首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver tryptophan pyrrolase haem is maximally depleted at 30 min after administration of a 400 mg/kg dose of 2-allyl-2-isopropylacetamide. This depletion lasts for 24 h, by which time 5-aminoleevulinate synthase activity becomes maximally enhanced. 2. though the above maximum depletion of pyrrolase haem (at 0.5h) is also produced by a 100 mg/kg dose of the porphyrogen, this does not enhance synthase activity at 24 h. It and smaller doses, however, cause a smaller but earlier enhancement of synthase activity (maximum at 2 h) and produce a similarly short-lived deplation of pyrrolase haem. 3. The depletion of pyrrolase haem and the enhancement of synthase activity by the porphyrogen are inhibited by compound SKF 525-A and phenazine methosulphate, and are potentiated by nicotinamide but not by phenobarbitone. Phenazine methosulphate and nicotinamide also exert opposite effects on hexobarbital sleeping-time. 4. 2-Allyl-2-isopropylacetamde also the depletes pyrrolase haem in vitro. It does so in liver homogenates of control rats in the presence, and in those of phenobarbitone-treated rats in the absence of added NADPH. 5. A discussion of the present results in relation to previous work with other haemoproteins suggests that, whereas cytochrome P-450 (haem) is primarily involved in the production of the active (porphyrogenic) metabolite(s) of 2-allyl-2-isopropylacetamide, the haem pool used by tryptophan pyrrolase may play an important role in the effects of this compound on haem biosynthesis.  相似文献   

2.
The decreased ability of 2-allyl-2-isopropropylacetamide to enhance liver 5-amino-laevulinate synthase activity in the adrenalectomized rat is not associated with a marked depletion of the already low amount of tryptophan pyrrolase haem. Cortisol permits the porphyrogen markedly to enhance synthase activity by rendering it capable of causing a stronger depletion of pyrrolase haem, presumably as result of hormonal induction of pyrrolase synthesis.  相似文献   

3.
1. Drugs such as phenobarbitone and phenylbutazone, which increase the concentration of microsomal haem and cytochrome P-450, also increase the saturation of rat liver apo-(tryptophan pyrrolase) with its haem activator, as does the haem precursor 5-aminolaevulinate. 2. At 4h after the administration of the porphyrogens 2-allyl-2-isopropylacetamide, 3,5-diethoxycarbonyl-1,4-dihydrocollidine and griseofulvin, the total pyrrolase activity is increased whereas the haem saturation of the apoenzyme is decreased. This decreased saturation is prevented by pretreatment of the animals with the inhibitor of drug-metabolizing enzymes, SKF 525-A. 3. Pretreatment of rats with the above porphyrogens inhibits the rise in holo-(tryptophan pyrrolase) activity produced by subsequent administration of cortisol, tryptophan and 5-aminolaevulinate with two single exceptions, the possible reasons for which are discussed. 4. At 24h after the administration, in starved rats, of a single daily injection of the above porphyrogens for 1 or 2 days, the holoenzyme activity is significantly increased. 5. It is suggested that the saturation of rat liver apo-(tryptophan pyrrolase) with its haem activator can be modified by treatment known to cause destruction, inhibition of synthesis, increased utilization and enhanced synthesis of liver haem. The possible involvement of the latter phenomenon in the aetiology of mental disorders in some patients with porphyria is discussed.  相似文献   

4.
1. Administration of haematin to rats decreases 5-aminolaevulinate synthase activity in whole liver homogenates. 2. An inverse relationship between this decrease and the increase in saturation of apo-(tryptophan pyrrolase) with haem is observed during the initial phase of treatment with haematin. 3. Significant changes in both functions are caused by a 1 mg/kg dose of haematin, whereas the maximum effects are achieved by the 5 mg/kg dose. 4. Prevention by allopurinol of the conjugation of exogenously administered haematin with apo-(tryptophan pyrrolase) renders this haem available for further repression of 5 aminolaevulinate synthase. 5. The various aspects of the relationship between synthase activity and the haem saturation of tryptophan pyrrolase are discussed.  相似文献   

5.
1. The utilization of haem by rat liver apo-(tryptophan pyrrolase) under basal conditions and after enhancement of the enzyme activity by various mechanisms was studied under the influence of treatments affecting various aspects of liver haem metabolism. 2. These treatments were: benzoate and p-aminobenzoate as substrates of glycine acyltransferase, acetate as an inhibitor of 5-aminolaevulinate synthase activity, enhancement of 5-aminolaevulinate dehydratase by aluminium, destruction of haem and inhibition of ferrochelatase by porphyrogens, increased haem utilization by phenobarbitone and enhancement of haem oxygenase activity by metal cations. 3. The results show that the haem saturation of the apoenzyme is sensitive to all these treatments. 4. The possible usefulness of tryptophan pyrrolase in studying the regulation of liver haem is suggested.  相似文献   

