首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soluble (100,000 x g supernatant) methyltransferase catalyzing the transfer of the methyl group of S-adenosyl-L-methionine to catechols was present in cell extracts of Streptomyces griseus. A simple, general, and rapid catechol-based assay method was devised for enzyme purification and characterization. The enzyme was purified 141-fold by precipitation with ammonium sulfate and successive chromatography over columns of DEAE-cellulose, DEAE-Sepharose, and Sephacryl S-200. The purified cytoplasmic enzyme required 10 mM magnesium for maximal activity and was catalytically optimal at pH 7. 5 and 35 degrees C. The methyltransferase had an apparent molecular mass of 36 kDa for both the native and denatured protein, with a pI of 4.4. Novel N-terminal and internal amino acid sequences were determined as DFVLDNEGNPLENNGGYXYI and RPDFXLEPPYTGPXKARIIRYFY, respectively. For this enzyme, the K(m) for 6,7-dihydroxycoumarin was 500 +/- 21.5 microM, and that for S-adenosyl-L-methionine was 600 +/- 32.5 microM. Catechol, caffeic acid, and 4-nitrocatechol were methyltransferase substrates. Homocysteine was a competitive inhibitor of S-adenosyl-L-methionine, with a K(i) of 224 +/- 20.6 microM. Sinefungin and S-adenosylhomocysteine inhibited methylation, and the enzyme was inactivated by Hg(2+), p-chloromercuribenzoic acid, and N-ethylmaleimide.  相似文献   

2.
A novel O-methyltransferase catalyzing the transfer of the methyl group of S-adenosyl-L-methionine to the 8-hydroxyl group of flavonols was purified about 1200-fold from Lotus flower buds, by precipitation with ammonium sulfate and successive chromatography on columns of Sephadex G-100, S-adenosyl-L-homocysteine--Agarose, hydroxyapatite and Polybuffer ion exchanger. The enzyme exhibited strict specificity for position 8 of 8-hydroxyquercetin and 8-hydroxykaempferol, a pH optimum at 7.9, a pI value of 5.5, an Mr of 55 X 10(3) and required Mg2+ and SH groups for activity. The Km values for 8-hydroxykaempferol and S-adenosyl-L-methionine were 1.3 microM and 53 microM, respectively. The data obtained from substrate interaction and product inhibition studies are expected for a steady-state ordered bi-bi mechanism, with 8-hydroxyflavonol binding before S-adenosyl-L-methionine followed by the release of S-adenosyl-L-homocysteine and 8-methoxyflavonol. An alternative mechanism that may also fit the data is the mono-iso Theorell-Chance with the inverse binding sequence and an isomerization step of the free enzyme.  相似文献   

3.
Cytosolic protein-O-carboxylmethyltransferase was purified more than 4,000-fold in specific activity and membrane-associated protein-O-carboxylmethyltransferase carboxymethylase about 900-fold from chicken erythrocytes by use of a combination of affinity chromatography on immobilized S-adenosyl-L-homocysteine and gel filtration on Sephacryl S-200 (Pharmacia), together with 3-((3-cholamidopropyl)-dimethylammonio)-1-propane-sulfonate as a detergent to solubilize the membrane-associated enzyme. The two enzymes were characterized by examining the dependence of their activity on pH and on concentration of S-adenosyl-L-methionine using fetuin as an exogenous methyl-acceptor substrate, and were found to differ somewhat. The cytosolic enzyme had a pH optimum of 6.0 with an apparent Km value of 2.1 microM for S-adenosyl-L-methionine, whereas corresponding values for the membrane-associated enzyme were 6.5 and 0.71 microM. This report deals with the biochemical differences between purified cytosolic and membrane-associated protein carboxymethylase from the same cell source.  相似文献   

