首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 720 毫秒
1.
Lamins, major components of the nuclear lamina, undergo phosphorylation at multiple residues during cell cycle progression, but their detailed phosphorylation kinetics remain largely undetermined. Here, we examined changes in the phosphorylation of major phosphorylation residues (Thr14, Ser17, Ser385, Ser387, and Ser401) of lamin B2 and the homologous residues of lamin B1, A/C during the cell cycle using novel antibodies to the site-specific phosphorylation. The phosphorylation levels of these residues independently changed during the cell cycle. Thr14 and Ser17 were phosphorylated during G2/M phase to anaphase/telophase. Ser385 was persistently phosphorylated during mitosis to G1 phase, whereas Ser387 was phosphorylated discontinuously in prophase and G1 phase. Ser401 phosphorylation was enhanced in the G1/S boundary. Immunoprecipitation using the phospho-antibodies suggested that metaphase-phosphorylation at Thr14, Ser17, and Ser385 of lamins occurred simultaneously, whereas G1-phase phosphorylation at Ser385 and Ser387 occurred in distinct pools or with different timings. Additionally, we showed that lamin B2 phosphorylated at Ser17, but not Ser385, Ser387 and Ser401, was exclusively non-ionic detergent soluble, depolymerized forms in growing cells, implicating specific involvement of Ser17 phosphorylation in lamin depolymerization and nuclear envelope breakdown. These results suggest that the phosphorylations at different residues of lamins might play specific roles throughout the cell cycle.  相似文献   

2.
Lamins are members of a multigene family of structural nuclear envelope (NE) proteins. Differentiated mammalian somatic cells express lamins A, C, B1, and B2. The composition and organization of the nuclear lamina of mammalian spermatogenic cells differ significantly from that of somatic cells as they express lamin B1 as well as two short germ line-specific isoforms, namely lamins B3 and C2. Here we describe in detail the expression pattern and localization of lamin B3 during mouse spermatogenesis. By combining RT-PCR, immunoblotting, and immunofluorescence microscopy, we show that lamin B3 is selectively expressed during spermiogenesis (i.e., postmeiotic stages of spermatogenesis). In round spermatids, lamin B3 is distributed in the nuclear periphery and, notably, also in the nucleoplasm. In the course of spermiogenesis, lamin B3 becomes redistributed as it concentrates progressively to the posterior pole of spermatid nuclei. Our results show that during mammalian spermiogenesis the nuclear lamina is composed of B-type isoforms only, namely the ubiquitous lamin B1 and the germline-specific lamin B3. Lamin B3 is the first example of a mammalian lamin that is selectively expressed during postmeiotic stages of spermatogenesis.  相似文献   

3.
4.
The human blood granulocyte (neutrophil) is adapted to find and destroy infectious agents. The nucleus of the human neutrophil has a segmented appearance, consisting of a linear or branched array of three or four lobes. Adequate levels of lamin B receptor (LBR) are necessary for differentiation of the lobulated nucleus. The levels of other components of the nuclear envelope may also be important for nuclear shape determination. In the present study, immunostaining and immunoblotting procedures explored the levels of various components of the nuclear envelope and heterochromatin, comparing freshly isolated human neutrophils with granulocytic forms of HL-60 cells, a tissue culture model system. In comparison to granulocytic HL-60 cells, blood neutrophil nuclear envelopes contain low-to-negligible amounts of LBR, lamins A/C, B1 and B2, LAP2β and emerin. Surprisingly, a “mitotic” chromosome marker, H3(S10)phos, is elevated in neutrophil nuclei, compared to granulocytic HL-60 cells. Furthermore, neutrophil nuclei appear to be more fragile to methanol fixation, than observed with granulocytic HL-60 cells. Thus, the human neutrophil nucleus appears to be highly specialized, possessing a paucity of nuclear envelope-stabilizing proteins. In consequence, the neutrophil nucleus appears to be very malleable, supporting rapid migration through tight tissue spaces.  相似文献   

5.
A-type lamins are localized at the nuclear envelope and in the nucleoplasm, and are implicated in human diseases called laminopathies. In a yeast two-hybrid screen with lamin C, we identified a novel widely expressed 171-kDa protein that we named Lamin companion 1 (Lco1). Three independent biochemical assays showed direct binding of Lco1 to the C-terminal tail of A-type lamins with an affinity of 700 nM. Lco1 also bound the lamin B1 tail with lower affinity (2 microM). Ectopic Lco1 was found primarily in the nucleoplasm and colocalized with endogenous intranuclear A-type lamins in HeLa cells. Overexpression of prelamin A caused redistribution of ectopic Lco1 to the nuclear rim together with ectopic lamin A, confirming association of Lco1 with lamin A in vivo. Whereas the major C-terminal lamin-binding fragment of Lco1 was cytoplasmic, the N-terminal Lco1 fragment localized in the nucleoplasm upon expression in cells. Furthermore, full-length Lco1 was nuclear in cells lacking A-type lamins, showing that A-type lamins are not required for nuclear targeting of Lco1. We conclude that Lco1 is a novel intranuclear lamin-binding protein. We hypothesize that Lco1 is involved in organizing the internal lamin network and potentially relevant as a laminopathy disease gene or modifier.  相似文献   