6.
7.
1. The increase in the haem saturation of rat liver tryptophan pyrrolase caused by tryptophan administration was previously shown to be associated with a decrease in 5-aminolaevulinate synthase activity. 2. It is now shown that similar reciprocal effects are caused by palmitate and salicylate, both of which increase tryptophan availability to the liver by direct displacement of the serum-protein-bound amino acid. 3. The reciprocal effects on the former two parameters caused by endotoxin and morphine are associated with an increase in liver tryptophan concentration produced by a lipolysis-dependent, non-esterified fatty acid-mediated, displacement of the serum-protein-bound amino acid. 4. All these changes and those caused by another lipolytic agent, theophylline, are prevented by the β-adrenoceptor-blocking agent propranolol and by the opiate-receptor antagonist naloxone, whose anti-lipolytic nature is demonstrated. 5. High correlation coefficients have been obtained for one or more pairs of the following parameters: serum non-esterified fatty acid concentration, free serum tryptophan concentration, liver tryptophan concentration, liver 5-aminolaevulinate synthase activity, liver holo-(tryptophan pyrrolase) activity and the haem saturation of liver tryptophan pyrrolase. 6. It is suggested that liver tryptophan concentration may play an important role in the regulation of 5-aminolaevulinate synthase synthesis, and that the latter may be subject to control by changes in lipid metabolism and may be influenced by pharmacological agents that affect tryptophan disposition. 7. Preliminary evidence suggests that tryptophan may be bound in the liver and that such a possible binding may control its availability for its hepatic functions.  相似文献   

8.
1. The administration of haematin or 5-aminolaevulinate to rat enhances the activity of liver tryptophan pyrrolase; both endogenous and newly formed apoenzymes become strongly haem-saturated. Haem activation does not stabilize tryptophan pyrrolase. 2. Actinomycin D, puromycin or cycloheximide prevent the activation of the enzyme by 5-aminolaevulinate but not that by haematin. The latter is inhibited by haem-destroying porphyrogens. 3. The combined injection of either haematin or 5-aminolaevulinate with cortisol does not produce an additive effect, whereas potentation is observed when tryptophan is jointly given with either the cofactor or the haem precursor. 4. Further experiments on the substrate (tryptophan) mechanism of pyrrolase regulation are reported, and a comparison between this and the cofactor and hormonal mechanisms is made. 5. It is suggested that the substrate mechanism may also involve increased haem synthesis. 6. The role of tryptophan pyrrolase in the utilization of liver haem, and as a possible model for the exacerbation by drugs of human hepatic porphyrias, is discussed.  相似文献   

9.
The induction of 5-aminolaevulinate synthase and of cytochrome P-450 by short-chain aliphatic alcohols was compared in primary cultures of chicken-embryo hepatocytes. Isopropyl alcohol, isobutanol, pentan-1-ol and isopentanol alone caused up to a 4-fold increase in 5-aminolaevulinate synthase, whereas ethanol and propan-1-ol did not. Induction of the synthase by isopentanol was maximal at 8 h, and reached a plateau thereafter, whereas the activity induced by 2-propyl-2-isopropylacetamide continued to increase for 20 h. In the presence of 3,4,3',4'-tetrachlorobiphenyl, an inhibitor of haem synthesis at the uroporphyrinogen decarboxylase step, synergistic induction of 5-aminolaevulinate synthase was observed with all the alcohols except ethanol. Ethanol, but not isopentanol, decreased the extent of induction of 5-aminolaevulinate synthase by 2-propyl-2-isopropylacetamide and 3,4,3',4'-tetrachlorobiphenyl (50% decrease at 112 mM-ethanol). Total protein synthesis was not inhibited by ethanol in these cells. The composition of porphyrins was determined after treatment of cells with ethanol, isopentanol or 2-propyl-2-isopropylacetamide. Untreated cells, when incubated with 5-aminolaevulinate for 6 h, accumulated mainly protoporphyrin. However, when cells were pretreated with ethanol, isopentanol or 2-propyl-2-isopropylacetamide for 20 h, and 5-aminolaevulinate was added, 8- and 7-carboxyporphyrins increased, whereas protoporphyrin decreased. The dose responses for induction of either 5-aminolaevulinate synthase or cytochrome P-450 after a 20 h exposure to 3- to 5-carbon alcohols were identical. The results indicate that: simple alcohols can induce both enzymes; hydrophobicity increases their effectiveness; and induction of both enzymes are probably mediated by a common mechanism.  相似文献   

