首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of high molecular weight sulfated oligosaccharide chains in mucins purified from the sputum of a patient with cystic fibrosis and blood group H determinant were established. Reduced oligosaccharides released by treatment with alkaline borohydride were separated by ion exchange chromatography on DEAE-Agarose and a fraction containing multisulfated chains was further purified by lectin affinity chromatography to completely remove small amounts of sialylated chains. A major sulfated oligosaccharide fraction containing chains with an average of 160 to 200 sugar residues was isolated by gel filtration on BioGel P-10 columns and individual subfractions were characterized by methylation analysis, periodate oxidation and sequential glycosidase digestion before and after desulfation. Carbohydrate analysis yielded Fuc, Gal and GldNAc in a ratio of 1:2:2.1 and only one galactosaminitol residue for every 160-to 200 sugar residues. The average molecular weight of oligosaccharide chains in these fractions was between 27,000 and 40,000 daltons. Structural analysis showed that these high molecular weight chains contained varying amounts of the repeating unit shown in the following oligosaccharide. Only one in about every 10 repeating units contained sulfate esters.Several shorter chains which contain 2 to 3 sulfate esters were also isolated from this multisulfated oligosaccharide fraction. The structures proposed for these oligosaccharides indicate that they are lower molecular weight chains with the same general structure as those found in the high molecular weight sulfated oligosaccharides. Taken collectively, the results of these studies show that a major sulfated oligosaccharide fraction in resporatory mucin purified from the mucus of patients with cystic fibrosis contains high molecular weight branched chains that consist of a repeating oligosaccharide sequence with sulfate linked to the 6 positions of galactose and possibly GlcNAc residues in the side chains.  相似文献   

2.
We previously demonstrated that high-performance liquid chromatography with electrospray ionization mass spectrometry (LC/MS) equipped with a graphitized carbon column (GCC) is useful for the structural analysis of carbohydrates in glycoproteins. Using LC/MS with GCC, sulfated N-linked oligosaccharides were found in erythropoietin (EPO) expressed in baby hamster kidney cells. Sulfation occurs in a part of the N-linked oligosaccharides in the EPO. Sulfated monosaccharide residue in the sulfated N-linked oligosaccharide was determined by exoglycosidase digestion followed by sugar mapping by LC/MS. The linkage position and branch-location of the sulfate group in the tetraantennary oligosaccharide were analyzed by (1)H-nuclear magnetic resonance. It was suggested that sulfation occurs on the C-6 position of GlcNAc located in the GlcNAcbeta1-4Manalpha1-3 branch.  相似文献   

3.
The structures of sulfated N-linked oligosaccharides have been reported for a few specific proteins. We recently demonstrated that such oligosaccharides occur in many different types of tissue culture cell lines (Freeze, H. H., and Varki, A. (1986) Biochem. Biophys. Res. Commun. 140, 967-973). Here we report improved methods to metabolically label cell lines with 35SO4 and to release sulfated N-linked oligosaccharides with peptide:N-glycosidase F as well as the partial structure of some of these novel oligosaccharides. The released 35SO4-labeled chains from Chinese hamster ovary (CHO) cells and bovine pulmonary artery endothelial cells (CPAE) were characterized by gel filtration, anion exchange and lectin affinity chromatography, and various enzymatic and chemical treatments. Each cell line contains a class of sulfated oligosaccharide chains bearing from two to six negative charges in varying combinations of O-sulfate esters and sialic acids. These molecules represent a significant proportion of both the total 35SO4 label and the total anionic N-linked oligosaccharides. They are also relatively enriched in a CHO mutant that is deficient in glycosaminoglycan chain synthesis. Lectin affinity chromatography of such molecules from CPAE cells indicates that the majority are sialylated multiantennary complex-type chains. The sulfate esters are exclusively of the primary type. Sequential exoglycosidase digestions, including beta-hexosaminidase A treatment at low pH, demonstrate that at least one-third of these sulfate esters are found in the following structure, (formula; see text) where R is the remainder of the underlying oligosaccharide, and SA is sialic acid. In addition to these molecules, a more highly charged group of sulfated N-linked oligosaccharides sharing structural features with glycosaminoglycans was found in CPAE cells, but not in CHO cells. These are described in the following paper (Sundblad, G., Holojda, S., Roux, L., Varki, A., and Freeze, H. H. (1988) J. Biol. Chem. 263, 8890-8896).  相似文献   