4.
S-Adenosyl-L-methionine:benzoic acid carboxyl methyltransferase (BAMT) catalyzes the transfer of the methyl group of S-adenosyl-L-methionine (SAM) to the carboxyl group of benzoic acid to make the volatile ester methyl benzoate, one of the most abundant scent compounds of snapdragon, Antirrhinum majus. The enzyme was purified from upper and lower petal lobes of 5- to 10-day-old snapdragon flowers using DE53 anion exchange, Phenyl-Sepharose 6FF, and Mono-Q chromatography. The purified protein has a pH optimum of 7.5 and is highly specific for benzoic acid, with no activity toward several other naturally occurring substrates such as salicylic acid, cinnamic acid, and their derivatives. The molecular mass values for native and denatured protein were 100 and 49 kDa, respectively, suggesting that the active enzyme is a homodimer. The addition of monovalent cations K+ and NH4+ stimulates BAMT activity by a factor of 2, whereas the addition of Fe2+ and Cu2+ has a strong inhibitory effect. Plant-purified BAMT has Km values of 28 microM and 1.1 mM for SAM and benzoic acid, respectively (87 microM and 1.6 mM, respectively, for plant BAMT expressed in Escherichia coli). Product inhibition studies showed competitive inhibition between SAM and S-adenosyl-L-homocysteine (SAH), with a Ki of 7 microM, and noncompetitive inhibition between benzoic acid and SAH, with a Ki of 14 microM.  相似文献   

5.
An isoflavone 5-O-methyltransferase was partially purified from the roots of yellow lupin (Lupinus luteus) by fractional precipitation with ammonium sulfate, followed by gel filtration and ion-exchange chromatography using a fast-protein liquid chromatography system. This enzyme, which was purified 810-fold, catalyzed position-specific methylation of the 5-hydroxyl group of a number of substituted isoflavones. The methyltransferase had a pH optimum of 7 in phosphate buffer, an apparent pI of 5.2, a molecular weight of 55,000, no requirement for Mg2+, and was inhibited by various SH-group reagents. Substrate interaction kinetics of the isoflavonoid substrate and S-adenosyl-L-methionine gave converging lines which were consistent with a sequential bireactant binding mechanism. Furthermore, product inhibition studies showed competitive inhibition between S-adenosyl-L-methionine and S-adenosyl-L-homocysteine and noncompetitive inhibition between the isoflavone and either S-adenosyl-L-homocysteine or the 5-O-methylisoflavone. The kinetic patterns obtained were consistent with an ordered bi bi mechanism, where S-adenosyl-L-methionine is the first substrate to bind to the enzyme and S-adenosyl-L-homocysteine is the final product released. The physiological role of this enzyme is discussed in relation to the biosynthesis of 5-O-methylisoflavones of this tissue.  相似文献   

6.
在创新霉素产生菌济南游动披线菌的无细胞提取物中检测到吲哚丙酮酸甲基转移酶活性,并进行了分离提取。该酶能利用S-腺苷-L-甲硫氨酸对吲哚丙酮酸进行甲基化,它可能作用于创新霉素中间体的甲基化。经过硫酸铵分部盐析和DEA F一纤维素柱层析,得到了纯化60倍的甲基转移酶,比活0.66mu/ms。酶的最适底物是吲哚丙酮酸,最适pH7.5,对于底物s一腺苷一L一甲硫氨酸和吲哚丙酮酸的米氏常数(KⅢ)分别是4×10-,mol/L和1.8×10-7moI/L。用Sephadcx G-150凝胶过滤测得分子量是55000士5000道尔顿。  相似文献   

7.
As part of a continuing study of the induction of alkaloid biosynthesis, we report the isolation to homogeneity and characterization of S-adenosyl-L-methionine:tetrahydroberberine-cis-N-mehtyltransferase from suspension cultures of Sanguinaria canadensis that were induced to produce alkaloids by hormone depletion. This enzyme catalyzes the stereospecific transfer of a methyl group from S-adenosyl-L-methionine to the tertiary nitrogen of the protoberberine alkaloid tetrahydroberberine (canadine). The enzyme was purified 315-fold by ammonium sulfate precipitation, gel permeation chromatography, affinity dye chromatography, and both diethylaminoethyl and Mono-Q ion-exchange chromatography. The enzyme was further purified to an optimum specific activity of 225 nkat/mg of protein (3500-fold) and electrophoretic homogeneity by native polyacrylamide gel electrophoresis (PAGE). In contrast to previous reports with partially purified enzyme, the isolated protein was found to have a pH optimum of 7.0, a temperature optimum of 25 to 30[deg]C, and an isoelectric point of 5.1. Furthermore, the molecular weight of the homogeneous protein was found to be 39,000 by sodium dodecyl sulfate-PAGE. The homogeneous enzyme preferred tetrahydroberberine over all other substrates tested, showing an apparent Km of 2.1 [mu]M, but also showed partial activity with tetrahydrojatrorrhizine and tetrahydropalmatrubine.  相似文献   

