共查询到20条相似文献,搜索用时 15 毫秒
1.
Vasili Hauryliuk Vladimir A. Mitkevich Albena Draycheva Stoyan Tankov Andrey Ermakov Alexander A. Makarov 《Journal of molecular biology》2009,394(4):621-9787
During initiation of messenger RNA translation in bacteria, the GTPase initiation factor (IF) 2 plays major roles in the assembly of the preinitiation 30S complex and its docking to the 50S ribosomal subunit leading to the 70S initiation complex, ready to form the first peptide bond in a nascent protein. Rapid and accurate initiation of bacterial protein synthesis is driven by conformational changes in IF2, induced by GDP-GTP exchange and GTP hydrolysis. We have used isothermal titration calorimetry and linear extrapolation to characterize the thermodynamics of the binding of GDP and GTP to free IF2 in the temperature interval 4-37 °C. IF2 binds with about 20-fold and 2-fold higher affinity for GDP than for GTP at 4 and 37 °C, respectively. The binding of IF2 to both GTP and GDP is characterized by a large heat capacity change (− 868 ± 25 and − 577 ± 23 cal mol− 1 K− 1, respectively), associated with compensatory changes in binding entropy and enthalpy. From our data, we propose that GTP binding to IF2 leads to protection of hydrophobic amino acid residues from solvent by the locking of switch I and switch II loops to the γ-phosphate of GTP, as in the case of elongation factor G. From the large heat capacity change (also upon GDP binding) not seen in the case of elongation factor G, we propose the existence of yet another type of conformational change in IF2, which is induced by GDP and GTP alike. Also, this transition is likely to protect hydrophobic groups from solvent, and its functional relevance is discussed. 相似文献
2.
3.
Claudia Glöckner Walter Wörner Heinz Wolf 《Biochemical and biophysical research communications》1982,107(3):959-965
Elongation factor Tu (EF-Tu) ofStreptoverticillium mobaraense, which produces pulvomycin, has been prepared to 90% purity. The purified protein differs significantly from the analogous protein found inEscherichia coli in molecular weight and antibiotic sensitivity. EF-Tu migrates in sodium dodecyl sulfate gel electrophoresis as a 46,000-dalton species. The protein is sensitive to pulvomycin, but highly resistant to kirromycin. EF-Tu fromStv. mobaraense exists in multiple forms as monomer and polymers. By contrast to the monomer, the polymers of EF-Tu are completely resistant to pulvomycin. 相似文献
4.
Structural insight into a molecular switch in tandem winged-helix motifs from elongation factor SelB 总被引:1,自引:0,他引:1
Elongation factor SelB is responsible for co-translational incorporation of selenocysteine (Sec) into proteins. The UGA stop codon is recoded as a Sec codon in the presence of a downstream mRNA hairpin. In prokaryotes, in addition to the EF-Tu-like N-terminal domains, a C-terminal extension containing four tandem winged-helix motifs (WH1-4) recognizes the mRNA hairpin. The 2.3-A resolution crystal structure of the Escherichia coli WH3/4 domains bound to mRNA with mutagenesis data reveal that the two WH motifs use the same structural elements to bind RNA. The structure together with the 2.6-A resolution structure of the WH1-4 domains from Moorella thermoacetica bound to RNA revealed that a salt bridge connecting WH2 to WH3 modules is disrupted upon mRNA binding. The results provide a structural basis for the molecular switch that may allow communication between tRNA and mRNA binding sites and illustrate how RNA acts as an activator of the switch. The structures show that tandem WH motifs not only provide an excellent scaffold for RNA binding but can also have an active role in the function of protein-RNA complexes. 相似文献
5.