4.
The N-linked oligosaccharides found on the lysosomal enzymes from Dictyostelium discoideum are highly sulfated and contain methylphosphomannosyl residues (Gabel, C. A., Costello, C. E., Reinhold, V. N., Kurtz, L., and Kornfeld, S. (1984) J. Biol. Chem. 259, 13762-13769). Here we report studies done on the structure of N-linked oligosaccharides found on proteins secreted during growth, a major portion of which are lysosomal enzymes. Cells were metabolically labeled with [2-3H]Man and 35SO4 and a portion of the oligosaccharides were released by a sequential digestion with endoglycosidase H followed by endoglycosidase/peptide N-glycosidase F preparations. The oligosaccharides were separated by anion exchange high performance liquid chromatography into fractions containing from one up to six negative charges. Some of the oligosaccharides contained only sulfate esters or phosphodiesters, but most contained both. Less than 2% of the oligosaccharides contained a phosphomonoester or an acid-sensitive phosphodiester typical of the mammalian lysosomal enzymes. A combination of acid and base hydrolysis suggested that most of the sulfate esters were linked to primary hydroxyl groups. The presence of Man-6-SO4 was demonstrated by the appearance of 3,6-anhydromannose in acid hydrolysates of base-treated, reduced oligosaccharides. These residues were not detected in acid hydrolysates without prior base treatment or in oligosaccharides first treated by solvolysis to remove sulfate esters. Based on high performance liquid chromatography quantitation of percentage of 3H label found in 3,6-anhydromannose, it is likely that Man-6-SO4 accounts for the majority of the sulfated sugars in the oligosaccharides released from the secreted glycoproteins.  相似文献   

5.
MDCK (Madin-Darby canine kidney) cells infected with the NWS strain of influenza virus incorporate 35SO4 into complex types of oligosaccharides of the N-linked glycoproteins. On the other hand, when these virus-infected MDCK cells are incubated in the presence of swainsonine, an inhibitor of the processing mannosidase II, approximately 40-80% of the total [35S]glycopeptides were of the hybrid types of structures. Thus, these sulfated, hybrid types of glycopeptides were completely susceptible to digestion by endoglucosaminidase H, whereas the sulfated glycopeptides from infected cells incubated without swainsonine were completely resistant to endo-beta-N-acetylglucosaminidase H. When virus-infected MDCK cells were incubated in the presence of castanospermine, an inhibitor of the processing glucosidase I, the N-linked glycopeptides contained mostly oligosaccharide chains of the Glc3Man7-9GlcNAc2 types of structures, and these oligosaccharides were devoid of sulfate. Structural analysis of these abnormally processed oligosaccharides produced in the presence of swainsonine or castanospermine indicated that they differed principally in the processing of one oligosaccharide branch as indicated by the structures shown below. They also differed in that only the swainsonine-induced structures were sulfated. These data indicate that removal of glucose units and perhaps other processing steps are necessary before sulfate residues can be added. (Formula: see text).  相似文献   

6.
1. Complex carbohydrate fractions were extracted successively with 40% aqueous EDTA (pH 7.4) and 6M urea (PH 7.8) FROM ACETONE-DRIED bone powder of rabbit femur. 2. The carbohydrate fraction extracted with EDTA (E=Fr) was separated into five fractions,D1approximatelyD5 by DEAE-Dephadex A-50 column chromatography. Chemical and infrared spectral analyses, and enzymatic digestion indicate that D2 contained lessacidic glycoprotein, D3 contained sialoglycoprotein, D4 contained a low sulfated proteokeratan sulfate-like substance, and d5 contained glycoprotein-bound chondroitin sulfate A plus protein-free chondroitin sulfate A. 3. Two fractions, HU-D1 and HU-D2, were isolated from the carbohydrate fraction extracted with urea (HU-Fr) by successive digestion with collagenase [EC 3.4.99.5] and pronase, followed by gel-filtration on Sephadex G-100 and then DEAE-Sephadex A-50 column chromatography. HU-D1 and HU-D2 contained a low sulfated keratan sulfate-like substance linked to peptide and glycopeptide-bound chondroitin sulfated keratan sulfate-like substance linked to peptide and glycopeptide-bound chondroitin sulfate A, respectively. 4. The present findings indicate that rabbit femur contains low sulfated proteokeratan sulfate-like substances with varying sulfate contents and glycoprotein-bound chondroitin sulfate A as the principal glycosaminoglycans. The macromolecules bound more tightly to the tissue contain much more sulfate than the corresponding loosely bound ones.  相似文献   