8.
An enzyme activity transferring methyl groups from S-adenosylmethionine to endogenous tRNA was detected in the cytosol of aggregative Dictyostelium discoideum amoebae. This enzyme was purified more than 1000-fold and was characterized as a tRNA (adenine-N1-)-methyltransferase. Kinetic analysis yielded a K0.5 for S-adenosylmethionine of 0.27 microM and competitive inhibition by S-adenosylhomocysteine showed an I0.5 of 0.26 microM. The tRNA methyltransferase activity was stimulated by monovalent cations and the pH optimum was 7.3. tRNAs isolated from D. discoideum as well as from other eucaryotic sources could be methylated only to a minor extent. In contrast, Escherichia coli tRNA accepted up to 0.6 mol methyl group/mol tRNA, suggesting that the target nucleotide is unmethylated in procaryotic tRNA, but is commonly methylated in tRNAs from eucaryotic organisms. The activity of the methyltransferase increased 4-6-fold during cell differentiation from the vegetative to the aggregative stage.  相似文献   

9.
Trigonelline (TRG), which act as a cell cycle regulator and a compatible solute in response to salinity and water-stress, is the N-methyl conjugate of nicotinic acid the formation of which is catalyzed by S-adenosyl-L-methionine nicotinic acid-N-methyltransferase. The enzyme was purified 2650-fold from soybean (Glycine max L.) leaves with a recovery of 4 %. The purification procedure included ammonium sulfate (45 – 60 %) precipitation, linear gradient DEAE-Sepharose chromatography, adenosine-agarose affinity chromatography, hydroxyapatite chromatography and gel filtration (Sephacryl-S-200). The purified enzyme preparation showed a major band with a molecular mass of 41.5 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis that is related to the enzyme activity. The native enzyme had a molecular mass of about 85 kDa as estimated by gel filtration. The Km values for S-adenosyl-L-methionine and nicotinic acid were 31 and 12.5 M, respectively. The purified enzyme showed optimum activity at pH 6.5 and temperature of 40 – 45 °C. High concentration of dithiothreitol (10 mM) and glycerol (20 %) stabilize the enzyme during purification and storage. Hg2+ strongly inhibits enzyme activity.  相似文献   

10.
S-Adenosyl-L-methionine:uroporphyrinogen III methyltransferase (SUMT), the enzyme of the cobalamin biosynthetic pathway which catalyzes C methylation of uroporphyrinogen III, was purified about 150-fold to homogeneity from extracts of a recombinant strain of Pseudomonas denitrificans derived from a cobalamin-overproducing strain by ammonium sulfate fractionation, anion-exchange chromatography, and hydroxyapatite chromatography. The purified protein has an isoelectric point of 6.4 and molecular weights of 56,500 as estimated by gel filtration and 30,000 as estimated by gel electrophoresis under denaturing conditions, suggesting that the active enzyme is a homodimer. It does not contain a chromophoric prosthetic group and does not seem to require metal ions or cofactors for activity. SUMT catalyzes the two successive C-2 and C-7 methylation reactions involved in the conversion of uroporphyrinogen III to precorrin-2 via the intermediate formation of precorrin-1. In vitro studies suggest that the intermediate monomethylated product (precorrin-1) is released from the protein and then added back to the enzyme for the second C-methylation reaction. The pH optimum was 7.7, the Km values for S-adenosyl-L-methionine and uroporphyrinogen III were 6.3 and 1.0 microM, respectively, and the turnover number was 38 h-1. The enzyme activity was shown to be completely insensitive to feedback inhibition by cobalamin and corrinoid intermediates tested at physiological concentration. At uroporphyrinogen III concentrations above 2 microM, SUMT exhibited a substrate inhibition phenomenon. It is suggested that this property might play a regulatory role in cobalamin biosynthesis in the cobalamin-overproducing strain studied.  相似文献   