Using a combination of intrinsic fluorescence to report ATP-induced rearrangements, quenched-flow to measure ATP hydrolysis "on-enzyme" and optical methods to probe the kinetics of product release, we have begun to dissect the process of energy transduction in the thermosome, a type II chaperonin from Thermoplasma acidophilum. Stoichiometric measurements of ATP binding reveal the tight association of eight nucleotide molecules per hexa-decamer, implying the filling of only one ring owing to strong negative cooperativity. After binding, we show that these eight ATP molecules are hydrolysed over the next 50 s, after which hydrolysis slows down markedly during the establishment of the steady state in the ATPase reaction, demonstrating that the kinetic system is off-rate limited. Looking in more detail, this rapid first-turnover can be dissected into two phases; the first occurring with a half-time of 0.8 s, the second with a half-time of 14 s, possibly reflecting the differential behaviour of the four alpha and four beta subunits in a single thermosome ring. To investigate the post-hydrolytic events, we used two heat-stable enzyme-linked optical assays to measure the rate of evolution of ADP and of phosphate from the thermosome active site. Neither product showed a rapid dissociation phase prior to the establishment of the steady state, showing that both are released slowly at a rate that limits the cycle. These data highlight the importance of the highly populated thermosome/ADP/Pi complex in the molecular mechanism. 相似文献
6.
The co-crystal structure of Thermus aquaticus elongation factor Tu.guanosine 5'- [beta,gamma-imido]triphosphate (EF-Tu.GDPNP) bound to yeast Phe-tRNA(Phe) reveals that EF-Tu interacts with the tRNA body primarily through contacts with the phosphodiester backbone. Twenty amino acids in the tRNA binding cleft of Thermus Thermophilus EF-Tu were each mutated to structurally conservative alternatives and the affinities of the mutant proteins to yeast Phe-tRNA(Phe) determined. Eleven of the 20 mutations reduced the binding affinity from fourfold to >100-fold, while the remaining ten had no effect. The thermodynamically important residues were spread over the entire tRNA binding interface, but were concentrated in the region which contacts the tRNA T-stem. Most of the data could be reconciled by considering the crystal structures of both free EF-Tu.GTP and the ternary complex and allowing for small (1.0 A) movements in the amino acid side-chains. Thus, despite the non-physiological crystallization conditions and crystal lattice interactions, the crystal structures reflect the biochemically relevant interaction in solution. 相似文献
7.
8.
Eukaryotic valyl-tRNA synthetase (ValRS) and the heavy form of elongation factor 1 (EF-1H) are isolated as a stable high molecular mass complex that catalyzes consecutive steps in protein biosynthesis--aminoacylation of tRNA and its transfer to elongation factor. Herein is the first three-dimensional structure of the particle as calculated from electron microscopic images of negatively stained samples of the human ValRS/EF-1H complex. The ca. 12 x 8 nm particle has two distinct domains and each appears to have twofold symmetry. Bound antibodies place two delta subunits near the particle's center. These data support a dimeric head-to-head arrangement of particle components. 相似文献
9.
Ermolenko DN Majumdar ZK Hickerson RP Spiegel PC Clegg RM Noller HF 《Journal of molecular biology》2007,370(3):530-540
Protein synthesis is believed to be a dynamic process, involving structural rearrangements of the ribosome. Cryo-EM reconstructions of certain elongation factor G (EF-G)-containing complexes have led to the proposal that translocation of tRNA and mRNA through the ribosome, from the A to P to E sites, is accompanied by a rotational movement between the two ribosomal subunits. Here, we have used F?rster resonance energy transfer (FRET) to monitor changes in the relative orientation of the ribosomal subunits in different complexes trapped at intermediate stages of translocation in solution. Binding of EF-G to the ribosome in the presence of the non-hydrolyzable GTP analogue GDPNP or GTP plus fusidic acid causes an increase in the efficiency of energy transfer between fluorophores introduced into proteins S11 in the 30 S subunit and L9 in the 50 S subunit, and a decrease in energy transfer between S6 and L9. Similar anti-correlated changes in energy transfer occur upon binding the GTP-requiring release factor RF3. These changes are consistent with the counter-clockwise rotation of the 30 S subunit relative to the 50 S subunit observed in cryo-EM studies. Reaction of ribosomal complexes containing the peptidyl-tRNA analogues N-Ac-Phe-tRNAPhe, N-Ac-Met-tRNAMet or f-Met-tRNAfMet with puromycin, conditions favoring movement of the resulting deacylated tRNAs into the P/E hybrid state, leads to similar changes in FRET. Conversely, treatment of a ribosomal complex containing deacylated and peptidyl-tRNAs bound in the A/P and P/E states, respectively, with EF-G.GTP causes reversal of the FRET changes. The use of FRET has enabled direct observation of intersubunit movement in solution, provides independent evidence that formation of the hybrid state is coupled to rotation of the 30 S subunit and shows that the intersubunit movement is reversed during the second step of translocation. 相似文献
10.