7.
The structure of five sulfated oligosaccharide units of highly anionic tracheobronchial mucous glycoproteins, isolated from a cystic fibrosis patient's sputum, were established. Reduced oligosaccharides (84%) were released under alkaline borohydride conditions, and the acidic oligosaccharides (63%) were isolated by Dowex 1-X2 chromatography. Following the removal of acidic oligosaccharides possessing N-acetylneuraminic acid and L-fucose by lectin affinity chromatography a heterogeneous mixture of sulfated oligosaccharides was obtained. From this fraction, five short chain monosulfated oligosaccharides (S-I to S-V) were purified by sequential separation by SynChroprep AX300 anion exchange high pressure liquid chromatography, gel filtration on Bio-Gel P-2, and high voltage paper electrophoresis. Based on the results of carbohydrate composition, sequential exoglycosidase degradation, permethylation analysis, lectin affinity chromatography, and periodate oxidation, the following structures (where GalNAcol is N-acetylgalactosaminitol) were proposed for these oligosaccharides. (formula; see text)  相似文献   

8.
Calf thyroid slices were found to incorporate [35S] sulfate into two major plasma membrane glycoproteins, which have been previously designated as GP-1 and GP-3 (Okada, Y., and Spiro, R. G. (1980) J. Biol. Chem. 255, 8865-8872). The 35S-glycoproteins were identified on the basis of their characteristic solubility and electrophoretic migration as well as their affinity for Bandeiraea simplicifolia I lectin. After pronase digestion of these glycoproteins, the 35S-label remained associated with the glycopeptides primarily on asparagine-linked carbohydrate units which were released by hydrazinolysis. Examination of the reduced radio-labeled products obtained by nitrous acid cleavage of the hydrazine-liberated oligosaccharides indicated that sulfate esters of N-acetylglucosamine occurred at three locations on the carbohydrate units; two 35S-monosaccharides (2,5-anhydromannitol 4- and 6-sulfate) and one 35S-disaccharide (beta-Gal(1----4)-2,5-anhydromannitol(6-SO4] were formed. The disaccharide is believed to be derived from an internal sulfated N-acetyllactosamine sequence while the monosaccharides most likely originate from 4- and 6-sulfated N-acetylglucosamine residues situated, respectively, at the non-reducing and reducing termini of the oligosaccharide units. Quantitation by NaB[3H]4 reduction of the sulfated saccharides obtained by nitrous acid treatment of hydrazine-released oligosaccharides from unlabeled GP-3 indicated that about 20% of the asparagine-linked carbohydrate units contain sulfate substituents.  相似文献   

9.
This report describes the structural analyses of the O- and N-linked oligosaccharides contained in glycoproteins synthesized by 48-hr-old Schistosoma mansoni schistosomula. Schistosomula were prepared by mechanical transformation of cercariae and were then incubated in media containing either [2-3H] mannose, [6-3H]glucosamine, or [6-3H]galactose to metabolically radiolabel the oligosaccharide moieties of newly synthesized glycoproteins. Analysis by SDS-polyacrylamide gel electrophoresis and fluorography demonstrated that many glycoproteins were metabolically radiolabeled with the radioactive mannose and glucosamine precursors, whereas few glycoproteins were labeled by the radioactive galactose precursor. Glycopeptide were prepared from the radiolabeled glycoproteins by digestion with pronase and fractionated by chromatography on columns of concanavalin A-Sepharose and pea lectin-agarose. The structures of the oligosaccharide chains in the glycopeptides were analyzed by a variety of techniques. The major O-linked sugars were not bound by concanavalin A-Sepharose and consisted of simple O-linked monosaccharides that were terminal O-linked N-acetylgalactosamine, the minor type, and terminal O-linked N-acetylglucosamine, the major type. The N-linked oligosaccharides were found to consist of high mannose- and complex-type chains. The high mannose-type N-linked chains, which were bound with high affinity by concanavalin A-Sepharose, ranged in size from Man6GlcNAc2 to Man9GlcNAc2. The complex-type chains contained mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. No sialic acid was present in any metabolically radiolabeled glycoproteins from schistosomula.  相似文献   