6.
Lamin C2 is a splice product of the mammalian lamin A gene and expressed in primary spermatocytes where it is distributed in the form of discontinuous plaques at the nuclear envelope. We have previously shown that the aminoterminal hexapetide GNAEGR of lamin C2 following the start methionine is essential for its association with the nuclear envelope and that the aminoterminal glycine of the hexapeptide is myristoylated. Here we have analyzed the ultrastructural changes induced in COS-7 and Xenopus A6 cells by overexpressing rat lamin C2 or a human lamin C mutant possessing the lamin C2-specific hexapeptide at its aminoterminus. Both lamins were targeted to the nuclear envelope of mammalian and amphibian cells and induced the formation of intranuclear membranes, whereas wild-type human lamin C and a lamin C2 mutant, that both lack this lipid moiety, did not. Our data indicate that the myristoyl group of lamin C2 has besides its demonstrated role in nuclear envelope association additional functions during spermatogenesis. Our present study complements previously published results where we have shown that the CxxM motif of lamins promotes nuclear membrane growth (Prüfert et al., 2004. J. Cell Sci. 117, 6105-6116).  相似文献   

7.
Although activated caspase 6 is capable of cleaving both A- and B-type lamins during apoptosis, the higher-order structure of the nuclear lamina may cause a differential breakdown of these two types of lamins. In order to obtain a better understanding of the dynamics and the consequences of the rapid, coordinated breakdown of the lamina complex, we applied the green fluorescent protein (GFP) technology in living cells, in which the fate of individual caspase cleavage fragments of A- and B-type lamins was examined. CHO-K1 cells were stably transfected with cDNA constructs encoding N-terminally GFP-labelled hybrids of lamin A, lamin Adelta10, lamin C or lamin B1. The course of the apoptotic process, induced by the kinase inhibitor staurosporine or by the proteasome inhibitor MG132, was monitored by digital imaging microscopy or confocal microscopy. Time-lapse recordings showed that parallel to DNA condensation N-terminally GFP-tagged A-type lamins became diffusely dispersed throughout the nucleoplasm and rapidly translocated to the cytoplasm. In contrast, the majority of GFP-lamin B1 signal remained localised at the nuclear periphery, even after extensive DNA condensation. Comparison of lamin B1-GFP signal with A-type lamin antibody staining in the same apoptotic cells confirmed the temporal differences between A- and B-type lamina dispersal. Immunoblotting revealed only a partial cleavage of A-type lamins and an almost complete cleavage of lamin B1 during apoptosis. In contrast to lamin B1 in normal cells, this cleaved lamin B1, which is apparently still associated with the nuclear membrane, can be completely extracted by methanol or ethanol. Fluorescence loss of intensity after photobleaching experiments showed that in apoptotic cells A-type lamin-GFP molecules diffuse almost freely in both nucleoplasm and cytoplasm, while the lamin B1-GFP fragments remain more stably associated with the nuclear membrane, which is confirmed by co-localisation immunofluorescence studies with a nucleoporin p62 antibody. Our results therefore clearly show a differential behaviour of A- and B-type lamins during apoptosis, suggesting not only distinct differences in the organisation of the lamina filaments, but also that caspase cleavage of only a small fraction of A-type lamins is needed for its complete disintegration.  相似文献   

8.
李岩  李建远 《生物磁学》2013,(3):561-563
核纤层普遍存在于高等真核细胞的细胞核中,向外与内层核膜上的蛋白结合,向内与染色质的特定区段结合,其主要成分是核纤层蛋白。核纤层蛋白主要参与细胞核的形状和大小的维持、核膜的组织、DNA的复制及有丝分裂。近年来的研究表明,核纤层蛋白与许多人类疾病密切相关。目前,核纤层蛋白在人类的各种组织和细胞中已有比较系统的研究,并且呈组织特异性及发育时序性表达。本文将就核纤层的最新研究进展做一综述。  相似文献   