Elongation factor Tu (EF-Tu) is central to prokaryotic protein synthesis as it has the role of delivering amino-acylated tRNAs to the ribosome. Release of EF-Tu, after correct binding of the EF-Tu:aa-tRNA complex to the ribosome, is initiated by GTP hydrolysis. This reaction, whose mechanism is uncertain, is catalyzed by EF-Tu, but requires activation by the ribosome. There have been a number of mechanistic proposals, including those spurred by a recent X-ray crystallographic analysis of a ribosome:EF-Tu:aa-tRNA:GTP-analog complex. In this work, we have investigated these and alternative hypotheses, using high-level quantum chemical/molecular mechanical simulations for the wild-type protein and its His85Gln mutant. For both proteins, we find previously unsuggested mechanisms as being preferred, in which residue 85, either His or Gln, directly assists in the reaction. Analysis shows that the RNA has a minor catalytic effect in the wild-type reaction, but plays a significant role in the mutant by greatly stabilizing the reaction’s transition state. Given the similarity between EF-Tu and other members of the translational G-protein family, it is likely that these mechanisms of ribosome-activated GTP hydrolysis are pertinent to all of these proteins. 相似文献
11.
The polymerase chain reaction was used to produce seven variants of Thermus thermophilus elongation factor G (EF-G) with mutations Glu494Ile, Gly495Asp, Lys496Ile, His509Leu, Lys564Ile, and Tyr568Lys, localized in the β-sheet of domain IV, and mutation Gly553Asp, residing in the loop between domains III and IV. It was demonstrated that only the Lys496Ile mutation, located close to the beginning of loop 501–504, influenced the efficiency of translocation in the presence of mutant EF-G. Functional analysis of all the known mutations of domain IV showed that only mutations in loops 501–504 and 573–578, localized to the tip of domain IV, had a pronounced effect on the translocation activity of EF-G. Upon the interaction of EF-G with ribosomes, these loops are the closest to the decoding center, formed in the structure of the 16S RNA in the 30S subunit. The role of EF-G and its domain IV in ribosomal translocation is discussed. 相似文献
12.
13.
Primary structure of human insulin-like growth factor II 总被引:47,自引:0,他引:47
14.
Helgstrand M Mandava CS Mulder FA Liljas A Sanyal S Akke M 《Journal of molecular biology》2007,365(2):468-479
Efficient protein synthesis in bacteria requires initiation factor 2 (IF2), elongation factors Tu (EF-Tu) and G (EF-G), and release factor 3 (RF3), each of which catalyzes a major step of translation in a GTP-dependent fashion. Previous reports have suggested that recruitment of factors to the ribosome and subsequent GTP hydrolysis involve the dimeric protein L12, which forms a flexible "stalk" on the ribosome. Using heteronuclear NMR spectroscopy we demonstrate that L12 binds directly to the factors IF2, EF-Tu, EF-G, and RF3 from Escherichia coli, and map the region of L12 involved in these interactions. Factor-dependent chemical shift changes show that all four factors bind to the same region of the C-terminal domain of L12. This region includes three strictly conserved residues, K70, L80, and E82, and a set of highly conserved residues, including V66, A67, V68 and G79. Upon factor binding, all NMR signals from the C-terminal domain become broadened beyond detection, while those from the N-terminal domain are virtually unaffected, implying that the C-terminal domain binds to the factor, while the N-terminal domain dimer retains its rotational freedom mediated by the flexible hinge between the two domains. Factor-dependent variations in linewidths further reveal that L12 binds to each factor with a dissociation constant in the millimolar range in solution. These results indicate that the L12-factor complexes will be highly populated on the ribosome, because of the high local concentration of ribosome-bound factor with respect to L12. 相似文献
15.