10.
The mucin glycoproteins in tracheal mucus of patients with cystic fibrosis is more highly sulfated than the corresponding secretions from healthy individuals [16]. In order to further characterize these differences in sulfation and possibly also glycosylation patterns, we compared the structures of sulfated mucin oligosaccharides synthesized by continuously cultured human tracheal cells transformed by siman virus 40. The synthesis of highly sulfated oligosaccharide chains in mucins secreted by normal human epithelial and submucosal cell lines were compared with mucins formed by cystic fibrosis tracheal epithelial and submucosal cell lines.The epithelial cell lines from cystic fibrosis trachea showed a higher rate of sulfate uptake and a significantly higher rate of synthesis and sulfation of high molecular weight chains. Mucins synthesized by each cell line in the presence of 35SO4 were isolated and oligosaccharide chains were released by beta-elimination and separated by ion exchange chromatography and gel filtration. The sulfated high molecular weight chains synthesized by the cystic fibrosis cell lines were characterized by methylation analysis and sequential glycosidase digestion before and after desulfation. Carbohydrate analysis yielded Fuc, Gal and GlcNAc in a ratio of 1:2:2.2 and only one galactosaminitol residue for about every 150-200 sugar residues present. The average molecular size of oligosaccharide chains in these fractions was between 30,000-40,000 daltons.These studies show that increased sulfation of oligosaccharides in mucins synthesized by cells from cystic fibrosis trachea is accompanied by a significant increase in the extension of a basic branched structure present in many of the lower molecular weight oligosaccharides.  相似文献   

11.
Synthesis and release of sulfated glycoproteins by cultured glial cells   总被引:1,自引:0,他引:1  
Both primary cultured glial cells and cloned (C-6) glioma cells have been shown to synthesize and release sulfated glycoproteins. It was found that N-linked tri- and tetra-antennary glycopeptides recovered from the glycoproteins contained most of the (35S) sulfate label. C-6 glial cells showed a higher rate of oligosaccharide sulfation than the primary glial cultures. Both cell types exhibited a high rate of release of sulfated glycoproteins into the medium. The ratio of 35S/3H incorporated from (35S) sulfate and (3H) glucosamine in the released material was higher than that of the glycoproteins associated with the cell, indicating an enrichment of sulfated glycoproteins in the secreted materials. Monensin inhibited both the synthesis and the release of sulfated glycoproteins.  相似文献   

12.
In the preceding two papers, we described two new classes of sulfated N-linked oligosaccharides isolated from total cellular 35SO4-labeled macromolecules of different mammalian cell lines. The first class carries various combinations of sialic acids and 6-O-sulfate esters on typical complex-type chains, while the second carries heparin and heparan-like sequences. In this study, we have characterized a sulfophosphoglycoprotein of 140 kDa from FG-Met-2 pancreatic cancer cells whose oligosaccharides share some properties of both these classes. The molecule was localized to the cell surface by electron microscopy using a monoclonal antibody (S3-53) and by cell surface 125I-labeling. Metabolic labeling of the cells with radioactive glucosamine, methionine, inorganic sulfate, or phosphate all demonstrated a single 140-kDa molecule. Pulse-chase analysis and tunicamycin treatment indicated the glycosylation of a putative primary translation product of 110 kDa via an intermediate (120 kDa) to the mature form (140 kDa). Digestion with peptide:N-glycosidase F (PNGaseF) indicated a minimum of four N-linked glycosylation sites. PNGaseF released more than 90% of the [6-3H]GlcNH2 label and 40-70% of 35SO4 label from the immunoprecipitated 140-kDa molecule. The isolated oligosaccharides were characterized as described in the preceding two papers. The majority of [6-3H]GlcNH2-labeled molecules were susceptible to neuraminidase. More than 50% of the 35SO4 label was associated with only 5-10% of the 3H-labeled chains. Some of the sulfated chains were partly sialylated molecules with four to five negative charges. Treatment with nitrous acid released about 25% of the 35SO4 label as free sulfate, together with 6% of the [6-3H]GlcNH2 label, indicating the presence of N-sulfated glucosamine residues. Some of these oligosaccharides were degraded by heparinase and heparitinase. Therefore, while they are not as highly charged as typical heparin or heparan chains, they must share structural features that permit recognition by the enzymes. Thus, this 140-kDa glycoprotein contains at least four asparagine-linked chains substituted with a heterogeneous mixture of sulfated sequences. The heterogeneity of these molecules is as extensive as that described for whole-cell sulfated N-linked oligosaccharides in the preceding two papers.  相似文献   

