首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four isomers of hydroxycitrate have been tested as substrates and inhibitors for citrate synthase, citrate lyase, and ATP citrate lyase. None of the isomers served as a substrate for citrate synthase and they were moderate to weak inhibitors of this reaction. Of the four isomers, only (pncit)-(2S)-2-hydroxycitrate did not serve as a substrate for citrate lyase while (pncit)-(4S)-4-hydroxycitrate was the only isomer which did not serve as a substrate for ATP citrate lyase. No consistent pattern of reactivity or inhibitor potency was seen with the different isomeric hydroxycitrates. It is proposed that more than one mode of binding is possible between the isomers and the three different active sites.  相似文献   

2.
In the course of studies on anaerobic citrate metabolism in Klebsiella pneumoniae, the DNA region upstream of the gene for the sodium-dependent citrate carrier (dtS) was investigated. Nucleotide sequence analysis revealed a cluster of five new genes that were oriented inversely to citS and probaby form an operon. The genes were named citCDEFG. Based on known protein sequence data, the gene products derived from citD, citE and citF could be identified as the λ-, β-, and α-subunits of citrate lyase, respectively. This enzyme catalyses the cleavage of citrate to oxaloacetate and acetate. The gene product derived from citC (calculated Mr 36476) exhibited no obvious similarity to other proteins. In the presence of acetate and ATP, cell extracts from a citC-expressing Escherichia coli strain were able to reactivate purified citrate lyase from K. pneumoniae that had been inactivated by chemical deacetylation of the prosthetic group. This represents 5-phosphoribosyi-dephospho-acetyl-coenzyme A which is covalently bound to serine-14 of the acyl carrier protein (λ-subunit). CitC was thus identified as acetate:SH-citrate lyase ligase. The function of the gene product derived from citG (Mr 32 645) has not yet been identified. Expression of the CitCDEFG gene cluster in E. coli led to the formation of citrate lyase which was active only in the presence of acetyl-coenzyme A, a compound known to substitute for the prosthetic group. These and other data strongly indicated that the enzyme synthesized in E. coli lacked its prosthetic group. Thus, additional genes besides citCDEFG appear to be required for the formation of holo-citrate lyase.  相似文献   

3.
Determination of citrate with citrate lyase   总被引:40,自引:0,他引:40  
  相似文献   

4.
5.
6.
Bacterial citrate lyase, the key enzyme in fermentation of citrate, has interesting structural features. The enzyme is a complex assembled from three non-identical subunits, two having distinct enzymatic activities and one functioning as an acyl-carrier protein. Bacterial citrate lyase,si-citrate synthase and ATP-citrate lyase have similar stereospecificities and show cofactor cross-reactions. On account of these common features, the citrate enzymes are promising markers in the study of evolutionary biology. The occurrence, function, regulation and structure of bacterial citrate lyase are reviewed in this article.  相似文献   

7.
ATP citrate lyase   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
10.
The dephospho- form of rat liver citrate lyase has been prepared by treating purified [32P]-ATP citrate lyase with a partially purified phosphatase. A comparison of the properties of the phospho- and dephosphoenzyme has been performed. The pH optima were the same for both forms of the enzyme in four different buffer systems although the optimum values varied identically for both enzyme forms with the buffer. Both the phospho- and dephosphoenzymes show the same kinetic properties except for the Km observed for ATP in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer system where it was 54 μm for the phosphoenzyme and 292 μm for the dephosphoenzyme. The present study also indicates that both enzymes are cleaved by trypsin and lysosomal proteases in a similar manner. Both forms of the enzyme tend to associate with mitochondria to the same extent and both enzymes have identical temperature stability curves.  相似文献   

11.
The acyl-carrier protein of citrate lyase   总被引:5,自引:0,他引:5  
  相似文献   

12.
13.
(1) The association of ATP citrate lyase with mitochondria was studied with isolated rat hepatocytes and mitochondria. (2) When hepatocytes were treated with digitonin, about 25% of the lyase activity was released like a mitochondrial enzyme. (3) The effect of temperature on release of lyase from hepatocytes was different from that on the release of other cytosolic or mitochondrial enzymes. (4) The fraction of total hepatic lyase in mitochondrial preparations made with exogenous MgCl2 was 30 times greater than that for a cytosolic marker enzyme, phosphoglycerate kinase. (5) Lyase substrates enhanced the release of the enzyme both from hepatocytes and from isolated mitochondria. (6) The metabolic significance of association of ATP citrate lyase with mitochondria is discussed. (7) Data obtained in the course of these experiments indicate that less than 3% of adenylate kinase is cytosolic.  相似文献   

14.
15.
Regulatory citrate lyase mutants of Salmonella typhimurium   总被引:2,自引:1,他引:1  
Citrate lyase, the key enzyme of anaerobic citrate catabolism, could not be deleted from Salmonella typhimurium. The only class of mutants found had a mode of covalent regulation that strongly resembled the Escherichia coli system: citrate lyase was only active, i.e., acetylated, when a cosubstrate was present.  相似文献   

16.
Cells of Clostridium sporosphaeroides which were grown on citrate contained citrate lyase and citrate lyase acetylating enzyme, but no detectable citrate synthase and citrate lyase deacetylase activities. Citrate lyase from C. sporosphaeroides was purified to homogeneity as judged by polyacrylamide gel electrophoresis and high performance liquid chromatography. In contrast to the enzyme from Clostridium sphenoides, the addition of l-glutamate was not necessary for activity and stabilization of the enzyme. The purified enzyme had a specific activity of 34 U/mg protein and was comparable to other citrate lyases with respect to its molecular weight and subunit composition. Electron microscopic investigations showed that similar to the lyase from C. sphenoides and in contrast to all other citrate lyases examined so far, the majority of the enzyme molecules was present in star form.  相似文献   

