首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, using an in vivo approach (a microdialysis technique associated to HPLC with fluorimetric detection) and in vitro purified hippocampal synaptosomes in superfusion, we investigated the glycinergic transmission in the hippocampus, focusing on the nicotinic control of glycine (GLY) release. The acute administration of nicotine in vivo was able to evoke endogenous GLY release in the rat hippocampus. The specific nicotinic agonists PHA-543613 hydrochloride (PHA543613) selective for the α7 nicotinic receptor subtype administered in vivo also elicited GLY release in a similar extent, while the α4β2 agonist 5-IA85380 dihydrochloride (5IA85380) was less effective. Nicotine elicited GLY overflow also from hippocampal synaptosomes in vitro. This overflow was Ca2+-dependent and inhibited by methyllycaconitine (MLA), but was not modified by dihydro-beta-erythroidine (DHβE, 1 μM). Choline(Ch)-evoked GLY overflow was Ca2+ dependent, unaltered in presence of DHβE and blocked by methyllycaconitine (MLA). Additionally, 5IA85380 elicited a GLY overflow, which in turn was Ca2+ dependent, was significantly inhibited by DHβE but was unaffected by MLA. The GLY overflow produced by these nicotinic agonists quantitatively resembles that evoked by 9 mM KCl. The effects of a high concentration of 5IA85380 (1 mM), in the presence of 2 μM DHβE, on the release of GLY was also studied comparatively to that on glutamate and aspartate release. The nicotinic agonist 5IA85380 tested at high concentration (1 mM) was able to produce a stimulatory effect of endogenous release of the three amino acids, even in the presence of 2 μM DHβE, indicating the existence of a DHβE resistant, α4β2 nAChR subtype with a functional role in the modulation of GLY, ASP, and GLU release. Our results show that in the rat hippocampus the release of GLY is, at least in part, of neuronal origin and is modulated by the activation of both α7 and α4β2 (low and high affinity) nAChR subtypes.  相似文献   

2.

Background

Although converging evidence has suggested that nicotinic acetylcholine receptors (nAChR) play a role in the modulation of GABA release in rat hippocampus, the specific involvement of different nAChR subtypes at presynaptic level is still a matter of debate. In the present work we investigated, using selective α7 and α4β2 nAChR agonists, the presence of different nAChR subtypes on hippocampal GABA nerve endings to assess to what extent and through which mechanisms they stimulate endogenous GABA release.

Methodology/Findings

All agonists elicited GABA overflow. Choline (Ch)-evoked GABA overflow was dependent to external Ca2+, but unaltered in the presence of Cd2+, tetrodotoxin (TTX), dihydro-β-erythroidine (DHβE) and 1-(4,4-Diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride SKF 89976A. The effect of Ch was blocked by methyllycaconitine (MLA), α-bungarotoxin (α-BTX), dantrolene, thapsigargin and xestospongin C, suggesting that GABA release might be triggered by Ca2+ entry into synaptosomes through the α7 nAChR channel with the involvement of calcium from intracellular stores. Additionally, 5-Iodo-A-85380 dihydrochloride (5IA85380) elicited GABA overflow, which was Ca2+ dependent, blocked by Cd2+, and significantly inhibited by TTX and DHβE, but unaffected by MLA, SKF 89976A, thapsigargin and xestospongin C and dantrolene. These findings confirm the involvement of α4β2 nAChR in 5IA85380-induced GABA release that seems to occur following membrane depolarization and opening calcium channels.

Conclusions/Significance

Rat hippocampal synaptosomes possess both α7 and α4β2 nAChR subtypes, which can modulate GABA release via two distinct mechanisms of action. The finding that GABA release evoked by the mixture of sub-maximal concentration of 5IA85380 plus sub-threshold concentrations of Ch was significantly larger than that elicited by the sum of the effects of the two agonists is compatible with the possibility that they coexist on the same nerve terminals. These findings would provide the basis for possible selective pharmacological strategies to treat neuronal disorders that involve the dysfunction of hippocampal cholinergic system.  相似文献   

