首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to establish which RNA polymerase catalyzes the synthesis of the low molecular weight RNA components A, C and D, Ama 1 cells (mutant Chinese hamster cells) were used in experiments with addition of alpha-amanitin. Ama 1 cells contain an altered RNA polymerase II which is 800 times more resistant towards inhibition by alpha-amanitin than the wild type enzyme. Alpha-amanitin (up to 200 microgram/ml) added to these cells does not affect the synthesis of the low molecular weight RNAs A, C and D. These data together with our previous data showing that alpha-amanitin (0.5 - 5.0 microgram/ml) preferentially inhibits the synthesis of A, C and D in normal cells indicate that RNA polymerase II catalyzes the synthesis of the low molecular weight RNA components A, C and D.  相似文献   

2.
3.
4.
5.
6.
RNA polymerase II from mouse sarcoma cells catalyzed the incorporation of UMP into an acid-insoluble fraction in the presence of tRNA. This reaction was not affected by DNase or actinomycin D but was inhibited by α-amanitin. This reaction was dependent on nucleoside triphosphate and manganese ions. RNA synthesized in the presence of tRNA could be digested with RNase A. These results suggest that the RNA synthesis by RNA polymerase II from mouse sarcoma is dependent on the presence of tRNA.  相似文献   

7.
8.
9.
10.
NS5B of the hepatitis C virus is an RNA template-dependent RNA polymerase and therefore the key player of the viral replicase complex. Using a highly purified enzyme expressed with recombinant baculoviruses in insect cells, we demonstrate a stimulation of RNA synthesis up to 2 orders of magnitude by high concentrations of GTP but not with ATP, CTP, UTP, GDP, or GMP. Enhancement of RNA synthesis was found with various heteropolymeric RNA templates, with poly(C)-oligo(G)12 but not with poly(A)-oligo(U)12. Several amino acid substitutions in polymerase motifs B, C, and D previously shown to be crucial for RdRp activity were tested for GTP stimulation of RNA synthesis. Most of these mutations, in particular those affecting the GDD motif (motif C) strongly reduced or completely abolished activation by GTP, suggesting that the same NTP-binding site is used for stimulation and RNA synthesis. Since GTP did not affect the overall RNA binding properties or the elongation rate, high concentrations of GTP appear to accelerate a rate-limiting step at the level of initiation of RNA synthesis. Finally, enhancement of RNA synthesis by high GTP concentrations was also found with NS5B of the pestivirus classical swine fever virus, but not with the 3D polymerase of poliovirus. Thus, stimulation of RdRp activity by GTP is evolutionarily conserved between the closely related hepaciviruses and pestiviruses but not between these and the more distantly related picornaviruses.  相似文献   

11.
12.
DNA-dependent RNA polymerase was analysed during the terminal differentiation stages of avian erythrocytes. It was found that the mature duck erythrocyte, although quiescent in RNA synthesis, contains clearly measurable quantities of RNA polymerase B (or II). Immature polychromatic erythrocytes, derived from anemic ducks and actively synthesizing hemoglobin mRNA, additionally contain significant amounts of RNA polymerase A (or I) and C (or III) previously not detected in these cells. These latter classes of enzymes, although present, are apparently not engaged in RNA synthesis in polychromatic erythrocytes.  相似文献   