13.
We have elucidated the structures of the anionic asparagine-linked oligosaccharides present on the glycoprotein hormones lutropin (luteinizing hormone), follitropin (follicle-stimulating hormone), and thyrotropin (thyroid-stimulating hormone). Purified hormones, isolated from bovine, ovine, and human pituitaries, were digested with N-glycanase, and the released oligosaccharides were reduced with NaB[3H]4. The 3H-labeled oligosaccharides from each hormone were then fractionated by anion-exchange high performance liquid chromatography (HPLC) into populations differing in the number of sulfate and/or sialic acid moieties. The anionic oligosaccharides were further purified as well as structurally characterized using a variety of preparative and analytical techniques, including HPLC, endo- and exoglycosidase digestions, and lectin affinity chromatography. The sulfated, sialylated, and sulfated/sialylated structures, which together comprised 67-90% of the asparagine-linked oligosaccharides on the pituitary glycoprotein hormones, were highly heterogeneous and displayed hormone- as well as animal species-specific features. The sulfated oligosaccharides consisted of hybrid and complex type oligosaccharides with one or two branches terminating in SO4-4GalNAc beta 1,4. In contrast, the sialylated oligosaccharides consisted of a wide array of differing structures containing two or three peripheral branches as well as one, two, or three sialic acid moieties. A previously uncharacterized dibranched oligosaccharide, bearing one residue each of sulfate and sialic acid, was found on all of the hormones except bovine lutropin. In this study, we describe the purification and detailed structural characterizations of the sulfated, sialylated, and sulfated/sialylated oligosaccharides found on lutropin, follitropin, and thyrotropin from several animal species. In the accompanying paper (Green, E.D., and Baenziger, J.U.(1987) J. Biol. Chem. 262, 36-44) we demonstrate the marked quantitative differences among the pituitary glycoprotein hormones in terms of sulfation, sialylation, and underlying oligosaccharide structures, as well as provide evidence for site-specific synthesis of oligosaccharides on individual hormones.  相似文献   

14.
Carbohydrate units of cell-surface glycoproteins of mouse B- and T-lymphocytes, labelled in their sialic acid residues by the periodate/NaB3H4 method and in their galactose residues by the galactose oxidase/NaB3H4 method after neuraminidase treatment, have been studied. Glycopeptides were prepared from the labelled cells by Pronase digestion and fractionated by concanavalin A affinity chromatography into two fractions (A and B). Alkali-labile oligosaccharides were isolated after mild NaOH/NaBH4 treatment by gel filtration. The alkali-labile oligosaccharides were further analysed by t.l.c. To study the relative proportion of neutral mannose-rich carbohydrate units (fraction C) in lymphocyte glycoproteins, glycopeptides were also prepared from unlabelled cells and subjected to concanavalin A affinity chromatography after N-[3H]acetylation of their peptide moiety. The major alkali-labile oligosaccharide component of both cell types was identified as galactosyl-(beta 1 leads to 3)-N-acetylgalactosaminitol. T-Lymphocytes were characterized by a high proportion of this oligosaccharide and a lower proportion of alkali-stable fraction A glycopeptides, whereas the opposite was observed for B-lymphocytes. The relative proportions of the concanavalin A-binding fractions B and C were similar in both cell types. The differences observed may correlate with the different surface properties of B- and T-lymphocytes.  相似文献   