9.
Mutations in the LMNA gene encoding nuclear lamins A and C are responsible for seven inherited disorders affecting specific tissues. We have analyzed skin fibroblasts from a patient with type 1B limb-girdle muscular dystrophy and from her deceased newborn grandchild carrying, respectively, a heterozygous (+/mut) and a homozygous (mut/mut) nonsense Y259X mutation. In fibroblasts(+/mut), the presence of only 50% lamins A and C promotes no detectable abnormality, whereas in fibroblasts(mut/mut) the complete absence of lamins A and C leads to abnormally shaped nuclei with lobules in which none of the analyzed nuclear proteins were detected, i.e., B-type lamins, emerin, nesprin-1alpha, LAP2beta, and Nup153. These lobules perturb cell division as fibroblast(mut/mut) cultures with large proportions of cells with dysmorphic nuclei grow more slowly than controls and the cell proliferation normalizes when the number of these abnormally shaped nuclei declines. In all fibroblasts(mut/mut), nesprin-1alpha-like emerin exhibited aberrant localization in the endoplasmic reticulum. Transfection of wild-type lamin A or C cDNAs restored the correct localization of both emerin and nesprin-1alpha. These data demonstrate that lamin C, like lamin A, interacts in vivo directly with nesprin-1alpha and with emerin and that lamin A or C is sufficient for the correct anchorage of emerin and nesprin-1alpha at the nuclear envelope in human cells.  相似文献   

10.
"Laminopathies": a wide spectrum of human diseases   总被引:9,自引:0,他引:9  
Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called "laminopathies." Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasia and Pelger-Huet anomaly. While mutations and clinical phenotypes of "laminopathies" have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new "laminopathies" and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies.  相似文献   

11.
The nuclear lamina is an important determinant of nuclear architecture. Mutations in A-type but not B-type lamins cause a range of human genetic disorders, including muscular dystrophy. Dominant mutations in nuclear lamin proteins have been shown to disrupt a preformed lamina structure in Xenopus egg extracts. Here, a series of deletion mutations in lamins A and B1 were evaluated for their ability to disrupt lamina structure in Chinese hamster ovary cells. Deletions of either the lamin A "head" domain or the C-terminal CaaX domain formed intranuclear aggregates and resulted in the disruption of endogenous lamins A/C but not lamins B1/B2. By contrast, "head-less" lamin B1 localized to the nuclear rim with no detectable effect on endogenous lamins, whereas lamin B1 CaaX domain deletions formed intranuclear aggregates, disrupting endogenous lamins A/C but not lamins B1/B2. Filter binding assays revealed that a head/CaaX domain lamin B1 mutant interacted much more strongly with lamins A/C than with lamins B1/B2. Regulated induction of this mutant in stable cell lines resulted in the rapid elimination of all detectable lamin A protein, whereas lamin C was trapped in a soluble form within the intranuclear aggregates. In contrast to results in Xenopus egg extracts, dominant negative lamin B1 (but not lamin A) mutants trapped replication proteins involved in both the initiation and elongation phases of replication but did not effect cellular growth rates or the assembly of active replication centers. We conclude that elimination of the CaaX domain in lamin B1 and elimination of either the CaaX or head domain in lamin A constitute dominant mutations that can disrupt A-type but not B-type lamins, highlighting important differences in the way that A- and B-type lamins are integrated into the lamina.  相似文献   

12.
Lamins are type V intermediate filament proteins that support nuclear membranes. They are divided into A-type lamins, which include lamin A and C, and B-type lamins, which include lamin B1 and B2. In the rat brain, lamin A and C are expressed in relatively equal amounts, while the expressions of lamin B1 and B2 vary depending on the cell type. Lamins play important roles in normal morphogenesis and function. In the nervous system, their abnormal expression causes several neurodegenerative diseases such as peripheral neuropathy, leukodystrophy and lissencephaly. The retina belongs to the central nervous system (CNS) and has widely been used as a source of CNS neurons. We investigated the expression patterns of lamin subtypes in the adult rat retina by immunohistochemistry and found that the staining patterns differed when compared with the brain. All retinal neurons expressed lamin B1 and B2 in relatively equal amounts. In addition, horizontal cells and a subpopulation of retinal ganglion cells expressed lamin A and C, while photoreceptor cells expressed neither lamin A nor C, and all other retinal neurons expressed lamin C only. This differential expression pattern of lamins in retinal neurons suggests that they may be involved in cellular differentiation and expression of cell-specific genes in individual retinal neurons.  相似文献   

