Recent evidence suggests that FGF‐2 selectively activates FGF receptor 1 (FGFR1) to exert catabolic effects in human articular chondrocytes and IVD tissue via upregulation of matrix‐degrading enzyme production, inhibition of extracellular matrix (ECM) accumulation and proteoglycan synthesis, and clustering of cells characteristic of arthritic states. FGF‐18, on the other hand, most likely exerts anabolic effects in human articular chondrocytes by activating the FGFR3 pathway, inducing ECM formation and chondrogenic cell differentiation, and inhibiting cell proliferation. These changes result in dispersed chondrocytes or disc cells surrounded by abundant matrix. The role of FGF‐8 has recently been identified as a catabolic mediator in rat and rabbit articular cartilage, but its precise biological impact on human adult articular cartilage or IVD tissue remains unknown. The available evidence reveals the promise of FGF‐2/FGFR1 antagonists, FGF‐18/FGFR3 agonists, and FGF‐8 antagonists (i.e., anti‐FGF‐8 antibody) as potential therapies to prevent cartilage degeneration and/or promote cartilage regeneration and repair in the future. J. Cell. Biochem. 114: 735–742, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
3.
4.
Human mesenchymal stromal or stem cells (hMSCs) are being investigated for cell therapy in a wide range of diseases. MSCs are a potent source of trophic factors and actively remodel their immediate microenvironment through the secretion of bioactive factors in response to external stimuli such as oxygen tension. In this study, we examined the hypothesis that hypoxia influences hMSC properties in part through the regulation of extracellular milieu characterized by the extracellular matrix (ECM) matrices and the associated fibroblast growth factor‐2 (FGF‐2). The decellularized ECM matrices derived from hMSC culture under both hypoxic (e.g., 2% O2) and the standard culture (e.g., 20% O2) conditions have different binding capacities to the cell‐secreted and exogenenous FGF‐2. The reduced hMSC proliferation in the presence of FGF‐2 inhibitor and the differential capacity of the decellularized ECM matrices in regulating hMSC osteogeneic and adipogenic differentiation suggest an important role of the endogenous FGF‐2 in sustaining hMSC proliferation and regulating hMSC fate. Additionally, the combination of the ECM adhesion and hypoxic culture preserved hMSC viability under serum withdrawal. Together, the results suggest the synergistic effect of hypoxia and the ECM matrices in sustaining hMSC ex vivo expansion and preserving their multi‐potentiality and viability under nutrient depletion. The results have important implication in optimizing hMSC expansion and delivery strategies to obtain hMSCs in sufficient quantity with required potency and to enhance survival and function upon transplantation. J. Cell. Biochem. 114: 716–727, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
6.
7.
8.
BACKGROUND: Defects of articular cartilage are an unsolved problem in orthopaedics. In the present study, we tested the hypothesis that gene transfer of human fibroblast growth factor 2 (FGF-2) via transplantation of encapsulated genetically modified articular chondrocytes stimulates chondrogenesis in cartilage defects in vivo. METHODS: Lapine articular chondrocytes overexpressing a lacZ or a human FGF-2 gene sequence were encapsulated in alginate and further characterized. The resulting lacZ or FGF-2 spheres were applied to cartilage defects in the knee joints of rabbits. In vivo, cartilage repair was assessed qualitatively and quantitatively at 3 and 14 weeks after implantation. RESULTS: In vitro, bioactive FGF-2 was secreted, leading to a significant increase in the cell numbers in FGF-2 spheres. In vivo, FGF-2 continued to be expressed for at least 3 weeks without leading to differences in FGF-2 concentrations in the synovial fluid between treatment groups. Histological analysis revealed no adverse pathologic effects on the synovial membrane at any time point. FGF-2 gene transfer enhanced type II collagen expression and individual parameters of chondrogenesis, such as the cell morphology and architecture of the new tissue. Overall articular cartilage repair was significantly improved at both time points in vivo. CONCLUSIONS: The data suggest that localized overexpression of FGF-2 enhances the repair of cartilage defects via stimulation of chondrogenesis, without adverse effects on the synovial membrane. These results may lead to the development of safe gene-based therapies for human articular cartilage defects.  相似文献   