17.
The subunit structure of citrate lyase from Escherichia coli was shown to be similar to that of all other lyases investigated so far. The three different subunits with molecular masses of 55.5 kDa, (large subunit) 35 kDa (medium-sized subunit) and 12.5 kDa (small subunit, acyl carrier protein) occurred in a ratio of 1:1:1. Using high-pressure liquid chromatography, it was possible to demonstrate that the reported large acyl carrier protein, with a molecular mass of 85 kDa was a contaminating protein associated with citrate lyase multienzyme complex; it could be removed by anion-exchange chromatography with Q-Sepharose. The typical two configurations of citrate lyase, the 'star' form and the 'ring' form with a diameter of 14.3 nm and 15.4 nm, respectively, could be detected by electron microscopy.  相似文献   

18.
Six different biotinylated radicicol derivatives were synthesized as affinity probes for identification of cellular radicicol-binding proteins. Derivatives biotinylated at the C-17 (BR-1) and C-11 (BR-6) positions retained the activity of morphological reversion in v-src-transformed 3Y1 fibroblasts. Two radicicol-binding proteins, 120 and 90-kDa in size, were detected in HeLa cell extracts by employing BR-1 and BR-6, respectively. The 90-kDa protein bound to BR-6 was identified to be Hsp90 by immunoblotting. The 120-kDa protein bound to BR-1 was purified from rabbit reticulocyte lysate, and its internal amino acid sequence was identical to that of human and rat ATP citrate lyase. The identity of the 120-kDa protein as ATP citrate lyase was confirmed by immunoblotting. Interaction between BR-1 and ATP citrate lyase was blocked by radicicol but not by herbimycin A that interacts with Hsp90. These results suggest that radicicol binds the two proteins through different molecular portions of its structure. BR-1-bound ATP citrate lyase isolated from rabbit reticulocyte lysate showed no enzymatic activity. The activity of rat liver ATP citrate lyase was inhibited by radicicol and BR-1 but not by BR-6. Kinetic analysis demonstrated that radicicol was a non-competitive inhibitor of ATP citrate lyase with K(i) values for citrate and ATP of 13 and 7 microm, respectively.  相似文献   

19.
Citrate lyase from Clostridium sphenoides was purified 72-fold with a yield of 11%. In contrast to citrate lyase from other sources the activity of this enzyme was strictly dependent on the presence of L-glutamate. The purified enzyme was only stable in the presence of 150 mM L-glutamate or 7 mM L-glutamate plus glycerol, sucrose or bovine serum albumin. Changes of the L-glutamate pool and of enzyme activity in growing cells of C. sphenoides indicated that citrate lyase activity in this organism was regulated by the intracellular L-glutamate concentration. Citrate lyase isolated from C. sphenoides, Rhodopseudomonas gelatinosa and Streptococcus diacetilactis was investigated by electron microscopy using the negative staining technique. Three different projections of enzyme molecules were observed: 'star' form, 'ring' form and 'triangle' form. In samples from R. gelatinosa and S. diacetilactis, star and ring forms occurred in a ratio of about 1:9. Using the enzyme from S. diacetilactis it was demonstrated that this ratio could be altered in favour of the star form by the addition of citrate or tricarballylate. The triangle form was observed in less than 1% of all evaluated molecules and may represent a transition form. In lyase samples from C. sphenoides there existed a correlation between enzyme activity and the proportion of stars and rings at varying concentrations of L-glutamate.  相似文献   

20.
S Nilekani  C SivaRaman 《Biochemistry》1983,22(20):4657-4663
Citrate lyase (EC 4.1.3.6) has been purified from Escherichia coli and the homogeneity of the preparation established from the three-component subunits obtained on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The purified enzyme has a specific activity of 120 mumol min-1 mg-1 and requires optimally 10 mM Mg2+ and a pH of 8.0 for the cleavage reaction. The native enzyme is polydispersed in the ultracentrifuge and in polyacrylamide gel electrophoresis. The enzyme complex is composed of three different polypeptide chains of 85 000, 54 000, 32 000 daltons. An estimate of subunit stoichiometry indicates that 1 mol of the largest polypeptide chain is associated with 6 mol each of the smaller ones. The polypeptide subunits have been isolated in pure state and their biological functions characterize. The 54 000-dalton subunit functions as the acyltransferase alpha subunit catalyzing the formation of citryl coenzyme A from citrate in the presence of acetyl coenzyme A and ethylenediaminetetraacetic acid. The 32 000-dalton subunit functions as the acyllyase beta subunit catalyzing the cleavage of (3S)-citryl coenzyme A to oxal-acetate and acetyl coenzyme A. The 85 000-dalton subunit, which carries exclusively the prosthetic group components, functions as the acyl-carrier protein gamma subunit in the cleavage of citrate in the presence of mg2+ and the alpha and beta subunits. The presence of a large ACP subunit and the unusual stoichiometry of the different subunits distinguish the complex from other citrate lyases. A ligase which acetylates the deacetyl[citrate lyase] in the presence of acetate and ATP has ben shown to be present in the organism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号