15.
Alterations of the oligosaccharide structures of glycoproteins are associated with differentiation, malignant transformation, and expression of the same protein in different cell types. The potential biological importance of oligosaccharides has resulted in a growing need for detailed structural information. When glycoproteins are available in limited quantities and/or bear highly heterogeneous oligosaccharides, characterization of their oligosaccharides is difficult. We have developed an efficient approach for obtaining detailed information about oligosaccharides by determining structural 'fingerprints' using lectin affinity high-performance liquid chromatography.  相似文献   

16.
In an attempt to engineer a Yarrowia lipolytica strain to produce glycoproteins lacking the outer-chain mannose residues of N-linked oligosaccharides, we investigated the functions of the OCH1 gene encoding a putative alpha-1,6-mannosyltransferase in Y. lipolytica. The complementation of the Saccharomyces cerevisiae och1 mutation by the expression of YlOCH1 and the lack of in vitro alpha-1,6-mannosyltransferase activity in the Yloch1 null mutant indicated that YlOCH1 is a functional ortholog of S. cerevisiae OCH1. The oligosaccharides assembled on two secretory glycoproteins, the Trichoderma reesei endoglucanase I and the endogenous Y. lipolytica lipase, from the Yloch1 null mutant contained a single predominant species, the core oligosaccharide Man8GlcNAc2, whereas those from the wild-type strain consisted of oligosaccharides with heterogeneous sizes, Man8GlcNAc2 to Man12GlcNAc2. Digestion with alpha-1,2- and alpha-1,6-mannosidase of the oligosaccharides from the wild-type and Yloch1 mutant strains strongly supported the possibility that the Yloch1 mutant strain has a defect in adding the first alpha-1,6-linked mannose to the core oligosaccharide. Taken together, these results indicate that YlOCH1 plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in Y. lipolytica. Therefore, the Yloch1 mutant strain can be used as a host to produce glycoproteins lacking the outer-chain mannoses and further developed for the production of therapeutic glycoproteins containing human-compatible oligosaccharides.  相似文献   

17.
The N-linked oligosaccharides were released from purified human intercellular adhesion molecule (ICAM)-3 by hydrazinolysis. Approximately 6 mol of oligosaccharides were released from 1 mol of ICAM-3. The oligosaccharides reduced with NaB[3H]4 were separated into neutral and acidic fractions by paper electrophoresis. Most of the acidic oligosaccharides were converted to neutral ones by digestion with sialidase, indicating that they are sialyl derivatives. The neutral and sialidase-treated acidic oligosaccharides were fractionated by serial lectin column chromatography followed by Bio-Gel P-4 column chromatography. Structural studies of each oligosaccharide by sequential exo- and endo-glycosidase digestion and by methylation analysis revealed that N-linked oligosaccharides of ICAM-3 are mainly of tri- and tetra-antennary complex-type, about 60% of which contain two to three poly N-acetyllactosamine chains terminated with the type 1 structure and those without the type 1 structure per oligosaccharide. In addition, a small amount of the high mannose-type oligosaccharide with six alpha-mannose residues, which could act as a ligand for the dendritic cell-specific ICAM-3 grabbing nonintegrin, was detected.  相似文献   

18.
Midguts of the malaria-transmitting mosquito, Anopheles stephensi, were homogenized and microvillar membranes prepared by calcium precipitation and differential centrifugation. Oligosaccharides present on the microvillar glycoproteins were identified by lectin blotting before and after in vitro and in situ treatments with endo- and exo-glycosidases. Twenty-eight glycoproteins expressed a structurally restricted range of terminal sugars and oligosaccharide linkages. Twenty-three glycoproteins expressed oligomannose and/or hybrid N-linked oligosaccharides, some with alpha1-6 linked fucose as a core residue. Complex-type N-linked oligosaccharides on eight glycoproteins all possessed terminal N-acetylglucosamine, and alpha- and beta-linked N-acetylgalactosamine. Eight glycoproteins expressed O-linked oligosaccharides all containing N-acetylgalactosamine with or without further substitutions of fucose and/or galactose. Galactosebeta1-3/4/6N-acetylglucosamine-, sialic acidalpha2-3/6galactose-, fucosealpha1-2galactose- and galactosealpha1-3galactose- were not detected. Terminal alpha-linked N-acetylgalactosamine residues on N-linked oligosaccharides are described for the first time in insects. The nature and function of these midgut glycoproteins have yet to be identified, but the oligosaccharide side chains are candidate receptors for ookinete binding and candidate targets for transmission blocking strategies.  相似文献   