10.
The effects of inducers of cytochrome P-450 on haem biosynthesis from 5-aminolaevulinate were examined by using cultured chick-embryo hepatocytes. Cultures treated with either 2-propyl-2-isopropylacetamide or 3-methylcholanthrene contained increased amounts of cytochrome P-450 and haem. After treatment for 3 h with 5-amino[4-14C]laevulinate, the relative amounts of radioactivity accumulating as haem corresponded to the relative amounts of total cellular haem, but not to increases in the amounts of cytochrome P-450. Treatment with 5-aminolaevulinate did not alter cellular haem or cytochrome P-450 concentrations in either control or drug-treated cultures. The mechanism of the enhanced accumulation of radioactivity in haem was investigated. Although 2-propyl-2-isopropylacetamide enhanced the uptake of 5-aminolaevulinate and increased the cellular concentration of porphobilinogen 1.5-fold, these changes did not account for the increases in haem radioactivity. The inducing drugs had no effect on the rates of degradation of radioactive haem, but appeared to enhance conversion of protoporphyrin into haem. This latter effect was shown by: (1) a decreased accumulation of protoporphyrin from 5-aminolaevulinate in cells treated with inducers, and (2) complete prevention of this decrease if the iron chelator desferrioxamine was present. We conclude that inducers of cytochrome P-450 may increase haem synthesis not only by increasing activity of 5-aminolaevulinate synthase, but also by increasing conversion of protoporphyrin into haem.  相似文献   

11.
1. The importance of the early depletion of liver haem in the production of porphyria is discussed and further supporting evidence is presented from experiments with tryptophan pyrrolase, under conditions of exacerbation of experimental porphyria by therapeutic and other agents. 2. In addition to the early depletion of pyrrolase haem by porphyrogens, a further depletion is produced when rats are given a porphyrogen plus an analogue or one of 19 drugs known to exacerbate the human disease. 3. Non-exacerbators of human porphyrias do not cause a further early depletion of pyrrolase haem and it is suggested that this system may be used as a screening test for possible exacerbation of the disease by new and existing drugs. 4. A similar further early depletion of haem is produced by combined administration of lead acetate plus phenobarbitone, thus suggesting that the depletion is a more general phenomenon in experimental porphyria. 5. The relationship between tryptophan pyrrolase and the regulatory free haem is discussed. It is suggested that pyrrolase may play an important role in the regulation of haem biosynthesis.  相似文献   

12.
1. The effect of a single dose of 2-allyl-2-isopropylacetamide on the cytochrome P-450 concentration in rat liver microsomal fraction was studied. The drug caused a rapid loss of cytochrome P-450 followed by a gradual increase to above the normal concentration. 2. The loss of cytochrome P-450 was accompanied by a loss of microsomal haem and by a brown-green discoloration of the microsomal fraction suggesting that a change in the chemical constitution of the lost haem had taken place. Direct evidence for this was obtained by prelabelling the liver haems with radioactive 5-aminolaevulate: the drug caused a loss of radioactivity from the haem with an increase of radioactivity in a fraction containing certain un-identified green pigments. 3. Evidence was obtained by a dual-isotopic procedure that rapidly turning-over haem(s) may be preferentially affected. 4. The loss of cytochrome P-450 as well as the loss of microsomal haem and the discoloration of the microsomal fraction were more intense in animals pretreated with phenobarbitone and were much less evident when compound SKF 525-A (2-diethylaminoethyl 3,3-diphenylpropylacetate) was given before 2-allyl-2-isopropylacetamide, suggesting that the activity of the drug-metabolizing enzymes may be involved in these effects. 5. The relevance of the destruction of liver haem to the increased activity of 5-aminolaevulate synthetase caused by 2-allyl-2-isopropylacetamide is discussed.  相似文献   