9.
The cellular distributions of the growth factors FGF-2 and VEGF, and their receptors FGFR1, FGFR2 and FGFR3, and VEGFR-2 respectively, were visualized by immunohistochemistry and light microscopy in sections of growing red deer antler. Both of these signalling systems were widely expressed in the integument and osteocartilaginous compartments. FGF-2 was found in the same cells as all three FGFRs, indicating that FGF signalling may be principally autocrine. The patterns of labelling for VEGF and its receptor were similar to those seen for FGF-2 and FGFR-3, in both compartments. Our data are consistent with the findings of others in suggesting that FGF-2 induces expression of VEGF, to stimulate and maintain high rates of neovascularisation and angiogenesis, thereby providing nutrients to both velvet and bone as they rapidly grow and develop. The presence of FGF and VEGF and their receptors in epithelial cells suggests that these signalling systems play a role in skin development, raising the possibility that one or both may be involved in the close coupling of the coordinated growth of the integument and osteocartilage of antler, a process which is poorly understood at present.  相似文献   

10.
The emergence of multidrug resistance (MDR) in cancer cells has made many of the currently available chemotherapeutic agents ineffective. However, the mechanism involved in mediating this effect is not yet fully understood. Here, we found the overexpression of type I insulin-like growth factor receptor (IGF-IR) in established colorectal MDR cells. Specific siRNA of IGF-IR decreases cell proliferation, exert synergistic effect with anticancer drugs. The downstream signaling of IGF-IR, PI3K/AKT pathway, was altered upon IGF-IR silencing. The expression of multidrug-resistance-associated protein 2 (MRP-2) was suppressed due to the nuclear translocation of nuclear factor-like 2 (Nrf2). Then the intracellular drug concentration was increased and the drug-resistant phenotype was reversed. Our findings improve current understanding of the biology of IGF-IR and MDR and have significant therapeutic implications on colorectal MDR cancer.  相似文献   

11.

Introduction

Osteoarthritis (OA) is a common cause of disability in older adults. We have previously reported that an agonist for subtypes EP2 of the prostaglandin E2 receptor (an EP2 agonist) promotes the regeneration of chondral and osteochondral defects. The purpose of the current study is to analyze the effect of this agonist on articular cartilage in a model of traumatic degeneration.

Methods

The model of traumatic degeneration was established through transection of the anterior cruciate ligament and partial resection of the medial meniscus of the rabbits. Rabbits were divided into 5 groups; G-S (sham operation), G-C (no further treatment), G-0, G-80, and G-400 (single intra-articular administration of gelatin hydrogel containing 0, 80, and 400 μg of the specific EP2 agonist, ONO-8815Ly, respectively). Degeneration of the articular cartilage was evaluated at 2 or 12 weeks after the operation.

Results

ONO-8815Ly prevented cartilage degeneration at 2 weeks, which was associated with the inhibition of matrix metalloproteinase-13 (MMP-13) expression. The effect of ONO-8815Ly failed to last, and no effects were observed at 12 weeks after the operation.

Conclusions

Stimulation of prostaglandin E2 (PGE2) via EP2 prevents degeneration of the articular cartilage during the early stages. With a system to deliver it long term, the EP2 agonist could be a new therapeutic tool for OA.  相似文献   

12.
The development of digestive organs in vertebrates involves active epithelial-mesenchymal interactions. In the chicken proventriculus (glandular stomach), the morphogenesis and cytodifferentiation of the epithelium are controlled by the inductive signaling factors that are secreted from the underlying mesenchyme. Previous studies have shown that Fgf10 is expressed in the developing chicken proventricular mesenchyme, whereas its receptors are present in the epithelium. In our present study, we show that FGF10 is an early mesenchymal signal that is critically associated with the developmental processes in the proventricular epithelium. Furthermore, virus-mediated Fgf10 overexpression in ovo results in a hypermorphic epithelial structure and an increase in epithelial cell number. In contrast, the overexpression of a secreted FGFR2b (sFGFR2b), an FGF10 antagonist, blocks cell proliferation and gland formation in the proventricular epithelium in ovo. This downregulation of proliferative activity was subsequently found to retard gland formation and also to delay differentiation of the epithelium. These results demonstrate that FGF10 signaling, mediated by FGFR1b and/or FGFR2b, is required for proliferation and gland formation in the epithelium in the developing chick embryo.  相似文献   