13.
14.
The peripheral lamina of rat liver nuclei is characterized by the presence of three major polypeptides called lamins A, B, and C. Recent studies have identified in rat liver lamina two quantitatively minor polypeptides that have some of the biochemical and immunological properties of the lamins and were tentatively called minor lamin species. We have further characterized these minor lamin polypeptides. Both minor lamin species copurified quantitatively with the major lamins in dissociation-reassociation experiments and shared epitopes with all three major lamins as well as with intermediate filament proteins, including an epitope involved in coiled-coil interactions in lamina and filaments. Minor lamins generated partial peptide maps very similar to each other but completely different from those of lamins A, B, and C. The two minor lamin species could be cross-linked into heteropolymers containing a constant ratio of both polypeptides by exposure to O-phenanthroline - cupric ion complexes, although they did not appear to be cross-linked by disulfide bonds in the native envelope. Preliminary results suggest that the cross-linked minor lamins could be preferentially associated with lamin B. It therefore appears that in addition to the network of lamins A, B, and C, the peripheral lamina is characterized by the presence of two closely juxtaposed minor lamin polypeptides. The molecular interactions between these various polypeptides and their respective roles remain to be identified.  相似文献   

15.
Emery–Dreifuss muscular dystrophy (EDMD) is caused by mutations in the gene encoding the nuclear membrane protein emerin (X-linked EDMD) or in the gene encoding lamins A/C (autosomal dominant EDMD). One hypothesis explaining the disease suggests that the mutations lead to weakness of the nuclear lamina. To test this hypothesis we investigated lamin solubility and distribution in skin fibroblasts from X-EDMD patients. Using in situ extraction of cells and immunofluorescence microscopy or biochemical fractionation and immunoblotting, we found that all lamin subtypes displayed increased solubility properties in fibroblasts from X-EDMD patients compared to normal individuals. Lamin and emerin solubility was mildly increased in fibroblasts from an X-EDMD carrier. Biochemical fractionation and immunoblotting also indicated that lamin C but no other lamin became redistributed from the nuclear lamina to the nucleoplasm in X-EDMD fibroblasts. Indirect immunofluorescence and confocal microscopy studies using lamin A- and lamin C-specific antibodies confirmed that lamin C but not lamin A became redistributed to the nucleoplasm. Interestingly, the lamin A/C binding protein LAP2α was also mislocalized in X-EDMD fibroblasts.  相似文献   

16.
17.
Lamins A and C are nuclear intermediate filament proteins expressed in most differentiated somatic cells. Previous data suggested that prelamin A, the lamin A precursor, accumulates in some lipodystrophy syndromes caused by mutations in the lamin A/C gene, and binds and inactivates the sterol regulatory element binding protein 1 (SREBP1). Here we show that, in vitro, the tail regions of prelamin A, lamin A and lamin C bind a polypeptide of SREBP1. Such interactions also occur in HeLa cells, since expression of lamin tail regions impedes nucleolar accumulation of the SREBP1 polypeptide fused to a nucleolar localization signal sequence. In addition, the tail regions of A-type lamin variants that occur in Dunnigan-type familial partial lipodystrophy of (R482W) and Hutchison Gilford progeria syndrome (?607–656) bind to the SREBP1 polypeptide in vitro, and the corresponding FLAG-tagged full-length lamin variants co-immunoprecipitate the SREBP1 polypeptide in cells. Overexpression of wild-type A-type lamins and variants favors SREBP1 polypeptide localization at the intranuclear periphery, suggesting its sequestration. Our data support the hypothesis that variation of A-type lamin protein level and spatial organization, in particular due to disease-linked mutations, influences the sequestration of SREBP1 at the nuclear envelope and thus contributes to the regulation of SREBP1 function.  相似文献   

18.
19.
20.
The presence of lamin proteins in mouse spermatogenic cells has been examined by using an anti-lamin AC and an anti-lamin B antisera which recognize somatic lamins A and C, and somatic lamin B, respectively. Anti-lamin B binds to the nuclear periphery of all cell types examined, including Sertoli cells, primitive type A spermatogonia, preleptotene, leptotene, zygotene and pachytene spermatocytes, and round spermatids. In sperm nuclei, the antigenic determinants are localized to a narrow domain of the nucleus. However, after removing the perinuclear theca, anti-lamin B localizes to the entire nuclear periphery in a punctate pattern, suggesting that it is binding to determinants previously covered by the theca constituents. On immunoblots anti-lamin B reacts with a ~ 68 kD polypeptide in all germ cells and, to a lesser extent, with four additional polypeptides present only in meiotic and post-meiotic nuclear matrices. Anti-lamin AC also reacts with the perinuclear region of the somatic cells in the testes, in particular, those of the interstitium and also the Sertoli cells of the seminiferous epithelium. In contrast to anti-lamin B, anti-lamin AC does not bind to the germ cells at any stage of spermatogenesis. In addition, nuclear matrix proteins from isolated spermatogenic cells do not bind anti-lamin AC on immunoblots, suggesting the lack of reactivity is not due to the masking of any antigenic sites. These data demonstrate that germ cells contain lamin B throughout spermatogenesis, even during meiosis and spermiogenesis when the nuclear periphery lacks a distinct fibrous lamina. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号