13.
Degradation of intrinsic hepatic [(14)C]haem was analysed as (14)CO formation in living rats and in hepatic microsomal fractions prepared from these animals 16h after pulse-labelling with 5-amino[5-(14)C]laevulinic acid, a precursor that labels bridge carbons of haem in non-erythroid tissues. NADPH-catalysed peroxidation of microsomal lipids in vitro (measured as malondialdehyde) was accompanied by loss of cytochrome P-450 and microsome-associated [(14)C]haem (largely cytochrome P-450 haem), but little (14)CO formation. No additional (14)CO was formed when carbon tetrachloride and 2-allyl-2-isopropylacetamide were added to stimulate lipid peroxidation and increase loss of cytochrome P-450 [(14)C]haem. Because the latter effect persisted despite inhibition of lipid peroxidation with MnCl(2) or phenyl-t-butylnitrone(a spin-trapping agent for free radicals), it was concluded that carbon tetrachloride, as reported for 2-allyl-2-isopropylacetamide, may promote loss of cytochrome P-450 haem through a non-CO-forming mechanism independent of lipid peroxidation. By comparison with breakdown of intrinsic haem, catabolism of [(14)C]methaemalbumin by microsomal haem oxygenase in vitro produced equimolar quantities of (14)CO and bilirubin, although these catabolites reflected only 18% of the degraded [(14)C]haem. This value was increased to 100% by addition of MnCl(2), which suggests that lipid peroxidation may be involved in degradation of exogenous haem to products other than CO. Phenyl-t-butylnitrone completely blocked haem oxygenase activity, which suggests that hydroxy free radicals may represent a species of active oxygen used by this enzyme system. After administration of carbon tetrachloride or 2-allyl-2-isopropylacetamide to labelled rats, hepatic [(14)C]haem was decreased and haem oxygenase activity was unchanged; however, (14)CO excretion was either unchanged (carbon tetrachloride) or decreased (2-allyl-2-isopropylacetamide). These changes were unaffected by cycloheximide pretreatment. From the lack of parallel losses of cytochrome P-450 [(14)C]haem and (14)CO excretion, one may infer that an important fraction of hepatic [(14)C]haem in normal rats is degraded by endogenous pathways not involving CO. We conclude that carbon tetrachloride and 2-allyl-2-isopropylacetamide accelerate catabolism of cytochrome P-450 haem through mechanisms that do not yield CO as an end product, and that are insensitive to cycloheximide and independent of haem oxygenase activity.  相似文献   

14.
The activity of 5-aminolaevulinate synthase, the rate-limiting enzyme of haem biosynthesis, is differentially distributed in various regions of the rat brain. The cerebellum possessed the highest enzyme activity of the eight regions studied. The cerebral cortex and the midbrain also exhibited high 5-aminolaevulinate synthase activity; the septum, hypothalamus, thalamus, amygdala and the hippocampus possessed much lower enzyme activity. However, the total porphyrin and haem contents of the different brain segments did not vary greatly. Mn2+, when administered subcutaneously to rats, effectively inhibited the activity of 5-aminolaevulinate synthase in the cerebellum, midbrain and cerebral cortex; however, repeated injections of the metal ion neither decreased the haem and porphyrin contents of the brain nor induced haem oxygenase activity. Mn2+ was not an effective inhibitor of 5-aminolaevulinate synthase activity in vitro. On the other hand, studies carried out with the liver in vivo suggested that Mn2+ may alter the turnover rate of cellular haem and haemoproteins. In that event, it is likely that the inhibition of 5-aminolaevulinate synthase by Mn2+ was in part a result of the inhibition of protein synthesis by the metal ion. It is postulated that the haem and porphyrin contents of the brain are maintained at a steady-state level, due in part to the refractoriness to inducers of the regulatory mechanism for haem catabolic enzymes and in part to the ability of the organ to utilize haem precursors derived from extraneuronal sources.  相似文献   

15.
Cobalt inhibits liver haem synthesis in vivo by acting at least two different sites in the biosynthetic pathway: (1) synthesis of 5-aminolaevulinate and (2) conversion of 5-amino-laevulinate into haem. The first effect is largely, if not entirely, due to inhibition of the activity of 5-aminolaevulinate synthase, rather than to inhibition of the formation of the enzyme. The second effect results from diversion of 5-aminolaevulinate into an unidentified liver pool with solubility properties similar to those of cobalt protoporphyrin.  相似文献   

16.
1. Microsomal preparations undergoing lipid peroxidation produce CO and lose haem from cytochrome P-450. 2. The amount of CO produced does not correlate with the amount of haem lost and, after pre-labelling of microsomal haem in its bridges with 5-amino[5-14C]laevulinate, the radioactivity lost from haem is not recorved as CO. 3. Similarly, when pre-labelled microsomal haem is destroyed by the action of 2-allyl-2-isopropylacetamide, no radioactivity is recovered as CO. In clear contrast, on degradation of haem by the haem oxygenase system, CO is produced in an amount equimolar to the haem lost. 4. It is concluded that (a) the CO produced during lipid peroxidation originates from a source different from haem and (b) the degradations of haem caused by lipid peroxidation and 2-allyl-2-isopropylacetamide do not involve to any significant extent evolution of the methene-bridge carbon of haem as CO.  相似文献   