11.
S-Adenosyl-L-methionine (SAM): coclaurine N-methyltransferase (CNMT), which catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the amino group of the tetrahydrobenzylisoquinoline alkaloid coclaurine. was purified 340-fold from Coptis japonica cells in 1% yield to give an almost homogeneous protein. The purified enzyme, which occurred as a homotetramer with a native Mr of 160 kDa (gel-filtration chromatography) and a subunit Mr of 45 kDa (SDS-polyacrylamide gel electrophoresis), had an optimum pH of 7.0 and a pI of 4.2. Whereas (R)-coclaurine was the best substrate for enzyme activity, Coptis CNMT had broad substrate specificity and no stereospecificity CNMT methylated norlaudanosoline, 6,7-dimethoxyl-1,2,3,4-tetrahydroisoquinoline and 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline. The enzyme did not require any metal ion. p-Chloromercuribenzoate and iodoacetamide did not inhibit CNMT activity, but the addition of Co2+, Cu2+ or Mn2+ at 5 mM severely inhibited such activity by 75, 47 and 57%, respectively. The substrate-saturation kinetics of CNMT for norreticuline and SAM were of the typical Michaelis-Menten-type with respective Km values of 0.38 and 0.65 mM.  相似文献   

12.
An O-methyltransferase catalyzing the transfer of the methyl group of S-adenosyl-L-methionine to the A-ring 7-hydroxyl group of vitexin 2"-O-rhamnoside has been isolated from oat primary leaves and purified 180-fold by protein fractionation with (NH4)2SO4 and chromatography on DEAE-cellulose and S-adenosyl-L-homocysteine-sepharose. Km values for S-adenosyl-L-methionine and the flavonoid substrate were 1.6 microM and 15 microM, respectively. The lack of methyltransfer to biosynthetic intermediates suggests that the reaction is the last step in the biosynthetic pathway to the oat flavonoid 7-O-methylvitexin 2"-O-rhamnoside. Based on results obtained from kinetic inhibition studies and affinity chromatography a mono-iso Theorell-Chance mechanism is proposed with the nucleotide substrate binding before the flavonoid.  相似文献   

13.
An NADPH-dependent 7 alpha-hydroxysteroid dehydrogenase acting on 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid was partially purified 160-fold with a yield of 13% from rat liver microsomes using DEAE-cellulose, hydroxyapatite and Affi-Gel Blue column chromatography. The specific activity of the purified enzyme was 91.3 nmol chenodeoxycholic acid formed/min per mg of protein. The reaction was reversible, and the optimum pH of the enzyme for the oxidation was about 8.5, whereas that for the reduction was about 5.0 A molecular weight of the enzyme was estimated to be about 130,000 by Superose 6TM gel filtration chromatography. The apparent Km value for 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid was 35.7 microM and that for NADPH was 90.9 microM. The preferred substrate for the enzyme was 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid rather than 3 alpha,12 alpha-dihydroxy-7-keto-5 beta-cholanoic acid, a 7-keto-bile acid analogue. The enzyme also preferred the unconjugated form to the conjugated forms. The enzyme activity was inhibited by p-chloromercuribenzoate; however, the inhibition was prevented by addition of reduced form of glutathione to the reaction mixture, indicating that the enzyme requires a sulfhydryl group for activity.  相似文献   

14.
An S-adenosyl-L-methionine:caffeoyl-CoA 3-O-methyltransferase was purified 82-fold from elicitor-induced parsley cell suspension cultures by ammonium sulfate fractionation, anionic exchange and hydrophobic interaction chromatographies, and chromatofocusing. The enzyme has an apparent pI of 5.7 and a molecular weight of approx 48,000 determined by gel filtration chromatography. Maximal activity was observed at pH 7.5 in 50 mM phosphate or Tris-HCl buffers and the additional presence of 0.5 M NaCl. The methyltransferase activity was dependent on Mg2+, whereas EDTA, Mn2+, and Ca2+ inhibited the reaction. The partially purified enzyme efficiently catalyzed the methylation of caffeoyl-CoA, but also accepted with low affinity various other caffeic esters as substrates. Dark-grown parsley cells contained considerable methyltransferase activity which was nevertheless increased approx threefold within 12 h following the addition of a crude fungal elicitor to the cell suspensions. We propose that the O-methyltransferase activity is an important component in the rapid resistance response of the cells, which depends on the formation of cell wall-bound ferulic polymers.  相似文献   