3.
Exogenous and endogenous cannabinoids play an important role in modulating the release of neurotransmitters in hippocampal excitatory and inhibitory networks, thus having profound effect on higher cognitive and emotional functions such as learning and memory. In this study we have studied the effect of cannabinoid agonists on the potassium depolarization-evoked [(3)H]GABA release from hippocampal synaptosomes in the wild-type (WT) and cannabinoid 1 receptor (CB(1)R)-null mutant mice. All tested cannabinoid agonists (WIN55,212-2, CP55,940, HU-210, 2-arachidonoyl-glycerol, 2-AG; delta-9-tetra-hydrocannabinol, THC) inhibited [(3)H]GABA release in WT mice with the following rank order of agonist potency: HU-210>CP55,490>WIN55,212-2>2-AG>THC. By contrast, 2-AG and THC displayed the greatest efficacy eliciting almost complete inhibition of evoked [(3)H]GABA efflux, whereas the maximal inhibition obtained by HU-210, CP55,490, and WIN55,212-2 were less, eliciting not more than 40% inhibition. The inhibitory effect of WIN55,212-2, THC and 2-AG on evoked [(3)H]GABA efflux was antagonized by the CB(1) receptor inverse agonist AM251 (0.5 μM) in the WT mice. In the CB(1)R knockout mice the inhibitory effects of all three agonists were attenuated. In these mice, AM251 did not antagonize, but further reduced the [(3)H]GABA release in the presence of the synthetic agonist WIN55,212-2. By contrast, the concentration-dependent inhibitory effects of THC and 2-AG were partially antagonized by AM251 in the absence of CB(1) receptors. Finally, the inhibition of evoked [(3)H]GABA efflux by THC and 2-AG was also partially attenuated by AM630 (1 μM), the CB(2) receptor-selective antagonist, both in WT and CB(1) knockout mice. Our data prove the involvement of CB(1) receptors in the effect of exo- and endocannabinoids on GABA efflux from hippocampal nerve terminals. In addition, in the effect of the exocannabinoid THC and the endocannabinoid 2-AG, non-CB(1), probably CB(2)-like receptors are also involved.  相似文献   

4.
GABA transporters accumulate GABA to inactivate or reutilize it. Transporter-mediated GABA release can also occur. Recent findings indicate that GABA transporters can perform additional functions. We investigated how activation of GABA transporters can mediate release of glycine. Nerve endings purified from mouse cerebellum were prelabeled with [(3)H]glycine in presence of the glycine GlyT1 transporter inhibitor NFPS to label selectively GlyT2-bearing terminals. GABA was added under superfusion conditions and the mechanisms of the GABA-evoked [(3)H]glycine release were characterized. GABA stimulated [(3)H]glycine release in a concentration-dependent manner (EC(50) = 8.26 μM). The GABA-evoked release was insensitive to GABA(A) and GABA(B) receptor antagonists, but it was abolished by GABA transporter inhibitors. About 25% of the evoked release was dependent on external Ca(2+) entering the nerve terminals through VSCCs sensitive to ω-conotoxins. The external Ca(2+)-independent release involved mitochondrial Ca(2+), as it was prevented by the Na(+)/Ca(2+) exchanger inhibitor CGP37157. The GABA uptake-mediated increases in cytosolic Ca(2+) did not trigger exocytotic release because the [(3)H]glycine efflux was insensitive to clostridial toxins. Bafilomycin inhibited the evoked release likely because it reduced vesicular storage of [(3)H]glycine so that less [(3)H]glycine can become cytosolic when GABA taken up exchanges with [(3)H]glycine at the vesicular inhibitory amino acid transporters shared by the two amino acids. The GABA-evoked [(3)H]glycine efflux could be prevented by niflumic acid or NPPB indicating that the evoked release occurred essentially by permeation through anion channels. In conclusion, GABA uptake into GlyT2-bearing cerebellar nerve endings triggered glycine release which occurred essentially by permeation through Ca(2+)-dependent anion channels. Glial GABA release mediated by anion channels was proposed to underlie tonic inhibition in the cerebellum; the present results suggest that glycine release by neuronal anion channels also might contribute to tonic inhibition.  相似文献   