Nishimura M Kaminishi T Takemoto C Kawazoe M Yoshida T Tanaka A Sugano S Shirouzu M Ohkubo T Yokoyama S Kobayashi Y 《Journal of molecular biology》2008,377(2):421-430
A phylogenetically conserved ribosomal protein L16p/L10e organizes the architecture of the aminoacyl tRNA binding site on the large ribosomal subunit. Eukaryotic L10 also exhibits a variety of cellular activities, and, in particular, human L10 is known as a putative tumor suppressor, QM. We have determined the 2.5-Å crystal structure of the human L10 core domain that corresponds to residues 34-182 of the full-length 214 amino acids. Its two-layered α + β architecture is significantly similar to those of the archaeal and bacterial homologues, substantiating a high degree of structural conservation across the three phylogenetic domains. A cation-binding pocket formed between α2 and β6 is similar to that of the archaeal L10 protein but appears to be better ordered. Previously reported L10 mutations that cause defects in the yeast ribosome are clustered around this pocket, indicating that its integrity is crucial for its role in L10 function. Characteristic interactions among Arg90-Trp171-Arg139 guide the C-terminal part outside of the central fold, implying that the eukaryote-specific C-terminal extension localizes on the outer side of the ribosome. 相似文献
16.
Elongation factor G (EF-G) promotes the translocation of tRNA and mRNA in the central cavity of the ribosome following the addition of each amino acid residue to a growing polypeptide chain. tRNA/mRNA translocation is coupled to GTP hydrolysis, catalyzed by EF-G and activated by the ribosome. In this study we probed EF-G interactions with ribosomal proteins (r-proteins) of the bacterial ribosome, by using a combination of chemical crosslinking, immunoblotting and mass spectroscopy analyses. We identified three bacterial r-proteins (L7/L12, S12 and L6) crosslinked to specific residues of EF-G in three of its domains (G', 3 and 5, respectively). EF-G crosslinks to L7/L12 and S12 were indistinguishable when EF-G was trapped on the ribosome before or after tRNA/mRNA translocation had occurred, whereas a crosslink between EF-G and L6 formed with greater efficiency before translocation had occurred. EF-G crosslinked to L7/L12 was capable of catalyzing multiple rounds of GTP hydrolysis, whereas EF-G crosslinked to S12 was inactive in GTP hydrolysis. These results imply that during the GTP hydrolytic cycle EF-G must detach from S12 within the central cavity of the ribosome, while EF-G can remain associated with L7/L12 located on one of the peripheral stalks of the ribosome. This mechanism may ensure that a single GTP molecule is hydrolyzed for each tRNA/mRNA translocation event. 相似文献
17.
Pai RD Zhang W Schuwirth BS Hirokawa G Kaji H Kaji A Cate JH 《Journal of molecular biology》2008,376(5):1334-1347
At the end of translation in bacteria, ribosome recycling factor (RRF) is used together with elongation factor G to recycle the 30S and 50S ribosomal subunits for the next round of translation. In x-ray crystal structures of RRF with the Escherichia coli 70S ribosome, RRF binds to the large ribosomal subunit in the cleft that contains the peptidyl transferase center. Upon binding of either E. coli or Thermus thermophilus RRF to the E. coli ribosome, the tip of ribosomal RNA helix 69 in the large subunit moves away from the small subunit toward RRF by 8 Å, thereby disrupting a key contact between the small and large ribosomal subunits termed bridge B2a. In the ribosome crystals, the ability of RRF to destabilize bridge B2a is influenced by crystal packing forces. Movement of helix 69 involves an ordered-to-disordered transition upon binding of RRF to the ribosome. The disruption of bridge B2a upon RRF binding to the ribosome seen in the present structures reveals one of the key roles that RRF plays in ribosome recycling, the dissociation of 70S ribosomes into subunits. The structures also reveal contacts between domain II of RRF and protein S12 in the 30S subunit that may also play a role in ribosome recycling. 相似文献
18.