19.
Previous studies in many cell lines have shown that Brefeldin A (BFA) inhibits the forward movement of newly synthesized glycoconjugates by fusing the cis-, medial-, and trans-Golgi compartments with the rough endoplasmic reticulum. Studies on the oligosaccharide processing of individual glycoproteins have yielded confusing and incomplete results regarding the location of the block. Assuming that all glycoproteins with N-linked oligosaccharides follow the same endoplasmic reticulum to the Golgi pathway, a more complete picture on the location and nature of the block can be determined by analyzing N-linked oligosaccharides synthesized in the presence of BFA. In bovine pulmonary artery endothelial cells, BFA (0.1 microgram/ml) reversibly inhibits the secretion of greater than 95% of Tran35S and [3H]Man-labeled glycoproteins without affecting protein synthesis or N-linked glycosylation. In addition, BFA inhibits the synthesis and secretion of 35SO4-labeled oligosaccharides. Initial oligosaccharide trimming is uninhibited, but further processing is affected since the majority (65%) of the chains terminate only in beta-GlcNAc residues. Concomitantly, the proportion of [3H]Man-labeled N-linked anionic oligosaccharides is reduced from 60 to 20%, and the great majority of the charge is due to one sialic acid. The rate-limiting step for sialylation appears to be the branch selective addition of beta-Gal residues. The remaining charge is due to sulfate esters (0.6%) which normally account for greater than 10% of the anionic substituents. BFA also reduces the amount of phosphorylated chains by 80% and greatly diminishes further phosphodiester processing since the majority of these oligosaccharides (60%) contain a Man-6-PO4 residue in an acid-sensitive diester linkage. The addition of all polylactosamine chains, outer-branch fucose and terminal alpha-Gal residues are completely inhibited by BFA. Secretion, fucosylation, and sialylation are completely restored when BFA is removed, but the other modification steps are only partially restored. Our results indicate that addition of sulfate esters, terminal alpha-Gal residues, polylactosamine chains, outer-branch fucose residues, some initial phosphorylation, and most phosphodiester processing may occur beyond a compartment where some beta-Gal and sialic acid residues can be added. Essentially, all of the effects on oligosaccharide processing are partially or completely reversible.  相似文献   

20.
Glycoconjugates secreted by bovine tracheal serous cells in culture   总被引:3,自引:0,他引:3  
Glycoconjugates secreted by bovine tracheal gland serous cells in culture were characterized after incorporation of radioactive precursor [1-14C]glucosamine and stimulation with isoproterenol. Under dissociative conditions, glycoconjugates eluted in both the void and included volumes on Sepharose Cl-4B. Fractionated by anion-exchange chromatography, the high-molecular-weight (Sepharose Cl-4B; V0) glycoconjugates gave two acidic fractions eluting at 0.5 and 2.0 M NaCl; low-molecular-weight glycoconjugates of the included volumes gave a neutral fraction and two acidic fractions eluting at 0.5 and 2.0 M NaCl. Based on chemical analysis and specific enzymatic digestions, the material eluting in the void volume was shown to contain hyaluronic acid and chondroitin sulfate proteoglycan. In addition, the presence of small amounts of galactose, fucose, sialic acid, glucosamine, and galactosamine suggest the presence of O-glycosidically linked glycoproteins in the void volume. The identification of galactosaminitol in beta-eliminated oligosaccharides from this material confirms this notion. The material eluting in the included volume was shown to contain N-linked glycoproteins with glycans of complex type in the neutral fraction and chondroitin sulfate proteoglycans in the two acidic fractions. Significant N-sulfation of amino sugars was detected in the 0.5 M acidic fraction, indicating the presence of heparan sulfate. Hyaluronic acid and chondroitin sulfate proteoglycan have recently been identified in tracheal secretions; our results suggest that these components originate at least in part from tracheal gland serous cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号