13.
The interaction between antibodies directed against RNA polymerase I purified from Morris hepatoma 3924A and homologous RNA polymerase II was investigated. The activity of partially purified polymerase II was inhibited by the antibodies. In contrast, the reaction catalyzed by the purified enzyme was not affected. Partially purified polymerase II preparations contained a protein kinase activity. Sucrose gradient centrifugation in the presence of 0.3 M KCl resulted in complete separation of RNA polymerase II from protein kinase as well as in complete loss of sensitivity to the anti-RNA polymerase I antibodies. The protein kinase possessed reaction characteristics similar to those of the NII protein kinase (Rose, K.M., Bell, L.E., Siefken, D.A. and Jacob, S.T. (1981) J. Biol. Chem. 256, 7468–7477) which is associated with hepatoma RNA polymerase I (Rose, K.M., Stetler, D.A. and Jacob, S.T. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2833–2837). The activities of both kinases were inhibited to the same extent by anti-RNA polymerase I antibodies and polypeptides of Mr 42000 and 25000, present in both kinase preparations, formed immune complexes with the antisera. Readdition of protein kinase NII to purified polymerase II resulted in phosphorylation of the polymerase and a concomitant enhancement of RNA synthesis. After addition of the kinase, RNA polymerase II activity was again sensitive to anti-RNA polymerase I antibodies. Upon reacting with protein kinase NII, RNA polymerase II polypeptides could be detected in immune complexes with anti-RNA polymerase I antibodies. These data indicate that protein kinase NII is associated with RNA polymerase II during early stages of purification and is at least partially responsible for the immunological cross-reactivity of RNA polymerases I and II.  相似文献   

14.
RNA polymerase II polypeptides present in [35S]methionine-labeled Chinese hamster ovary (CHO) cell extracts have been quantitatively immunoprecipitated with an anti-calf thymus RNA polymerase II serum. Analyses of the immunoprecipitates on sodium dodecyl sulfate polyacrylamide gels indicated that the immunoprecipitated polymerase II of both wild type CHO cells and the alpha-amanitin-resistant mutant Ama1 had polypeptides of molecular weight 214,000, 140,000, 34,000, 25,000, 23,000, 20,500, and 16,500. In heterozygous alpha-amanitin-resistant/alpha-amanitin-sensitive hybrid CHO cells, growth in the presence of alpha-amanitin results in the inactivation of the alpha-amanitin-sensitive RNA polymerase II activity and a compensating increase in the activity of the alpha-amanitin-resistant enzyme. Determination of the rates of synthesis and degradation of RNA polymerase II polypeptides using [35S]methionine labeling and polymerase II immunoprecipitation demonstrated that this increase in activity of alpha-amanitin-resistant polymerase II resulted from a co-ordinate increase in the rate of synthesis of at least three polypeptides of RNA polymerase II. At the same time, there was an enhanced rate of degradation of the alpha-amanitin-inactivated RNA polymerase II polypeptides.  相似文献   

15.
16.
Multiple forms of DNA-dependent RNA polymerase were resolved by DEAE-Sephadex chromatography. In addition to RNA polymerases, an active poly(A) polymerase was also fractionated. RNA polymerases were examined for their capacity to synthesize poly(A). None of the freshly prepared enzymes could efficiently make poly(A) in presence or absence of exogenous primers. However, “aging” of polymerase II by simple incubation at 37°C resulted in the loss of RNA polymerizing activity with a corresponding increase in poly(A) synthesizing activity. Transformation of RNA polymerase to poly(A) polymerase resulted in reduced capacity to transcribe native DNA and altered chromatographic behavior. The results suggest that subunits of polymerase II obligatory to DNA-dependent RNA synthesis were degraded by “aging” and that a stable subunit of the RNA polymerase could preferentially make poly(A).  相似文献   

17.
18.
19.
In many eucaryotic systems protein synthesis is coupled to ribosomal RNA synthesis such that shut-down of the former causes inhibition of the latter. We have investigated this stringency phenomenon in HeLa cells. The protein synthesis inhibitors cycloheximide and puromycin cause inactivation of both processes but valine starvation totally inhibits only the processing of 45-S RNA. DNA-dependent RNA polymerases from A, B and C (or I, II and III respectively) were extracted, separated partially by DEAE-cellulose chromatography and their activity levels determined. These do not decrease significantly during inhibition of protein synthesis. To find out whether or not form A is bound to its template under these conditions, proteins were removed from chromatin with the detergent sarkosyl. This does not affect bound RNA polymerase. Inhibition of protein synthesis caused up to 50% reduction in endogenous alpha-amanitin-insensitive chromatin-RNA-synthesising activity. This reduced level of activity was not affected by sarkosyl treatment. Levels in normal cells were stimulated. This result indicates that the form A RNA polymerase is not bound to its template when protein synthesis is inhibited.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号