5.
Kainic acid is known to stimulate the release of glutamate (GLU) and aspartate (ASP) from presynaptic neurons. It has been suggested that the enhanced release of these endogenous EAA's plays a significant role in the excitotoxic effects of KA. Domoic acid (DOM), a shellfish toxin, is structurally similar to KA, and has been shown to be 3–8 times more toxic than KA. In this study, effects of KA and DOM on the release of GLU and ASP from rat brain synaptosomes were investigated. Amino acid analysis was performed by the reversed phase HPLC, following derivatization with 9-fluorenylmethyl chloroformate (FMOC). Potassium chloride (40 mM) was used as a positive control, and stimulated GLU release from rat brain synaptosomes in presence or absence of Ca2+. DOM enhanced the release of GLU, whereas KA stimulated the release of both GLU and ASP from synaptosomes in the presence of Ca2+. However, their potency to stimulate GLU and ASP release was enhanced in absence of Ca2+. These results indicate that diferent mechanisms may be involved in the release of GLU and ASP in response to DOM and KA, and that neurotransmitter release appeared to be highly specific for these agonists. It would appear that DOM and KA may interact with different receptors on the presynaptic nerve terminal, and/or activate different subtypes of voltage-dependent Ca2+ channels to promote influx of Ca2+ which is targeted for different pools of neurotransmitters.Abbreviations ANOVA analysis of variance - ASP aspartate - DOM domoic acid - DHKA dihydrokainic acid - EAA excitatory amino acid - FMOC 9-fluorenylmethyl chloroformate - GLU glutamate - KA kainic acid  相似文献   

6.
The inhibitors okadaic acid (OA), fostriecin (FOS) and cyclosporin A (CsA), were used to investigate the roles of protein phosphatases in regulating exocytosis in rat brain synaptosomes by measuring glutamate release and the release of the styryl dye FM 2-10. Depolarization was induced by 30 mM KCl, or 0.3 mM or 1 mM 4-aminopyridine (4AP). OA and FOS produced a similar partial inhibition of KCl- and 0.3 mM 4AP- evoked exocytosis in both assays, but had little effect upon exocytosis evoked by 1 mM 4AP. In contrast, CsA had no effect upon KCl- and 0.3 mM 4AP-evoked exocytosis, but significantly enhanced glutamate release but not FM 2-10 dye release evoked by 1 mM 4AP. None of the phosphatase inhibitors changed calcium signals from FURA-2-loaded synaptosomes either before or after depolarization. Pretreatment with 100 nM phorbol 12-myristate 13-acetate abolished the inhibitory effect of OA on exocytosis induced by 0.3 mM 4AP. Taken together, these results show that exocytosis from synaptosomes has a phosphatase-sensitive and phosphatase-insensitive component, and that there are two modes of phosphatase-sensitive exocytosis that can be elicited by different depolarization conditions. Moreover, these two modes are differentially sensitive to phosphatase 2A and 2B.  相似文献   

7.
Extracellular [K+] can increase during some pathological conditions, resulting into excessive glutamate release through multiple mechanisms. We here investigate the overflow of [3H]D-aspartate ([3H] D-ASP) and of endogenous glutamate elicited by increasing [K+] from purified rat cerebrocortical synaptosomes. Depolarization with [K+] 15 mmol/L were prevented by the glutamate transporter inhibitors DL-threo-beta-benzyloxyaspartate (DL-TBOA) and dihydrokainate. Differently, the overflows of endogenous glutamate provoked by [K+] > 15 mmol/L were insensitive to both inhibitors; the external Ca2+-independent glutamate overflow caused by 50 mmol/L KCl was prevented by bafilomycin, by chelating intraterminal Ca2+, by blocking the mitochondrial Na+/Ca2+ exchanger and, for a small portion, by blocking anion channels. In contrast to purified synaptosomes, the 50 mmol/L K+-evoked release of endogenous glutamate or [3H]D-ASP was inhibited by DL-TBOA in crude synaptosomes; moreover, it was external Ca2+-insensitive and blocked by DL-TBOA in purified gliosomes, suggesting that carrier-mediated release of endogenous glutamate provoked by excessive [K+] in CNS tissues largely originates from glia.  相似文献   