17.
Endotoxin was administered to rats at a dose shown previously to stimulate hepatic haem oxygenase activity and to block induction of delta-aminolaevulinate synthase, apparently by causing redistribution of haem from cytochrome P-450 to a regulatory haem pool in the liver. Within 5h of the administration of endotoxin (at a time when the effect of the compound on cytochrome P-450 is maximal) the relative saturation of tryptophan pyrrolase with intrinsic haem rose, from a basal value of 50% to 90%, indicating that 'free' haem had become available. Concurrently, the activity of delta-aminolaevulinate synthase was decreased to 25% of its basal value. Haem oxygenase reached peak activity 13h after endotoxin administration. These findings provide new evidence for the existence of an 'unassigned' hepatic haem fraction, which exchanges with cytochrome P-450 haem and regulates these three enzyme functions.  相似文献   

18.
1. Activity of 5-aminolaevulinate synthetase was measured in the midgut and other tissues of the last larval instar of the southern armyworm (Spodoptera eridania Cramer, formerly Prodenia eridania Cramer). 2. Optimum conditions for measuring the activity were established with respect to all variables involved and considerable differences from those reported for mammalian enzyme preparations were found. 3. Maximum activity (20 nmol/h per mg of protein) occurs 18-24 h after the fifth moult and thereafter decreases to trace amounts as the larvae age and approach pupation. 4. Synthetase activity was rapidly induced by oral administration (in the diet) of pentamethylbenzene, phenobarbital, diethyl 1,4-dihydro-2,4,6-trimethylpyridine-3, 5-dicarboxylate, and 2-allyl-2-isopropylacetamide. 5. Puromycin inhibited the induction of synthetase by pentamethylbenzene. 6. Induction of 5-aminolaevulinate synthetase correlated well with the induction of microsomal N-demethylation of p-chloro-N-methylaniline, except for phenobarbital, which induced the microsomal oxidase relatively more than the synthetase.  相似文献   

19.
The role of haem synthesis during induction of hepatic cytochrome P-450 haemoproteins was studied in chick embryo in ovo and in chick embryos hepatocytes cultured under chemically defined conditions. 1. Phenobarbitone caused a prompt increase in the activity of 5-aminolaevulinate synthase, the rate-limiting enzyme of haem biosynthesis, and in the concentration of cytochrome P-450. This induction response occurred without measurable initial destruction of the haem moiety of cytochrome P-450. 2. When intracellular haem availability was enhanced by exogenous haem or 5-aminolaevulinate, phenobarbitone-medicated induction of cytochrome P-450 was not affected in spite of the well known repression of 5-aminolaevulinate synthase by haem. These data are consistent with the concept that haem does not regulate the synthesis of cytochrome P-450 haemoproteins. 3. Acetate inhibited haem biosynthesis at the level of 5-aminolaevulinate formation. When intracellular haem availability was diminished by treatment with acetate, phenobarbitone-medicated induction was decreased. 4. This inhibitory effect of acetate on cytochrome P-450 induction was reversed by exogenous haem or its precursor 5-aminolaevulinate. These data suggest that inhibition of haem biosynthesis does not decrease synthesis of apo-cytochrome P-450. Moreover, they indicate that exogenous haem can be incorporated into newly formed aop-cytochrome P-450.  相似文献   

20.
1. When assayed in fresh homogenates, guinea-pig liver tryptophan pyrrolase exists only as holoenzyme. It does not respond to agents that activate or inhibit the rat liver enzyme in vitro. Only by aging (for 30min at 5 degrees C) does the guinea-pig enzyme develop a requirement for ascorbate. 2. The guinea-pig liver enzyme is activated by the administration of tryptophan but not cortisol, salicylate, ethanol or 5-aminolaevulinate. 3. The tryptophan enhancement of the guinea-pig liver pyrrolase activity is prevented by 0, 34 and 86% by pretreatment with actinomycin D, cycloheximide or allopurinol respectively. 4. The guinea-pig liver tryptophan pyrrolase is more sensitive to tryptophan administration than is the rat enzyme. On the other hand, the concentrations of tryptophan in sera and livers of guinea pigs are 45-52% less than those in rats. 5. It is suggested that tryptophan may regulate the activity of guinea-pig liver tryptophan pyrrolase by mobilizing a latent form of the enzyme whose primary function is the detoxication of its substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号