15.
Purification of protein methylase II from human erythrocytes   总被引:1,自引:0,他引:1  
Protein methylase II (S-adenosylmethionine:protein-carboxyl O-methyltransferase, EC. 2.1.1.24) which methyl esterifies free carboxyl groups of protein substrate using S-adenosyl-L-methionine as the methyl donor, has been purified from human erythrocytes approximately 13000-fold with a yield of 12%. The purified enzyme was over 95% pure as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A bulk of hemoglobin present in the erythrocyte lysate, which severely limited the use of affinity chromatography for purification, was effectively removed by ammonium sulfate precipitation and by the subsequent salt washing of the precipitates followed by molecular sieve chromatography on Sephadex G-75. This preparation can be further purified by affinity chromatography, in which S-adenosyl-L-homocysteine is covalently linked to Sepharose-4B, followed by Sephadex G-75 chromatography to yield an enzyme with an activity of 27000 pmol methyl group transferred/mg/min at 37 degrees C.  相似文献   

16.
F Goubet  D Mohnen 《Plant physiology》1999,121(1):281-290
The transfer of a methyl group from S-adenosyl-L-methionine onto the carboxyl group of alpha-1,4-linked-galactosyluronic acid residues in the pectic polysaccharide homogalacturonan (HGA) is catalyzed by an enzyme commonly referred to as pectin methyltransferase. A pectin methyltransferase from microsomal membranes of tobacco (Nicotiana tabacum) was previously characterized (F. Goubet, L.N. Council, D. Mohnen [1998] Plant Physiol 116: 337-347) and named HGA methyltransferase (HGA-MT). We report the solubilization of HGA-MT from tobacco membranes. Approximately 22% of the HGA-MT activity in total membranes was solubilized by 0.65% (w/v) 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid containing 1 mM dithioerythritol. The addition of phosphatidylcholine and the methyl acceptors HGA or pectin (30% degree of esterification) to solubilized enzyme increased HGA-MT activity to 35% of total membrane-bound HGA-MT activity. Solubilized HGA-MT has a pH optimum of 7.8, an apparent K(m) for S-adenosyl-L-methionine of 18 microM, and an apparent V(max) of 0. 121 pkat mg(-1) of protein. The apparent K(m) for HGA and for pectin is 0.1 to 0.2 mg mL(-1). Methylated product was solubilized with boiling water and ammonium oxalate, two conditions used to solubilize pectin from the cell wall. The release of 75% to 90% of the radioactivity from the product pellet by mild base treatment showed that the methyl group was incorporated as a methyl ester rather than a methyl ether. The fragmentation of at least 55% to 70% of the radiolabeled product by endopolygalacturonase, and the loss of radioactivity from the product by treatment with pectin methylesterase, demonstrated that the bulk of the methylated product produced by the solubilized enzyme was pectin.  相似文献   

17.
H W Lee  S Kim  W K Paik 《Biochemistry》1977,16(1):78-85
Protein methylase I (S-adenosylmethionine: protein-arginine methyltransferase, EC 2.1.1.23) has been purified from calf brain approximately 120-fold with a 14% yield. The final preparation is completely free of any other protein-specific methyltransferases and endogenous substrate protein. The enzyme has an optimum pH of 7.2 and pI value of 5.1. The Km values for S-adenosyl-L-methionine, histone H4, and an ancephalitogenic basic protein are 7.6 X 10(-6), 2.5 X 10(-5), and 7.1 X 10(-5) M, respectively, and the Ki value for S-adenosyl-L-homocysteine is 2.62 X 10(-6) M. The enzyme is highly specific for the arginine residues of protein, and the end products after hydrolysis of the methylated protein are NG,NG-di(asymmetric), NG,N'G-di(symmetric), and NG-monomethylarginine. The ratio of [14C]methyl incorporation into these derivatives by enzyme preparation at varying stages of purification remains unchanged at 40:5:55, strongly indicating that a single enzyme is involved in the synthesis of the three arginine derivatives. The kinetic mechanism of the protein methylase I reaction was studied with the purified enzyme. Initial velocity patterns converging at a point on the extended axis of abscissas were obtained with either histone H4 or S-adenosyl-L-methionine as the varied substrate. Product inhibition by S-adenosyl-L-homocysteine with S-adenosyl-L-methionine as the varied substrate was competitive regardless of whether or not the enzyme was saturated with histone H4. On the other hand, when histone H4 is the variable substrate, noncompetitive inhibition was obtained with S-adenosyl-L-homocysteine under conditions where the enzyme is not saturated with the other substrate, S-adenosyl-L-methionine. These results suggest that the mechanism of the protein methylase I reaction is a Sequential Ordered Bi Bi mechanism with S-adenosyl-L-methionine as the first substrate, histone H4 as the second substrate, methylated histone H4 as the first product, and S-adenosyl-L-homocysteine as the second product released.  相似文献   