8.
Clinical efficacy of alkylating anticancer drugs, such as chlorambucil (4-[p-[bis [2-chloroethyl] amino] phenyl]-butanoic acid; CHB), is often limited by the emergence of drug resistant tumor cells. Increased glutathione (gamma-glutamylcysteinylglycine; GSH) conjugation (inactivation) of alkylating anticancer drugs due to overexpression of cytosolic glutathione S-transferase (GST) is believed to be an important mechanism in tumor cell resistance to alkylating agents. However, the potential involvement of microsomal GST in the establishment of acquired drug resistance (ADR) to CHB remains uncertain. In our experiments, a combination of lipid chromatography/electrospray ionization mass spectrometry (LC/ESI/MS) was employed for structural characterization of the resulting conjugates between CHB and GSH. The spontaneous reaction of 1mM CHB with 5 mM GSH at 37 degrees C in aqueous phosphate buffer for 1 h gave primarily the monoglutathionyl derivative, 4-[p-[N-2-chloroethyl, N-2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG) and the diglutathionyl derivative, 4-[p-[2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG2) with small amounts of the hydroxy-derivative, 4-[p-[N-2-S-glutathionylethyl, N-2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBSGOH), 4-[p-[bis[2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBOH2), 4-[p-[N-2-chloroethyl, N-2-S-hydroxyethyl]amino]phenyl]-butanoic acid (CHBOH). We demonstrated that rat liver microsomal GST presented a strong catalytic effect on these reactions as determined by the increase of CHBSG2, CHBSGOH and CHBSG and the decrease of CHB. We showed that microsomal GST was activated by CHB in a concentration and time dependent manner. Microsomal GST which was stimulated approximately two-fold with CHB had a stronger catalytic effect. Thus, microsomal GST may play a potential role in the metabolism of CHB in biological membranes, and in the development of ADR.  相似文献   

9.
Electrophysiological data suggest an involvement of rostral ventromedial medulla (RVM) GABA and glutamate (GLU) neurons in morphine analgesia. Direct evidence that extracellular concentrations of GABA or GLU are altered in response to mu opioid receptor (MOP-R) activation is, however, lacking. We used in vivo microdialysis to investigate this issue. Basal GABA overflow increased in response to intra-RVM perfusion of KCl (60 mmol/L). Reverse microdialysis of the MOP-R agonist d -Ala(2),NMePhe(4),Gly-ol(5)]enkephalin (DAMGO) (20–500 μmol/L) produced a concentration-dependent decrease of RVM GABA overflow. Behavioral testing revealed that concentrations that decreased GABA levels increased thermal withdrawal thresholds. A lower agonist concentration that did not increase GABA failed to alter thermal thresholds. DAMGO did not alter GLU concentrations. However, KCl also failed to modify GLU release. Since rapid, transporter-mediated uptake may mask the detection of changes in GLU release, the selective excitatory amino acid transporter inhibitor pyrrolidine-2,4-dicarboxylic acid (tPDC, 0.6 mmol/L) was added to the perfusion medium for subsequent studies. tPDC increased GLU concentrations, confirming transport inhibition. KCl increased GLU dialysate levels in the presence of tPDC, demonstrating that transport inhibition permits detection of depolarization-evoked GLU overflow. In the presence of tPDC, DAMGO increased GLU overflow in a concentration-dependent manner. These data demonstrate that MOP-R activation decreases GABA and increases GLU release in the RVM. We hypothesize that the opposing effects of MOP-R on GLU and GABA transmission contribute to opiate antinociception.  相似文献   

10.
A drug, (E)-3-[4-(1-imidazolylmethyl)phenyl]-2-propenoic acid, was metabolized to 4-(1-imidazolylmethyl)benzoic acid in isolated hepatocytes of rats, which was enhanced markedly by the pretreatment of rats with clofibrate. With liver homogenates, the formation of the CoA-ester of this drug and its subsequent chain-shortening were demonstrated. In the series of these reactions, acyl-CoA synthetase, CoA, ATP and NAD were required, whereas cyanide did not inhibit the reaction. These results indicate that peroxisomes are capable of shortening the acyl side-chains of drugs by the beta-oxidation, giving an additional suggestion on the functions of peroxisomes.  相似文献   