13.
14.
This study aimed to investigate the expression of B‐cell lymphoma‐extra large (Bcl‐xL) in cartilage tissues following articular cartilage injury and to determine its effects on the biological function of chondrocytes. A total of 25 necrotic cartilage tissue samples and 25 normal tissue samples were collected from patients diagnosed with osteoarthritis at our hospital from December 2015 to December 2018. The mRNA expression levels of Bcl‐xL, caspase‐3, and matrix metalloproteinase‐3 (MMP‐3) in the normal and necrotic tissues were examined via quantitative polymerase chain reaction, and their protein expression levels were detected via western blotting. The expression levels of Bcl‐xL, insulin‐like growth factor‐1 (IGF‐1), and bone morphogenetic protein (BMP) were significantly lower but those of caspase‐3, MMP‐3, interleukin‐1β (IL‐1β), and chemokine‐like factor 1 (CKLF1) levels were markedly higher in necrotic cartilage tissues than in normal tissues. Following cell transfection, the expression levels of Bcl‐xL, IGF‐1, and BMP were remarkably higher but those of caspase‐3, MMP‐3, IL‐1β, and CKLF1 were notably lower in the Si‐Bcl‐xL group than in the NC group. The Si‐Bcl‐xL group showed significantly lower cell growth and noticeably higher apoptosis rate than the NC group (normal control group). The expression of Bcl‐xL is reduced following articular cartilage injury, and this reduction promotes the proliferation and inhibits the apoptosis of chondrocytes. Therefore, Bcl‐xL could serve as a relevant molecular target in the clinical practice of osteoarthritis and other diseases causing cartilage damage.  相似文献   

15.
Osteoarthritis (OA) is a debilitating, degenerative joint disease characterized by progressive destruction of articular cartilage. Given the poor repair capacity of articular cartilage and the associated local destructive immune/inflammatory responses involving all joint structures, OA frequently ends up as a “whole joint failure” requiring prosthetic replacement. Current pharmacological efforts, belatedly started, mainly aim at symptomatic pain relief, underscoring the need for novel therapeutic schemes designed to modify the course of the disease. Mesenchymal stem cell (MSC)–based therapy has gained significant interest, sparking the design of multiple trials proving safety while providing promising preliminary efficacy results. MSCs possess ‘medicinal signaling cell’ properties related to their immunomodulatory and anti-inflammatory effects, which induce the establishment of a pro-regenerative microenvironment at the injured tissue. Those trophic effects are paralleled by the long-established chondroprogenitor capacity that can be harnessed to ex vivo fabricate engineered constructs to repair damaged articular cartilage. The present review focuses on these two aspects of the use of MSCs for articular cartilage damage, namely, cell therapy and tissue engineering, providing information on their use criteria, advancements, challenges and strategies to overcome them.  相似文献   

16.
Bunik VI  Degtyarev D 《Proteins》2008,71(2):874-890
Structural relationship within the family of the thiamine diphosphate-dependent 2-oxo acid dehydrogenases was analyzed by combining different methods of sequence alignment with crystallographic and enzymological studies of the family members. For the first time, the sequence similarity of the homodimeric 2-oxoglutarate dehydrogenase to heterotetrameric 2-oxo acid dehydrogenases is established. The presented alignment of the catalytic domains of the dehydrogenases of pyruvate, branched-chain 2-oxo acids and 2-oxoglutarate unravels the sequence markers of the substrate specificity and the essential residues of the family members without the 3D structures resolved. Predicted dual substrate specificity of some of the 2-oxo acid dehydrogenases was confirmed experimentally. The results were used to decipher functions of the two hypothetical proteins of animal genomes, OGDHL and DHTKD1, similar to the 2-oxoglutarate dehydrogenase. Conservation of all the essential residues confirmed their catalytic competence. Sequence analysis indicated that OGDHL represents a previously unknown isoform of the 2-oxoglutarate dehydrogenase, whereas DHTKD1 differs from the homologs at the N-terminus and substrate binding pocket. The differences suggest changes in heterologous protein interactions and accommodation of more polar and/or bulkier structural analogs of 2-oxoglutarate, such as 2-oxoadipate, 2-oxo-4-hydroxyglutarate, or products of the carboligase reaction between a 2-oxodicarboxylate and glyoxylate or acetaldehyde. The signatures of the Ca2+-binding sites were found in the Ca2+-activated 2-oxoglutarate dehydrogenase and OGDHL, but not in DHTKD1. Mitochondrial localization was predicted for OGDHL and DHTKD1, with DHTKD1 probably localized also to nuclei. Medical implications of the obtained results are discussed in view of the possible associations of the 2-oxo acid dehydrogenases and DHTKD1 with neurodegeneration and cancer.  相似文献   