18.
Guanidoacetate methyltransferase has been purified about 140-fold from pig liver. Polyacrylamide gel electrophoresis of the purified enzyme showed four protein bands, each of which is associated with guanidoacetate methyltransferase activity. During gel electrophoresis at pH 3 in 8 M urea, guanidoacetate methyltransferase migrated as a single component. The molecular weight of the purified guanidoacetate methyltransferase was estimated to be 31,000 by sodium dodecyl sulfate-gel electrophoresis, which also showed only one protein component with guanidoacetate methyltransferase activity. This molecular weight is in agreement with that estimated by Sephadex G-75 chromatography. Guanidoacetate methyltransferase is inhibited by adenosylhomocysteine, 3-deazaadenosylhomocysteine, and sinefungin with Ki values of 16 microM, 39 microM, and 18 microM, respectively.  相似文献   

19.
Chlorogenic acid oxidase was extensively purified to homogeneity from apple flesh (Malus pumila cv. Fuji). The enzyme was purified 470-fold, with a total yield close to 70% from the plastid fraction by ammonium sulfate precipitation, gel filtration and ion-exchange chromatography. The molecular weight was determined to be 65,000 by both SDS-PAGE and gel filtration chromatography. The optimum pH for the enzyme activity was around 4.0, and the enzyme was stable in the range of pH 6-8. The pI obtained by isoelectrofocusing was 5.4, and the N-terminal amino acid sequence was N-Asp-Pro-Leu-Ala-Pro-Pro-. The reaction rate of the purified enzyme was much larger for chlorogenic acid than for other o-diphenols such as (+)-catechin, (-)-epicatechin and 4-methylcatechol, and the enzyme lacked both cresolase activity and p-diphenol oxidase activity. The Km value for the enzyme was found to be 122 microM toward chlorogenic acid. The purified enzyme had far less thermal stability than the enzyme of the plastid fraction. Diethyl-dithiocarbamate, sodium azide, o-phenanthroline and sodium fluoride markedly inhibited the enzyme activity.  相似文献   

20.
1. An enzyme catalysing the methylation of caffeic acid to ferulic acid, using S-adenosyl-L-methionine as methyl donor, has been extracted from leaves of spinach beet and purified 75-fold to obtain a stable preparation. 2. The enzyme showed optimum activity at pH 6.5, and did not require the addition of Mg2+ for maximum activity. 3. It was most active with caffeic acid, but showed some activity with catechol, protocatechuic acid and 3,4-dihydroxybenzaldehyde. The Km for caffeic acid was 68 muM. 4. 4. The Km for S-adenosyl-L-methionine was 12.5 muM. S-Adenosyl-L-homocystein (Ki = 4.4 muM) was a competitive inhibitor of S-adenosyl-L-methionine. 5. The synthesis of S-adenosyl-L-homocysteine from adenosine and L-homocysteine and its consequent effect on caffeic acid methylation were demonstrated with a partially-purified preparation from spinach-beet leaves, which possessed both S-adenosyl-L-homocysteine hydrolase (EC 3.3.1.1) and adenosine nucleosidase (EC 3.2.2.7) activities. This preparation was also able to catalyse the rapid breakdown of S-adenosyl-L-homocysteine to adenosine and adenine; the possible significance of this reaction in relieving the inhibition of caffeic acid methylation by S-adenosyl-L-homocystein is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号