11.
alpha-Latrotoxin, a presynaptic neurotoxin from the venom of Latrodectus mactans tredecimguttatus, induces massive [3H]GABA release from rat brain synaptosomes as a result of interaction with either Ca(2+)-dependent (neurexin 1 alpha or Ca(2+)-independent (latrophilin) membrane receptor. The main aim of the study was to elucidate whether the binding of alpha-latrotoxin to different types of receptors led to [3H]GABA secretion from one pool or in each case the source of neurotransmitter differs: in the presence of Ca2+ exocytosis is induced, while in the absence of Ca(2+)--outflow by mobile membrane GABA transporter from cytoplasm. We examined the effect of the depletion of cytosolic [3H]GABA pool by competitive inhibitors of the GABA transporter (nipecotic acid and 2,4-diaminobutyric acid) on the alpha-latrotoxin-stimulated neurotransmitter release. We also compared the influence of these agents on neurosecretion, evoked by depolarization with that evoked by alpha-latrotoxin. Depolarization was stimulated by 4-aminopyridine in the Ca(2+)-containing saline and high KCl in Ca(2+)-free medium. In synaptosomes treated with nipecotic acid unstimulated [3H]GABA release was significantly augmented and high KCl-evoked Ca(2+)-independent [3H]GABA release was essentially inhibited. But under the same conditions neurosecretion stimulated by alpha-latrotoxin greatly raised with respect to the control response. The similar results were obtained with the synaptosomes treated with 2,4-diaminobutyric acid. Another way to determine which of GABA pool is the target of alpha-latrotoxin action lay in analysis of the toxin effects on the preliminary depolarized synaptosomes. alpha-Latrotoxin influence was diminished by the preceding depolarization by 4-aminopyridine in Ca2+ presence. But after the high KCl stimulation effect of alpha-latrotoxin didn't change. These data suggest that alpha-latrotoxin triggers neurotransmitter release from synaptic vesicles via exocytosis. We suppose that the type of membrane receptor does not determine the mechanism of GABA release evoked by the toxin.  相似文献   

12.
Nicotinic acetylcholine (ACh) receptors, such as alpha7, alpha3beta4 and alpha4beta2 receptors in the hippocampus, are suggested to modulate neurotransmitter release. 8-[2-(2-Pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) (100 nM), a linoleic acid derivative, potentiated responses of alpha7, alpha3beta4 and alpha4beta2 ACh receptors expressed in Xenopus oocytes that are blocked by 3-(1-[dimethylaminopropyl] indol-3-yl)-4-[indol-3-yl] maleimide (GF109203X), a selective inhibitor of protein kinase C (PKC), except for alpha3beta4 ACh receptors. DCP-LA enhanced the nicotine-triggered release of GABA from rat hippocampal slices in the presence of tetrodotoxin in a bell-shaped dose-dependent manner at concentrations ranging from 10 nM to 10 microM, although DCP-LA by itself had no effect on GABA release. The DCP-LA action was inhibited by GF109203X or alpha-bungarotoxin, an inhibitor of alpha7 ACh receptors, but not by mecamylamine or dihydro-beta-erithroidine, an inhibitor of alpha3beta4 and alpha4beta2 ACh receptors. A similar effect on GABA release was obtained with 12-O-tetradecanoylphorbol 13-acetate, a PKC activator. DCP-LA (100 nM) also enhanced GABA release triggered by choline, an agonist of alpha7 ACh receptors, but not 3-[2(s)-azetidinylmethoxy] pyridine, an agonist of alpha4beta2 ACh receptors. In addition, DCP-LA (100 nM) increased the rate of nicotine-triggered GABA(A) receptor-mediated miniature inhibitory post-synaptic currents, monitored from CA1 pyramidal neurons of rat hippocampal slices, and the effect was also inhibited by GF109203X or alpha-bungarotoxin but not by mecamylamine. Thus, the results of the present study indicate that DCP-LA stimulates GABA release by enhancing activity of pre-synaptic alpha7 ACh receptors present on the GABAergic terminals of interneurons that transmit to CA1 pyramidal neurons via a PKC pathway.  相似文献   