17.
Osteochondral defects (OCDs) are conditions affecting both cartilage and the underlying bone. Since cartilage is not spontaneously regenerated, our group has recently developed a strategy of injecting bioactive alginate hydrogel into the defect for promoting endogenous regeneration of cartilage via presentation of affinity‐bound transforming growth factor β1 (TGF‐β1). As in vivo model systems often provide only limited insights as for the mechanism behind regeneration processes, here we describe a novel flow bioreactor for the in vitro modeling of the OCD microenvironment, designed to promote cell recruitment from the simulated bone marrow compartment into the hydrogel, under physiological flow conditions. Computational fluid dynamics modeling confirmed that the bioreactor operates in a relevant slow‐flowing regime. Using a chemotaxis assay, it was shown that TGF‐β1 does not affect human mesenchymal stem cell (hMSC) chemotaxis in 2D culture. Accessible through live imaging, the bioreactor enabled monitoring and discrimination between erosion rates and profiles of different alginate hydrogel compositions, using green fluorescent protein‐expressing cells. Mathematical modeling of the erosion front progress kinetics predicted the erosion rate in the bioreactor up to 7 days postoperation. Using quantitative real‐time polymerase chain reaction of early chondrogenic markers, the onset of chondrogenic differentiation in hMSCs was detected after 7 days in the bioreactor. In conclusion, the designed bioreactor presents multiple attributes, making it an optimal device for mechanistical studies, serving as an investigational tool for the screening of other biomaterial‐based, tissue engineering strategies.  相似文献   

18.
19.
Structures were determined by x-ray crystallography for two members of the ADP-ribosylation factor (ARF) family of regulatory GTPases, yeast ARF1 and ARL1, and were compared with previously determined structures of human ARF1 and ARF6. These analyses revealed an overall conserved fold but differences in primary sequence and length, particularly in an N-terminal loop, lead to differences in nucleotide and divalent metal binding. Packing of hydrophobic residues is central to the interplay between the N-terminal alpha-helix, switch I, and the interswitch region, which along with differences in surface electrostatics provide explanations for the different biophysical and biochemical properties of ARF and ARF-like proteins.  相似文献   

20.
Elevated levels of PGE(2) have been reported in synovial fluid and cartilage from patients with osteoarthritis (OA). However, the functions of PGE(2) in cartilage metabolism have not previously been studied in detail. To do so, we cultured cartilage explants, obtained from patients undergoing knee replacement surgery for advanced OA, with PGE(2) (0.1-10 muM). PGE(2) inhibited proteoglycan synthesis in a dose-dependent manner (maximum 25% inhibition (p < 0.01)). PGE(2) also induced collagen degradation, in a manner inhibitable by the matrix metalloproteinase (MMP) inhibitor ilomastat. PGE(2) inhibited spontaneous MMP-1, but augmented MMP-13 secretion by OA cartilage explant cultures. PCR analysis of OA chondrocytes treated with PGE(2) with or without IL-1 revealed that IL-1-induced MMP-13 expression was augmented by PGE(2) and significantly inhibited by the cycolooygenase 2 selective inhibitor celecoxib. Conversely, MMP-1 expression was inhibited by PGE(2), while celecoxib enhanced both spontaneous and IL-1-induced expression. IL-1 induction of aggrecanase 5 (ADAMTS-5), but not ADAMTS-4, was also enhanced by PGE(2) (10 muM) and reversed by celecoxib (2 muM). Quantitative PCR screening of nondiseased and end-stage human knee OA articular cartilage specimens revealed that the PGE(2) receptor EP4 was up-regulated in OA cartilage. Moreover, blocking the EP4 receptor (EP4 antagonist, AH23848) mimicked celecoxib by inhibiting MMP-13, ADAMST-5 expression, and proteoglycan degradation. These results suggest that PGE(2) inhibits proteoglycan synthesis and stimulates matrix degradation in OA chondrocytes via the EP4 receptor. Targeting EP4, rather than cyclooxygenase 2, could represent a future strategy for OA disease modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号