首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Alpha/beta interferon (IFN-alpha/beta) protects the host from virus infection by inhibition of lytic virus replication in infected cells and modulation of the antiviral cell-mediated immune response. To determine whether IFN-alpha/beta also modulates the virus-host interaction during latent virus infection, we infected mice lacking the IFN-alpha/beta receptor (IFN-alpha/betaR(-/-)) and wild-type (wt; 129S2/SvPas) mice with murine gammaherpesvirus 68 (gammaHV68), a lymphotropic gamma-2-herpesvirus that establishes latent infection in B cells, macrophages, and dendritic cells. IFN-alpha/betaR(-/-) mice cleared low-dose intranasal gammaHV68 infection with wt kinetics and harbored essentially wt frequencies of latently infected cells in both peritoneum and spleen by 28 days postinfection. However, latent virus in peritoneal cells and splenocytes from IFN-alpha/betaR(-/-) mice reactivated ex vivo with >40-fold- and 5-fold-enhanced efficiency, respectively, compared to wt cells. Depletion of IFN-alpha/beta from wt mice during viral latency also significantly increased viral reactivation, demonstrating an antiviral function of IFN-alpha/beta during latency. Viral reactivation efficiency was temporally regulated in both wt and IFN-alpha/betaR(-/-) mice. The mechanism of IFN-alpha/betaR action was distinct from that of IFN-gammaR, since IFN-alpha/betaR(-/-) mice did not display persistent virus replication in vivo. Analysis of viral latent gene expression in vivo demonstrated specific upregulation of the latency-associated gene M2, which is required for efficient reactivation from latency, in IFN-alpha/betaR(-/-) splenocytes. These data demonstrate that an IFN-alpha/beta-induced pathway regulates gammaHV68 gene expression patterns during latent viral infection in vivo and that IFN-alpha/beta plays a critical role in inhibiting viral reactivation during latency.  相似文献   

10.
Regulation of HIV-1 latency by T-cell activation   总被引:1,自引:0,他引:1  
Williams SA  Greene WC 《Cytokine》2007,39(1):63-74
  相似文献   

11.
12.
13.
14.
CpG methylation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR) has been implicated in proviral latency, but there is presently little information available regarding the pattern of LTR methylation and its effect on viral gene expression. To gain insight into the mechanisms of HTLV-1 latency, we have studied methylation of individual CpG sites in the U3-R region of the integrated proviral LTR by using bisulfite genomic sequencing methods. Surprisingly, our results reveal selective hypermethylation of the 5' LTR and accompanying hypomethylation of the 3' LTR in both latently infected cell lines and adult T-cell leukemia (ATL) cells having a complete provirus. Moreover, we observed a lack of CpG methylation in the LTRs of 5'-defective proviruses recovered from ATL samples, which is consistent with the selective hypomethylation of the 3' LTR. Thus, the integrated HTLV-1 provirus in these carriers appears to be hypermethylated in the 5' LTR and hypomethylated in the 3' LTR. These results, together with the observation that proviral gene expression is reactivated by 5-azacytidine in latently infected cell lines, indicate that selective hypermethylation of the HTLV-1 5' LTR is common both in vivo and in vitro. Thus, hypermethylation of the 5' LTR appears to be an important mechanism by which HTLV-1 gene expression is repressed during viral latency.  相似文献   

15.
16.
17.
18.
19.
The ability of the human immunodeficiency virus type 1 (HIV-1) to establish latent infections serves as a major barrier for its cure. This process could occur when its host cells undergo apoptosis, but it is uncertain whether the components of the apoptotic pathways affect viral latency. Using the susceptible Jurkat cell line, we investigated the relationship of apoptosis-associated components with HIV-1 DNA levels using the sensitive real-time PCR assay. Here, we found that the expression of proapoptotic proteins, including Fas ligand (FasL), FADD, and p53, significantly decreased HIV-1 viral DNA in cells. In contrast, the expression of antiapoptotic molecules, such as FLIP, Bcl2, and XIAP, increased the levels of viral DNA. Furthermore, promoting cellular antiapoptotic state via the knockdown of Bax with siRNA and FADD with antisense mRNA or the treatment with the Caspase-3 inhibitor, Z-DEVD, also raised viral DNA. We also simultaneously measured viral RNA from supernatants of these cell cultures and found that HIV-1 latency is inversely proportional to viral replication. Furthermore, we demonstrated that HIV-1-infected cells that underwent the transient expression of FLIP- or XIAP-induced viral latency would then produce an increased level of viral RNA upon the reversal of these antiapoptotic effects via PMA treatment compared to LacZ control cells. Taken together, these data suggest that HIV-1 infection could be adapted to employ or even manipulate the cellular apoptotic pathway to its advantage: when the host cell remains in a pro-apoptotic state, HIV-1 favors active replication, while when the host cell prefers an anti-apoptotic state, the virus establishes viral latency and promotes latent reservoir seeding in a way which would enhance viral replication and cytopathogenesis when the cellular conditions shift to encourage the productive infection phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号