13.
Various putative striatal transmitters and related compounds were studied for their effects on the release of gamma-aminobutyric acid (GABA) from slices of the head of the rabbit caudate nucleus. The slices were preincubated with [3H]GABA and then superfused and stimulated electrically at 5 or 20 Hz. Aminooxyacetic acid was present throughout. The main changes observed were the following. The basal and, less consistently, the electrically evoked overflow of [3H]GABA were enhanced by 3,4-dihydroxyphenylethylamine (dopamine), an effect not blocked by cis-flupentixol or domperidone and not mimicked by apomorphine and D1-selective agonists. The electrically evoked overflow was diminished by 5-hydroxytryptamine (serotonin); the inhibition was prevented by methiothepin. The basal but not the electrically evoked overflow was enhanced by carbachol; acetylcholine and nicotine also accelerated the basal outflow whereas oxotremorine caused no consistent change; the effect of carbachol and acetylcholine were blocked by hexamethonium but not by atropine or by tetrodotoxin. These findings indicate that the GABA neurons in the caudate nucleus may be stimulated by dopamine, although the receptor type involved remains unclear; inhibited by serotonin; and stimulated by acetylcholine acting via a nicotine receptor. However, all drug effects observed were relatively small. No evidence was obtained for autoreceptors, alpha 2-adrenoceptors or receptors for opioids, adenosine or substance P at the GABA neurons.  相似文献   

14.
We examined the effect of chronic nicotine treatment on dopaminergic activity by measuring the effects of D1 and D2 dopamine (DA) receptor agonists and antagonists on tritium release from mouse striatum preloaded with [3H]DA. The radioactivity released during superfusion was separated on alumina columns and the distribution and efflux of [3H]DA and its main 3H-labeled metabolites were quantified. After preloading by incubation with [3H]DA, the electrical stimulation-evoked tritium overflow was higher in striatum prepared from nicotine-treated mice, whereas in vitro addition of nicotine caused a similar increase in tritium release from striatum of untreated and chronic nicotine-treated mice. The overflow of [3H]DA and its 3H-metabolites exhibited similar distribution patterns in [3H]DA-preloaded striatum dissected from untreated and chronic nicotine-pretreated mice, indicating that repeated injections with nicotine did not alter the metabolism of [3H]DA taken up by the tissue. (-)-Quinpirole, a selective agonist for D2 DA receptors, and apomorphine, a nonselective D1/D2 agonist, inhibited the electrical stimulation-induced tritium efflux from striatum of untreated mice, whereas (+/-)-sulpiride, a D2 DA receptor antagonist, enhanced the evoked release of tritium. These changes in tritium efflux effected by (-)-quinpirole and (+/-)-sulpiride reflected changes in [3H]DA release and not in DA metabolism, as shown by separation of the released radioactivity on alumina columns. The D1 receptor agonist (+/-)-SKF-38393 did not affect the tritium overflow, whereas the D1 receptor antagonist (+)-SCH-23390 exerted a stimulatory action but only at a high concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Glycine release provoked by ion dysregulations typical of some neuropathological conditions was analyzed in cerebellar synaptosomes selectively pre-labelled with [3H]glycine through GlyT2 transporters and exposed in superfusion to KCl, 4-aminopyridine (4-AP) or veratridine. The overflows caused by relatively low concentrations of the releasers were largely external Ca2?-dependent. Higher concentrations of KCl (50 mM) or veratridine (10 μM), but not of 4-AP (1 mM), involved also external Ca2?-independent mechanisms. GlyT1-mediated release could not be observed; only the external Ca2?-independent veratridine-evoked overflow occurred significantly by GlyT2 reversal. None of the three depolarizing agents activated store-operated or transient receptor potential or L-type Ca2? channels. The overflows caused by KCl or 4-AP occurred in part by N- and P/Q-type voltage-sensitive calcium channel-dependent exocytosis. Significant portions of the external Ca2?-dependent overflow evoked by KCl or 4-AP (and all that caused by veratridine) were mediated by reverse plasmalemmal Na?/Ca2? exchangers. Significant contribution to the overflows evoked by KCl or veratridine came from Ca2? originated through mitochondrial Na?/Ca2? exchangers. Ca2?-induced Ca2? release (CICR) mediated by inositoltrisphosphate receptors (InsP?Rs) represents the final trigger of the glycine release evoked by high KCl. The overflows evoked by 4-AP or, less so, by veratridine also involved InsP?R-mediated CICR and, in part, CICR mediated by ryanodine receptors. To conclude, ionic dysregulations typical of ischemia and epilepsy caused glycine release in cerebellum by multiple differential mechanisms that may represent potential therapeutic targets.  相似文献   