E. V. Stepanova T. V. Fedorova O. N. Sorokina V. V. Volkov O. V. Koroleva A. T. Dembo 《Biochemistry. Biokhimii?a》2009,74(4):385-392
The effect of solvent phase transitions on catalytic activity and structure of the active site of laccase produced by the Basidiomycetes Coriolus hirsutus 072 was studied. As shown by small-angle X-ray scattering, laccase exists in solution as a mixture of monomeric and aggregated particles in the percent ratio 85: 15. This ratio did not change on phase transitions. A complex nature of laccase activity dynamics during thawing and further heating to 20°C was shown. Spontaneous oxidation of T1 copper center in the temperature range 12–20°C was not observed. According to spectral data, the structure of laccase active sites including all copper centers of types T1, T2, and T3 changes during the phase transition. 相似文献
19.
Sjekloća L Pudas R Sjöblom B Konarev P Carugo O Rybin V Kiema TR Svergun D Ylänne J Djinović Carugo K 《Journal of molecular biology》2007,368(4):1011-1023
Filamin C is a dimeric, actin-binding protein involved in organization of cortical cytoskeleton and of the sarcomere. We performed crystallographic, small-angle X-ray scattering and analytical ultracentrifugation experiments on the constructs containing carboxy-terminal domains of the protein (domains 23-24 and 19-21). The crystal structure of domain 23 of filamin C showed that the protein adopts the expected immunoglobulin (Ig)-like fold. Small-angle X-ray scattering experiments performed on filamin C tandem Ig-like domains 23 and 24 reveal a dimer that is formed by domain 24 and that domain 23 has little interactions with itself or with domain 24, while the analytical ultracentrifugation experiments showed that the filamin C domains 19-21 form elongated monomers in diluted solutions. 相似文献
20.
Eargle J Black AA Sethi A Trabuco LG Luthey-Schulten Z 《Journal of molecular biology》2008,377(5):1382-1405
Elongation factor Tu (EF-Tu) binds to all standard aminoacyl transfer RNAs (aa-tRNAs) and transports them to the ribosome while protecting the ester linkage between the tRNA and its cognate amino acid. We use molecular dynamics simulations to investigate the dynamics of the EF-Tu·guanosine 5′-triphosphate·aa-tRNACys complex and the roles played by Mg2+ ions and modified nucleosides on the free energy of protein·RNA binding. Individual modified nucleosides have pronounced effects on the structural dynamics of tRNA and the EF-Tu·Cys-tRNACys interface. Combined energetic and evolutionary analyses identify the coevolution of residues in EF-Tu and aa-tRNAs at the binding interface. Highly conserved EF-Tu residues are responsible for both attracting aa-tRNAs as well as providing nearby nonbonded repulsive energies that help fine-tune molecular attraction at the binding interface. In addition to the 3′ CCA end, highly conserved tRNA nucleotides G1, G52, G53, and U54 contribute significantly to EF-Tu binding energies. Modification of U54 to thymine affects the structure of the tRNA common loop resulting in a change in binding interface contacts. In addition, other nucleotides, conserved within certain tRNA specificities, may be responsible for tuning aa-tRNA binding to EF-Tu. The trend in EF-Tu·Cys-tRNACys binding energies observed as the result of mutating the tRNA agrees with experimental observation. We also predict variations in binding free energies upon misacylation of tRNACys with d-cysteine or O-phosphoserine and upon changing the protonation state of l-cysteine. Principal components analysis in each case reveals changes in the communication network across the protein·tRNA interface and is the basis for the entropy calculations. 相似文献