16.
This study examined the effects of dopamine D1 and D2 receptor agonists and antagonists on the spontaneous and calcium-dependent, K+-induced release of gamma-[3H]aminobutyric acid [( 3H]GABA) accumulated by slices of rat substantia nigra. SKF 38393 (D1 agonist) and dopamine (dual D1/D2 agonist) were without effect on [3H]GABA efflux by themselves (1-40 microM), or in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) (0.5 mM), but potentiated evoked release in the presence of forskolin (0.5 microM), an adenylate cyclase activator. These increases in release were prevented by the D1 antagonist SCH 23390 (0.5 microM), but not by the D2 antagonist metoclopramide (0.5 microM). Higher concentrations of forskolin (10-40 microM) augmented stimulus-evoked [3H]GABA release directly, whereas dibutyryl cyclic AMP (100-200 microM) depressed it. Apomorphine, noradrenaline, and 5-hydroxytryptamine (1-40 microM) had no effect. The D2 stimulants lisuride, RU 24213, LY 171555, and bromocriptine dose-dependently inhibited depolarisation-induced but not basal [3H]GABA outflow. These inhibitory responses were not modified by the additional presence of SKF 38393 (10 microM) or SCH 23390 (1 microM), or by injection of 6-hydroxydopamine into the medial forebrain bundle 42 days earlier, but were attenuated by metoclopramide (0.5 microM). Higher amounts (10 microM) of SCH 23390, metoclopramide, or other D2 antagonists (loxapine, haloperidol) reduced evoked GABA release by themselves, probably by nonspecific mechanisms. These results suggest D1 and D2 receptors may have opposing effects on nigral GABA output and could explain the variable effects of mixed D1/D2 dopaminomimetics in earlier release and electrophysiological experiments.  相似文献   

17.
In this study, we investigate the effects of chronic administration of (−)nicotine on the function of the NMDA-mediated modulation of [3H]dopamine (DA) release in rat prefrontal cortex (PFC) and nucleus accumbens (NAc). In the PFC synaptosomes NMDA in a concentration-dependent manner evoked [3H]DA release in rats chronically treated with vehicle (14 days) with an EC50 of 13.1 ± 2.0 μM. The NMDA-evoked overflow of the [3H]DA in PFC nerve endings of rats treated with (−)nicotine was significantly lower (−43%) than in vehicle treated rats. The EC50 was 9.0 ± 1.4 μM. Exposure of NAc synaptosomes of rats treated with vehicle to NMDA produced an increase in [3H]DA overflow with an EC50 of 14.5 ± 5.5 μM. This effect was significantly enhanced in chronically treated animals. The EC50 was 10.5 ± 0.5 μM. The K+-evoked release of [3H]DA was not modified by the (−)nicotine administration. Both the changes of the NMDA-evoked [3H]DA overflow in the NAc and PFC disappeared after 14 days withdrawal. The results show that chronic (−)nicotine differentially affects the NMDA-mediated [3H]DA release in the PFC and NAc of the rat.  相似文献   

18.
The actions of excitatory amino acids on the release of previously incorporated gamma-[3H]aminobutyric acid ([3H]GABA) were examined in purified (greater than 93%) striatal neurons derived from the fetal mouse brain and differentiated in primary culture. Glutamate, KCl, and veratrine evoked a dose-dependent, saturable, and reversible release of [3H]GABA from striatal neurons. Glutamate actions were not reduced in the absence of calcium, and were insensitive to tetrodotoxin. The dose-response relationships of excitatory amino acids demonstrated the following rank order of potency: glutamate greater than aspartate = N-methyl-D-aspartate greater than kainate much greater than quisqualate. Kainate, however, was the most effective agonist, evoking an eightfold increase over baseline levels of [3H]GABA release. Aspartate- and N-methyl-D-aspartate-evoked release was abolished in the presence of either 2-aminophosphonovaleric acid or gamma-D-glutamylglycine. Release due to glutamate and kainate was partially or ineffectively attenuated by these agents. Glutamate-, aspartate-, and N-methyl-D-aspartate-evoked GABA releases were augmented when calcium was omitted from the bathing medium and reduced when sodium was replaced with choline or lithium. Kainate-evoked release was unaffected when calcium was omitted, virtually unchanged when choline replaced sodium, and markedly potentiated when lithium was substituted for sodium. These findings suggest that at least two distinct receptor systems for excitatory amino acids mediate the evoked release of [3H]GABA from striatal neurons in primary culture. These two systems, aspartate/N-methyl-D-aspartate- and kainate-preferring, are distinguishable on the basis of their pharmacological and ionic properties.  相似文献   

19.
Rat brain synaptosomes were used to investigate the effect of okadaic acid, an inhibitor of protein phosphatase 1 and 2A, and cyclosporin A, an inhibitor of protein phosphatase 2B (calcineurin), on [(3)H]GABA release. Release of [(3)H]GABA was evoked by 4-aminopyridine in the presence of calcium and by alpha-latrotoxin in the presence and absence of calcium. Pretreatment of synaptosomes with 1 microM okadaic acid reduced [(3)H]GABA release evoked by 4-aminopyridine by about 40%. The effect of alpha-latrotoxin on [(3)H]GABA release was stimulated by okadaic acid. This stimulation was equal in both media. The stimulating effect of 4-aminopyridine and alpha-latrotoxin on [(3)H]GABA release was activated when synaptosomes were pretreated with cyclosporin A. Activation of 4-aminopyridine-evoked [(3)H]GABA release was observed at 1 microM cyclosporin A, but the toxin effect was enhanced only when concentration of cyclosporin A was increased to 10 microM. The level of cyclosporin A activation depended on alpha-latrotoxin concentrations used - a higher stimulating effect of cyclosporin A was observed with lower toxin concentration. These results suggest that in calcium medium 4-aminopyridine- and alpha-latrotoxin-evoked [(3)H]GABA release was realized by different mechanisms.  相似文献   

20.
The outflow of [3H]choline ([3H]Ch) evoked by electrical field stimulation and the efflux of D-[3H]Asp induced by 35 mM KCl and 1-10 microM ouabain were studied in human and guinea pig cortical slices, kept under identical experimental conditions. [3H]Ch outflow was significantly lower whereas D-[3H]Asp efflux was significantly higher in humans than in guinea pigs. This suggests a different proportion of the two neuronal systems in these two species. Blockade of muscarinic autoreceptors with atropine increased, whereas stimulation of alpha 2 receptors with norepinephrine (NE) reduced, the evoked [3H]Ch outflow to the same extent in human and guinea pig cortical slices. Conversely, NE did not affect ouabain-induced D-[3H]Asp efflux, suggesting that an alpha 2-mediated control is not operative in the glutamatergic cortical structures. Desmethylimipramine, 2-5 microM, was able to increase [3H]Ch outflow through atropine-like mechanisms only in the human. This drug at 20-50 microM inhibited [3H]Ch and D-[3H]Asp efflux in both species, through mechanisms unrelated to its monoamine reuptake blocking properties. Thus, similarities and differences can be detected between humans and guinea pigs with regard to (a) the relative potency of the cholinergic and acidic amino acidergic signals and (b) the modulation of neurotransmitter outflow by drugs acting on auto- and the heteroreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号